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facts:
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Announcements

facts:

» CME 307 has a qual (for ICME PhD students), and

» you want more lectures

new plan for course:

1. KKT conditions and IPMs
2. first order methods

3. Bayesian optimization

4

. two sessions of project presentations

» Friday sessions will be research paper presentations
» next paper signups will open by this coming Friday.
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Fenchel dual
Definition (Fenchel dual)
The Fenchel dual of a function f : X — R is

F*(w) = sup(w. ) ~ £(x)

also called the conjugate function. draw picture!
https://remilepriol.github.io/dualityviz/
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Fenchel dual

Definition (Fenchel dual)
The Fenchel dual of a function f : X — R is

F*(w) = sup(w. ) ~ £(x)

also called the conjugate function. draw picture!
https://remilepriol.github.io/dualityviz/

example: f(x) = |x]]1, x € R"

{o Iwlloo < 1

f(w) = sup (w,x) — [[x]1 = )
n oo otherwise

xeR

— fenchel dual of ¢; norm is indicator of /., ball
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Biconjugate
Definition (Biconjugate)
The biconjugate of a function f : X — R is

**(x) = sup (w,x) — f*(w)
weX*

» for convex f : R = R, f** =
» for nonconvex f, f** is convex hull of f

= biconjugate is a convexification operation
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Biconjugate

Definition (Biconjugate)
The biconjugate of a function f : X — R is

**(x) = sup (w,x) — f*(w)
weX*

» for convex f : R = R, f** =
» for nonconvex f, f** is convex hull of f

= biconjugate is a convexification operation

example: consider f : R — R defined by

F0) = {0 xe{-1,1}

oo otherwise

what is £*?7 f**?
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Outline

Lagrange duality
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Why duality?

> certify optimality

» turn V into 3

» use dual lower bound to derive stopping conditions
» new algorithms based on the dual

» solve dual, then recover primal solution
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Nonlinear duality

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subject to Ax =b: dual y
variable  x € R"

if x is feasible, then Ax = b, so (y, Ax — b) = 0.
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Nonlinear duality

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subject to Ax =b: dual y
variable  x € R"

if x is feasible, then Ax = b, so (y, Ax — b) = 0.
define the Lagrangian
L(x,y) = f(x)—(y,b—Ax)
p* = _/i\nf_bﬁ(x,y) > inf L(x, y)
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Nonlinear duality

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subject to Ax =b: dual y (P)
variable  x € R"

if x is feasible, then Ax = b, so (y, Ax — b) = 0.
define the Lagrangian

K(Xay) = f(x)—<y,b—AX>

P g ) 2 inf £Gy)
= ir>1(f f(x)+ (y,—b+ Ax)
= (y,—b)+ inf (f(x) + <ATy,X>>
= (y,—b) — sup ((—AT%X> - f(X))

= (y,—b)—f(-ATy) = g(y) .



Lagrange duality

inequality holds for any y € R™, so we have proved weak duality

p* = gly) VyeR”
> supg(y) =:d* (1)
L —
D

dual optimal value d* < p*
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Strong duality

Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is f(x) — g(y)

by weak duality, duality gap is always nonnegative
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Strong duality

Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is f(x) — g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)
A primal-dual pair (x*, y*) satisfies strong duality if

pr=d* <= f(x*)—g(y*)=0

strong duality holds

» for feasible LPs

» for convex problems under constraint qualification aka Slater’s condition.
feasible region has an interior point x so that all inequality constraints hold
strictly

strong duality fails if either primal or dual problem is infeasible or unbounded 9/22



Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subjectto Ax<b: y>0 (P)
variable x € R”
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Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subjectto Ax<b: y>0
variable  x € R”

to construct Lagrangian L(x,y) = f(x) — (y, b — Ax), ensure value is better
(lower) when x and y are feasible

L(x,y) = f(x)—(y,b— Ax)
pro = inf £(x) = {y,b—Ax)

> ir;f f(x)— (y,b— Ax)
= (y,—b) - (=A%) =1g(y)
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Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:
minimize  f(x)
subjectto Ax<b: y>0 (P)
variable x € R"

to construct Lagrangian L(x,y) = f(x) — (y, b — Ax), ensure value is better
(lower) when x and y are feasible

L(x,y) = f(x)—(y,b— Ax)
p* > Xipegs f(x)— (y,b— Ax)

> inff(x) — (y,b— Ax)
{y,=b) = f*(=A%y) =: g(y)
this holds for all y > 0, so we have weak duality
p* >supg(y) =:d*
y>0

10/22



SVM dual
support vector machine: for x; € R", y; € {—-1,1}, i=1,....m
minimize  %||lw|> +17s
subjectto yiw'x;+s5>1 i=1,....m: a>0
s>0: >0

(SVM)

11/22



SVM dual
support vector machine: for x; € R", y; € {—-1,1}, i=1,....m
minimize  %||lw|> +17s
subjectto yiw'x;+s5>1 i=1,....m: a>0
s>0: >0

verify Slater's condition. strong duality holds!

(SVM)

11/22



SVM dual
support vector machine: for x; € R", y; € {—-1,1}, i=1,....m
minimize  %||lw|> +17s
subjectto yiw'x;+s5>1 i=1,....m: a>0 (SVM)
s>0: >0

verify Slater's condition. strong duality holds! Lagrangian: for « > 0, u > 0,

1 m
L(w,s,op) = Swl?+17s =3 Jailyiw "+ 5= 1) —p's
i=1

» minimize £L(w, s, a, p) over w to eliminate w

m
w = E Q;yiXi
i=1

» minimize L(w,s,a,pu) overs = a+pu=1
» — can eliminate p = 1 — «, with resulting constraints 0 < o <1
11/22



so simplify:

SVM dual

inf L(w,s,a,1 — )

w,s

1 m
EHWHZ —w' ZOJ/Y/X; +17a
i=1

1 m
=5 D aiyixil* +17a
i=1
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SVM dual
so simplify:

gla)y = infL(w,s,a,1—aq)

w,s

1 m
= 5HWH2 —w' Za;y;x,- +17a
i=1

1 m
= ‘*EHEZCWWXﬂzﬁflTa
i—1
define K € R" so Kjj = y;y;x.] x;. then

m m m
1Y aiyixill?> =D aiajyiyix’x = a"Ka
i=1

i=1 j=1
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SVM dual

so simplify:
gla) = wiﬁ(w, s,a,1 — )
17 m
= EHW”Z - WTZOéiy,'X; +17a
i=1

1 m
= =5l D aiyixil* +17a
i—1
define K € R" so Kjj = y;y;x.] x;. then

m m m
2 T T
I g aiyixil|© = E E ajajyiyix; xj = a' Ka
i—1 i=1 j=1

dual problem: .
P maximize —%aTKoz—FlTa

subjectto 0<a <1 (SVM-dual)
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SVM dual

so simplify:
gla) = infL(w,s,a,1l—a)
w,s
1 2 T . T
= Sl =w Y aiyixi+17a
i=1
1 m
= 5l awxl* +17a
i=1
define K € R" so Kjj = y;y;x.] x;. then
m m m
1Y aiyixill?> =D aiajyiyix’x = a"Ka
i=1 i=1 j=1
dual problem:
ual problem maximize —%aTKoz—FlTa (SVM-dual)
subjectto 0<a <1

new solution ideas! proj grad, coord descent (SMO), kernel trick
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Generalize Lagrangian duality
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Generalize Lagrangian duality

» nonlinear duality: replace
0>Ax—b with 02> g(x)

(harder to derive explicit form for dual problem)
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Generalize Lagrangian duality

» nonlinear duality: replace
0>Ax—b with 0> g(x)

(harder to derive explicit form for dual problem)

» conic duality: for cone K, replace
b—Ax>0 with b—Axe K

define slack vector s = b — Ax € K
for weak duality, dual y must satisfy

(y,s) >0 VseK
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Dual cones

this inequality defines the dual cone K*:

Definition (dual cone)

the dual cone K* of a cone K is the set of vectors y such that

(y,s) >0 VseK

14/22



Dual cones

this inequality defines the dual cone K*:

Definition (dual cone)

the dual cone K* of a cone K is the set of vectors y such that

(y,s) >0 VseK

examples of cones and their duals:
» K acute, K* obtuse
» K=RT, K*=RT
> K={xeR"|[x]| <x}, K*={y € R"[[ly[| < yo}
> K={XeS"|X>0}, K={YeS"|Y =0}
inner product (X, Y) =tr(XTY) = > Xij Y for X, Y € 8"
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Conic duality

primal problem with solution x* € R", optimal value p*:

minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable x € R"
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Conic duality

primal problem with solution x* € R", optimal value p*:
minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable x €R"

for y € K*, construct Lagrangian L(x,y) = (¢, x) — (y, b — Ax), ensure value is

better (lower) when x and y are feasible

L(x,y) = (c,x)— (y,b— Ax)
p* > inf (c,x) — (y,b— Ax)

x feas

> inf(c,x) — (y, b— Ax)
= {y,—b) +inflc+A%y,x)
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Conic duality

primal problem with solution x* € R", optimal value p*:
minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable x €R"

for y € K*, construct Lagrangian L(x,y) = (¢, x) — (y, b — Ax), ensure value is

better (lower) when x and y are feasible

ﬁ(X,y) = <C>X>_<Yab_AX>
pr > Xifgs(c,x>—<y,b—Ax>

> inf(c,x) — (y, b— Ax)
= {y,—b) +inflc+A%y,x)

which is —oo unless ¢ + A*y =0, so ...
15/22



Conic duality

define the dual problem
maximize (y,—b)

subjectto c+ Ay =0 (D)
variable yeK*
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Conic duality

define the dual problem
maximize (y,—b)
subjectto c+ Ay =0 (D)
variable yeK*

again, we have weak duality p* > d* and,
(under a constraint qualification) strong duality p* = d*
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Strong duality and complementary slackness

Definition (complementary slackness)

The primal-dual pair x and y are complementary if
(y,b—Ax) =0 = vilbi—alx)=0, i=1,...,n

They satisfy strict complementary slackness if for each i = 1,..., n, exactly one
of the following holds:

yi=0 or (bj — a] x) = 0.

for conic problem, strong duality <= complementary slackness
<y7b_AX> = <Y>b> - <ATy?X>
= (v, b)+{c;x)
= (&, x) = (y,—b)
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First-order optimality condition

The KKT conditions are first-order necessary conditions for optimality of
optimization problem.

Theorem (KKT conditions)
Suppose x* and y* are primal and dual optimal, respectively. Then

> stationarity. x* minimizes the Lagrangian at y*. If L is differentiable, then

V< L(x*, y*) =0.

v

feasibility. x* is primal feasible; y* is dual feasible.

» complementary slackness. dual variable y; is nonzero only if the ith
constraint is active at x*.

» KKT conditions are named after Karush, Kuhn, and Tucker.

KKT conditions turn optimization problem into a system of equations.

» If the problem is convex, then the KKT conditions are also sufficient for
optimality.

v
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KKT conditions: example

nonlinear optimization with inequality constraints:

minimize  f(x)
subjectto Ax<b: y>0

Lagrangian L(x,y) = f(x) — (v, Ax — b).
Suppose x* and y* are primal and dual optimal, respectively. Then

> stationarity. x* minimizes the Lagrangian at y*:
Ve L(x*,y*) =0 = Vf(x*)=ATy*

» feasibility. Ax* < b is primal feasible; y* > 0 is dual feasible.

> complementary slackness. dual variable y7 is nonzero only if the ith

constraint is active at x*:
(y,b—Ax*) =0
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KKT Example

Consider the following optimization problem:

minimize x> + y?
subjectto x+y<-—-1: A>0
x—y=0: pu

Lagrangian:
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KKT Example

Consider the following optimization problem:
minimize x> + y?
subjectto x+y<-—-1: A>0
x—y=0: pu
Lagrangian:
L0y, A p) = x>+ y? + Mx +y +1) + p(x — y)
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Lagrangian:
grang LGy i) =X+ y2+ Ax+y +1) + p(x — y)
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Lagrangian:

s L0y M) =32 4 y2 4+ Mx+y +1) + p(x — y)
KKT conditions:

1. stationarity: VyL(x,y, A\, pn) =0, V,L(x,y, A\, p) =0, ie,

oL
— =2x+A+p=0
ox
oL
— =2y+A—pu=0
dy

2. feasibility:
» primal: x+y<—-landx—y=20
» dual: A >0

3. complementary slackness: A =0 or x + y = —1 (or both)
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%:ZX—l—)\—l—,u:O
Ox
%:Zy—l—)\—u:O
dy

2. feasibility:
» primal: x+y<—-landx—y=20
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%:ZX—l—)\—l—,u:O
Ox
%:Zy—l—)\—u:O
dy

2. feasibility:
» primal: x+y<—-landx—y=20
> dual: A>0
3. complementary slackness: A =0 or x + y = —1 (or both)
solve!
» primal feasibility (PF) — x=y

21/22



Lagrangian:

s L0y M) =32 4 y2 4+ Mx+y +1) + p(x — y)
KKT conditions:

1. stationarity: VyL(x,y, A\, pn) =0, V,L(x,y, A\, p) =0, ie,

%:ZX—l—)\—l—,u:O
Ox
%:Zy—l—)\—u:O
dy

2. feasibility:
» primal: x+y<—-landx—y=20
» dual: A >0

3. complementary slackness: A =0 or x + y = —1 (or both)
solve!

» primal feasibility (PF) — x=y
» if \* =0, stationarity = A+ p* =1 and \* — u* = 1. impossible!

21/22



Lagrangian:

s L0y M) =32 4 y2 4+ Mx+y +1) + p(x — y)
KKT conditions:

1. stationarity: VyL(x,y, A\, pn) =0, V,L(x,y, A\, p) =0, ie,

%:ZX—l—)\—l—,u:O
Ox
%:Zy—l—)\—u:O
dy

2. feasibility:
» primal: x+y<—-landx—y=20
» dual: A >0
3. complementary slackness: A =0 or x + y = —1 (or both)
solve!
» primal feasibility (PF) — x=y
» if \* =0, stationarity = A+ p* =1 and \* — u* = 1. impossible!
» if \* £ 0, PF + CS requires x =y = —%.

21/22



Lagrangian:
s L0y M) =32 4 y2 4+ Mx+y +1) + p(x — y)

KKT conditions:

1. stationarity: VyL(x,y, A\, pn) =0, V,L(x,y, A\, p) =0, ie,

%:ZX—l—)\—l—,u:O
Ox
%:Zy—l—)\—u:O
dy

2. feasibility:
» primal: x+y<—-landx—y=20
» dual: A >0
3. complementary slackness: A =0 or x + y = —1 (or both)
solve!
» primal feasibility (PF) — x=y
» if \* =0, stationarity = A+ p* =1 and \* — u* = 1. impossible!
» if \* £ 0, PF + CS requires x =y = —l

» so use stationarity to solve for optimal duaI A= ; w =0 -



Summary

» Duality provides lower bounds on the optimal value of an optimization problem.
» Construct the Lagrangian for any optimization problem by

1. adding a linear combination of the constraints to the objective,
2. restricting the associated dual variables to ensure Lagrangian provides a lower
bound when primal is feasible.

» Duality can be used to certify optimality or as a stopping condition.

» KKT conditions give necessary (and for convex problems, sufficient) conditions
for optimality,
» ...and hence new ways to solve the problem by solving the KKT system.
» Solving KKT conditions reduces to a linear system for problems with equality
constraints,
> but more complex for problems with inequality (or conic) constraints.
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