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Question 1. Quadratic models and smooth convex optimization. Consider the opti-
mization problem:

minimize f(x) (1)

where f : Rn → R is convex and L-smooth.

(a) Consider an algorithm that iteratively solves (1) by minimizing the quadratic
model

xk+1 = argmin
x

{
f(xk) + ⟨∇f(xk), x− xk⟩+

1

2η
∥x− xk∥2Ak

}
,

given a sequence of symmetric positive-definite matrices Ak ∈ Sn
++ and a scalar

η > 0. Solve the preceding optimization problem to explicitly write xk+1 as a
function of xk.

(b) In the special case that Ak = I for every iteration k, what is the name of this
algorithm? Further, state a value of η that ensures descent, i.e.,

f(xk+1) ≤ f(xk).

(c) The theoretical value for η that ensures descent can result in very slow convergence
in practice. How would you recommend selecting the stepsize in practice for the
algorithm in (b)? You may simply state the name of a method; no need to write
any math. Justify your choice.

(d) You are consulting for a company designing a classification model to detect credit-
card fraud, which requires solving a large logistic regression problem:

minimize 1
m

∑m
i=1 ℓlogistic ((Ax)i; yi) ,

where A ∈ Rm×n is a very sparse data matrix with m = 109 samples and n = 106

features, and yi ∈ {+1,−1} the label of the ith datapoint. The client is currently
running the algorithm in (b), but it takes too long to solve. Unfortunately, the
number of features is so large that any algorithm that uses memory or compute
quadratic in n is unacceptable. What algorithm would you recommend as re-
placement to achieve faster convergence? Note, there is more than one reasonable
answer to this question, but you only need to provide one recommendation. Justify
your answer.



Solution. Quadratic models and smooth convex optimization.

(a) To find xk+1 we apply the first-order optimality condition, and set the gradient of
the defining objective equal to 0, from which we find

∇f(xk) +
1

η
Ak(xk+1 − xk) = 0.

Solving for xk+1, we obtain

xk+1 = xk − ηA−1
k ∇f(xk).

(b) When Ak = I for all k, we recover the gradient descent algorithm. To ensure
descent, one should select η = 1

L
. As with this choice, the L-smoothness bound

guarantees

f(xk+1) ≤ f(xk)−
1

L
∥∇f(xk)∥2.

(c) You should use Armijo Line Search. This procedure will often lead to a step
that makes more progress then the theoretical bound in (b). For details on the
procedure, see the course slides.

(d) There are 3 reasonable answers here. We are told A is extremely sparse, so it is
feasible to compute full gradients (as the cost of computing ∇f is proportional
to applying A to vectors for logistic regression). As full gradients are feasible to
compute, L-BFGS and Accelerated gradient descent are both good recommenda-
tions. or the third possible recommendation, observe the objective has finite-sum
structure, so we can easily form a stochastic gradient for the objective. Thus,
stochastic gradient methods like SGD and SVRG are also appropriate choices.
However, note SVRG is only a reasonable option as A is very sparse, which allows
for computation of full gradients.
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Question 2 [Duality and Resource Allocation] (15 points)

A multinational firm has an operating budget M > 0 that can be allocated across its
divisions in each of n regions. Let xj be the allocation to region j, j = 1, . . . , n. Each
division j has estimated the 5-year profit they expect to achieve given allocation x; we
will represent the negative profit as the function fj(x), j = 1, . . . , n. As the CFO of this
firm, you plan to allocate the budget by solving the problem

minimize
n∑

j=1

fj(xj)

subject to
n∑

j=1

xj = M, (2)

variables xj ≥ 0 j = 1, ..., n.

Assume the problem has a unique solution x⋆ ∈ Rn, and Slater’s condition holds.

(a) (5 points) Write down the KKT conditions for (2). Prove that there exists a
threshold λ⋆ ∈ R such that

f ′
j(x

⋆
j) = λ⋆ if x⋆

j > 0,

f ′
j(x

⋆
j) ≥ λ⋆ if x⋆

j = 0,

for all j = 1, . . . , n and any optimal solution (x⋆
1, . . . , x

⋆
n) of (2). (Hint: You can

assume that all optimal solutions of (2) satisfy the KKT conditions).

In the following, suppose fj(xj) = −wj log(xj) where wj > 0 for j = 1, . . . , n.

(b) (4 points) Write down the dual problem of (2). Find the dual optimal solution.
(Hint: to find the dual optimal solution, you can first show that the dual optimal

solution satisfies λ⋆ = − 1
M

n∑
j=1

wi using the KKT conditions.)

(c) (4 points) Write down an analytical formula for the optimal solution of (2).

(d) (2 points) Verify that for any (x1, . . . , xn) in the feasible set of (2), the correspond-

ing primal objective value
n∑

j=1

f(xj) is no less than the optimal dual objective value.
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Solution.[Duality and Resource Allocation]

(a) The Lagrangian of the problem is given by

L(x, λ, µ) =
∑

fj(xj) + λ(M −
∑

xj)−
∑

µjxj

and the first-order conditions will be

∂L

∂xj

= f ′
j(xj)− λ− µj = 0

λ(M −
∑

xj) = 0

µjxj = 0

µj ≥ 0

From the first and last equation, we get

f ′
j(xj) = λ+ µj ≥ λ.

λ∗ represents the rate of optimal objective change over the change of right-hand-
side resource M . Note that if xj > 0 then µj = 0 which implies

f ′
j(xj) = λ

In this case, λ∗ corresponds to the marginal gain from increasing each one of the
fj when x∗

j > 0, that is, the optimal allocation of xi is at the point such that every
function fj has the same marginal gain λ∗.

(b) To have the dual problem, we first compute the dual objective function by mini-
mizing the Lagrangian function with respect to x. By the stationarity condition,
we have xj = − wj

λ+µj
for all j and the dual objective function is

n∑
j=1

−wj log

(
− wj

λ+ µj

)
.

Thus, the dual problem is

maximize
n∑

j=1

−wj log

(
− wj

λ+ µj

)
subject to µj ≥ 0, j = 1, 2, ...

To find the optimal solution, we multiply the first FOC by xj and get

f ′
j(xj)xj − λxj − µjxj = 0
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Replacing µjxj = 0 and summing over i∑
f ′
j(xj)xj = λ

∑
xj

And using the complementary condition λ(M −
∑

xj) = 0 we get

−
∑

wj =
∑

f ′
j(xj)xj = λM

which gives the result.

(c) By complementary condition and the condition that the optimal primal solutions
are strictly larger than 0, we have µj = 0 for all j. Then, by the stationarity
condition, we have xj = −wj

λ
. Plugging in the value of λ from Part (b), we have

the result.

(d) Weak convexity. We can also verify it by calculation.
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Question 3 [Convergence Rate of SGD proved by GPT-4] (5 points, Bonus)

Recently, large language models like GPT-4 have garnered significant attention due
to their impressive capabilities, including their ability to solve intricate scientific prob-
lems. In this examination problem, we’ll examine GPT-4’s performance in proving the
convergence rate of the stochastic gradient descent (SGD) method.

Consider a µ-strongly convex and L-smooth function f(x) defined on Rn, where n
is a positive integer, and µ, L > 0 are two positive constants. Denote the solution to
the unconstrained minimization problem as x⋆ = argmin f(x) as the minimizer and the
initial iterate as x0. Suppose f(x) is twice differentiable. SGD updates the iterate as

xt+1 = xt − ηgt,

where η > 0 is the step size, gt is a stochastic gradient at xt satisfying E[gt] = ∇f(xt)
for all t = 1, 2, . . .

Suppose that ∥gt∥ ≤ G for a positive constant G > 0, for all t = 1, 2, . . .. In
homework 1, we showed that, with some specified step size η, SGD finds an ϵ-optimal
solution xt such that

E [f(xt)− f(x⋆)] ≤ ϵ

within O
(

1
ϵ
log

(
2(f(x0)−f(x⋆)

ϵ

))
iterations for any x0.

Can GPT-4 match the mathematical prowess of students in CME 307? To show this
statement, GPT-4 proposes the following proof. Is this proof correct? If not, identify
the first wrong step, and correct the proof to show the statement.

Proof of the convergence rate of SGD provided by GPT-4.
Given a twice-differentiable function f(x) defined on Rn that is µ-strongly convex and
L-smooth. The minimizer of the function is given by x⋆ = arg min

x∈Rn
f(x).

Let’s apply Stochastic Gradient Descent (SGD) to find the minimizer as follows:

xt+1 = xt − ηgt, (3)

where η is the step size, and gt is a stochastic gradient at xt with E[gt] = ∇f(xt) for all
t = 1, 2, ... We suppose that E[|gt|22] ≤ G2 for some positive constant G > 0 for all t.

Our goal is to specify the step size η and prove that after at most O(1
ϵ
log(2(f(x0)−

f(x⋆))/ϵ)) steps,

E[f(xt+1)− f(x⋆)] ≤ ϵ. (4)
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Let’s denote ft = f(xt) and Dt = ft − f ⋆ where f ⋆ = f(x⋆). Also denote G2 as the
upper bound on the expected squared norm of the stochastic gradient, i.e., E[|gt|22] ≤ G2.

Let’s denote the SGD step size as η = 1/L.

We know that the function f(x) is L-smooth, hence we have the following inequality:

ft+1 ≤ ft − η∇f⊤
t gt +

Lη2

2
|gt|22. (5)

Taking the expectation on both sides, we get:

E[ft+1] ≤ E[ft]− ηE[∇f⊤
t gt] +

Lη2

2
G2. (6)

Because E[gt] = ∇ft, and we know the function is µ-strongly convex, we have
E[∇f⊤

t gt] = |∇ft|22 ≥ µDt. Thus,

E[Dt+1] ≤ (1− ηµ)Dt +
Lη2

2
G2. (7)

After substituting η = 1/L, we havef(x) being µ-strongly convex, we find that

E[Dt+1] ≤
(
1− µ

L

)
Dt +

1

2L
G2. (8)

Applying this inequality recursively for t steps and noticing that D0 = f0 − f ⋆, we get

E[Dt] ≤
(
1− µ

L

)t

(f0 − f ⋆) +
G2

2µ

(
1−

(
1− µ

L

)t
)
. (9)

To make E[Dt] ≤ ϵ, we need (
1− µ

L

)t

(f0 − f ⋆) ≤ ϵ. (10)

Solving for t, we get

t ≥ L

µ
log

(
(f0 − f ⋆)

ϵ

)
= O

(
1

ϵ
log

(
2(f0 − f ⋆)

ϵ

))
, (11)

where the O notation hides the constant factor L
µ
.

Therefore, after O
(

1
ϵ
log

(
2(f0−f⋆)

ϵ

))
iterations, the expected gap between the func-

tion value and its minimum is less than ϵ, i.e., E [f(xt+1)− f(x⋆)] ≤ ϵ.

This completes the proof.
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