
CME 307 Qualifying Exam
Optimization June 2023

Optimization Qualifying Exam

This is a 90-minute exam. Throughout ∥ · ∥ stands for the Euclidean norm.

Question 1 [Cobb-Douglas Utility] Consider a market equilibrium problem. The goal is to
distribute each of m goods among n buyers. A quantity s̄j > 0 of each good j = 1, . . . ,m is
available. Each buyer i = 1, . . . , n has a fixed budget wi > 0. Given a price vector p ∈ Rm,
each buyer i = 1, . . . , n independently determines the quantity xij of each good j = 1, . . . ,m
to purchase by solving the utility maximization problem

maximize ui(xi)

subject to pTxi ≤ wi, (1)

variables xi = (xi1, . . . , xim)T ≥ 0

where ui(·) is buyer i’s utility function. The solution to this problem is a function of the price
vector p ∈ Rm

++. Denote the optimal solution of (1) as x⋆i (p) for each i = 1, . . . ,m given price
p ∈ Rm

++. We call p⋆ ∈ Rm
++ a equilibrium price if

n∑
i=1

x⋆i (p) = s̄, (2)

where s̄ = (s̄1, . . . , s̄j)
T . Equation (2) is called the market clearing condition.

In this question, we study an important utility function called the Cobb-Douglas utility:

ui(xi) =
m∏
j=1

x
uij

ij , xij > 0.

For simplicity, assume uij > 0 for all i and j, and
∑m

j=1 uij = 1 for all i.

(a) (3 points) Rewrite problem (1) as a convex minimization problem. The new problem
should have the same optimum xi as (1). Show that the solution to this problem is unique.

Hint: log(x) is a strongly concave function. How much of the budget wi will buyer i
spend?



(b) (6 points) Write down the optimality conditions (KKT conditions) of the problem con-
structed in (a). Write down the dual problem.
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(c) (3 points) Find the global solution x⋆i of the optimization problem (1) using (a) and (b).

Hint: Represent the optimal purchases x⋆i as an explicit function of prices p, utilities
{uij}j=1,...,m and budget wi.

(d) (3 points) Derive the equilibrium price p⋆ for the Cobb-Douglas Market.

Hint: Represent the equilibrium price p⋆ as an explicit function of utilities {uij}i=1,...,n;j=1,...,m,
budgets {wi}i=1,...,n, and supplies {s̄j}j=1,...,m.
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Question 2 [Convergence of Gradient Descent with different norms] Consider the optimization
problem:

minimize f(x).

Here f : Rn → R is L-smooth in the ∞-norm with respect to the 1-norm:

∥∇f(x)−∇f(y)∥∞ ≤ L∥x− y∥1 for all x ∈ Rn

and µ-strongly convex with respect to the ∞-norm:

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2∞ for all x ∈ Rn.

Further, L and µ satisfy µ ≤ L. Let f⋆ denote the optimal value of this problem.

You will establish linear convergence of gradient descent (GD) for this problem:

xk+1 = xk − η∇f(xk).

(Hint): Relate the current problem to the one we considered in class when we analyzed GD.

(a) (3 points) Show that the following inequality holds:

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ n3/2L

2
∥y − x∥22 for all x, y ∈ Rn.

(b) (3 points) Show that f is µ
n -PL with respect to the 2-norm by proving

f(x)− f(x⋆) ≤
n

2µ
∥∇f(x)∥22 for all x, y ∈ Rn.
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(c) (3 points) Show that for appropriate stepsize η > 0, the iterates produced by GD satisfy

f(xk)− f⋆ ≤ (1− h(n,L, µ))k (f(x0)− f⋆) ,

where h is a function satisfying h(n,L, µ) ≤ 1. Give the explicit form of h(n,L, µ).
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(d) (3 points) Find a function K(n,L, µ, ϵ) such that for any ϵ > 0, k ≥ K(n,L, µ, ϵ) ensures

f(xk)− f(x⋆) ≤ ϵ.

Give the explicit form of K(n,L, µ, ϵ).

(e) (1.5 points) How does the number of iterations required by GD to reach an ϵ-suboptimal
solution, in the current setting, compare to the result we proved in class?
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(f) (1.5 points) Does the bound on the number of iterations required to achieve an ϵ-accurate
solution grow or shrink as the dimension n increases? Do you expect the iterations needed
to converge in practice to change in the same way with n, or do you suspect this relation
is an artifact of the analysis? Why?
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Question 2 Supplementary Material [Proof of Gradient Descent] We shall assume f is
L-smooth in the 2-norm with respect to the 2-norm, and µ-PL in the 2-norm.

Proof. By L-smoothness,

f(xk) ≤ f(xk−1)− η⟨∇f(xk−1), xk − xk−1⟩+
η2L

2
∥xk − xk−1∥2.

Plugging in the GD update and using η = 1
L , yields

f(xk) ≤ f(xk−1)−
1

2L
∥∇f(xk−1)∥2.

Now, as f is µ-PL in the 2-norm, we have

f(xk−1)− f⋆ ≤
∥∇f(xk−1)∥2

2µ
.

Applying the preceding inequality, we reach

f(xk)− f⋆ ≤
(
1− µ

L

)
(f(xk−1)− f⋆).

Recursing, the previous display becomes

f(xk)− f⋆ ≤
(
1− µ

L

)k
(f(x0)− f⋆).

Performing some straightforward algebra, we conclude

f(xk)− f⋆ ≤ ϵ,

whenever k ≥ L
µ log

(
f(x0)−f⋆

ϵ

)
.
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