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Announcements

facts:

▶ CME 307 has a qual (for ICME PhD students), and

▶ you want more lectures

new plan for course:

1. KKT conditions and IPMs

2. first order methods

3. Bayesian optimization

4. two sessions of project presentations

▶ Friday sessions will be research paper presentations

▶ next paper signups will open by this coming Friday.
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Fenchel dual

Definition (Fenchel dual)

The Fenchel dual of a function f : X → R is

f ∗(w) = sup
x∈X

⟨w , x⟩ − f (x)

also called the conjugate function. draw picture!
https://remilepriol.github.io/dualityviz/

example: f (x) = ∥x∥1, x ∈ Rn

f ∗(w) = sup
x∈Rn

⟨w , x⟩ − ∥x∥1 =

{
0 ∥w∥∞ ≤ 1

∞ otherwise

=⇒ fenchel dual of ℓ1 norm is indicator of ℓ∞ ball
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Biconjugate

Definition (Biconjugate)

The biconjugate of a function f : X → R is

f ∗∗(x) = sup
w∈X ∗

⟨w , x⟩ − f ∗(w)

▶ for convex f : R → R, f ∗∗ = f

▶ for nonconvex f , f ∗∗ is convex hull of f

=⇒ biconjugate is a convexification operation

example: consider f : R → R defined by

f (x) =

{
0 x ∈ {−1, 1}
∞ otherwise

what is f ∗? f ∗∗?
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Outline

Lagrange duality
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Why duality?

▶ certify optimality
▶ turn ∀ into ∃
▶ use dual lower bound to derive stopping conditions

▶ new algorithms based on the dual
▶ solve dual, then recover primal solution
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Nonlinear duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax = b : dual y
variable x ∈ Rn

(P)

if x is feasible, then Ax = b, so ⟨y ,Ax − b⟩ = 0.

define the Lagrangian

L(x , y) := f (x)− ⟨y , b − Ax⟩
p⋆ = inf

x :Ax=b
L(x , y) ≥ inf

x
L(x , y)

= inf
x
f (x) + ⟨y ,−b + Ax⟩

= ⟨y ,−b⟩+ inf
x

(
f (x) + ⟨AT y , x⟩

)
= ⟨y ,−b⟩ − sup

x

(
⟨−AT y , x⟩ − f (x)

)
= ⟨y ,−b⟩ − f ∗(−AT y) = g(y)

g(y) is called the dual function
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Lagrange duality

inequality holds for any y ∈ Rm, so we have proved weak duality

p⋆ ≥ g(y) ∀y ∈ Rm

≥ sup
y

g(y)︸ ︷︷ ︸
D

=: d⋆ (1)

dual optimal value d⋆ ≤ p⋆
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Strong duality

Definition (Duality gap)

The duality gap for a primal-dual pair (x , y) is f (x)− g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x⋆, y⋆) satisfies strong duality if

p⋆ = d⋆ ⇐⇒ f (x⋆)− g(y⋆) = 0

strong duality holds

▶ for feasible LPs
▶ for convex problems under constraint qualification aka Slater’s condition.

feasible region has an interior point x so that all inequality constraints hold
strictly

strong duality fails if either primal or dual problem is infeasible or unbounded
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Lagrange duality with inequality constraints

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax ≤ b : y ≥ 0
variable x ∈ Rn

(P)

to construct Lagrangian L(x , y) = f (x)− ⟨y , b − Ax⟩, ensure value is better
(lower) when x and y are feasible

L(x , y) := f (x)− ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
f (x)− ⟨y , b − Ax⟩

≥ inf
x
f (x)− ⟨y , b − Ax⟩

= ⟨y ,−b⟩ − f ∗(−A∗y) =: g(y)

this holds for all y ≥ 0, so we have weak duality

p⋆ ≥ sup
y≥0

g(y)︸ ︷︷ ︸
D

=: d⋆

10 / 22



Lagrange duality with inequality constraints

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax ≤ b : y ≥ 0
variable x ∈ Rn

(P)

to construct Lagrangian L(x , y) = f (x)− ⟨y , b − Ax⟩, ensure value is better
(lower) when x and y are feasible

L(x , y) := f (x)− ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
f (x)− ⟨y , b − Ax⟩

≥ inf
x
f (x)− ⟨y , b − Ax⟩

= ⟨y ,−b⟩ − f ∗(−A∗y) =: g(y)

this holds for all y ≥ 0, so we have weak duality

p⋆ ≥ sup
y≥0

g(y)︸ ︷︷ ︸
D

=: d⋆

10 / 22



Lagrange duality with inequality constraints

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax ≤ b : y ≥ 0
variable x ∈ Rn

(P)

to construct Lagrangian L(x , y) = f (x)− ⟨y , b − Ax⟩, ensure value is better
(lower) when x and y are feasible

L(x , y) := f (x)− ⟨y , b − Ax⟩

p⋆ ≥ inf
x feas

f (x)− ⟨y , b − Ax⟩

≥ inf
x
f (x)− ⟨y , b − Ax⟩

= ⟨y ,−b⟩ − f ∗(−A∗y) =: g(y)

this holds for all y ≥ 0, so we have weak duality

p⋆ ≥ sup
y≥0

g(y)︸ ︷︷ ︸
D

=: d⋆

10 / 22



Lagrange duality with inequality constraints

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax ≤ b : y ≥ 0
variable x ∈ Rn

(P)

to construct Lagrangian L(x , y) = f (x)− ⟨y , b − Ax⟩, ensure value is better
(lower) when x and y are feasible

L(x , y) := f (x)− ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
f (x)− ⟨y , b − Ax⟩

≥ inf
x
f (x)− ⟨y , b − Ax⟩

= ⟨y ,−b⟩ − f ∗(−A∗y) =: g(y)

this holds for all y ≥ 0, so we have weak duality

p⋆ ≥ sup
y≥0

g(y)︸ ︷︷ ︸
D

=: d⋆

10 / 22



Lagrange duality with inequality constraints

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax ≤ b : y ≥ 0
variable x ∈ Rn

(P)

to construct Lagrangian L(x , y) = f (x)− ⟨y , b − Ax⟩, ensure value is better
(lower) when x and y are feasible

L(x , y) := f (x)− ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
f (x)− ⟨y , b − Ax⟩

≥ inf
x
f (x)− ⟨y , b − Ax⟩

= ⟨y ,−b⟩ − f ∗(−A∗y) =: g(y)

this holds for all y ≥ 0, so we have weak duality

p⋆ ≥ sup
y≥0

g(y)︸ ︷︷ ︸
D

=: d⋆

10 / 22



SVM dual

support vector machine: for xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . ,m

minimize 1
2∥w∥2 + 1T s

subject to yiw
T xi + si ≥ 1 i = 1, . . . ,m : α ≥ 0

s ≥ 0 : µ ≥ 0
(SVM)

verify Slater’s condition. strong duality holds! Lagrangian: for α ≥ 0, µ ≥ 0,

L(w , s, α, µ) =
1

2
∥w∥2 + 1T s −

m∑
i=1

αi (yiw
T xi + si − 1)− µT s

▶ minimize L(w , s, α, µ) over w to eliminate w

w =
m∑
i=1

αiyixi

▶ minimize L(w , s, α, µ) over s =⇒ α+ µ = 1
▶ =⇒ can eliminate µ = 1− α, with resulting constraints 0 ≤ α ≤ 1
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SVM dual

so simplify:
g(α) = inf

w ,s
L(w , s, α, 1− α)

=
1

2
∥w∥2 − wT

m∑
i=1

αiyixi + 1Tα

= −1

2
∥

m∑
i=1

αiyixi∥2 + 1Tα

define K ∈ Rm so Kij = yiyjx
T
i xj . then

∥
m∑
i=1

αiyixi∥2 =
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj = αTKα

dual problem:
maximize −1

2α
TKα+ 1Tα

subject to 0 ≤ α ≤ 1
(SVM-dual)

new solution ideas! proj grad, coord descent (SMO), kernel trick
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Generalize Lagrangian duality

▶ nonlinear duality: replace

0 ≥ Ax − b with 0 ≥ g(x)

(harder to derive explicit form for dual problem)

▶ conic duality: for cone K , replace

b − Ax ≥ 0 with b − Ax ∈ K

define slack vector s = b − Ax ∈ K
for weak duality, dual y must satisfy

⟨y , s⟩ ≥ 0 ∀s ∈ K

13 / 22



Generalize Lagrangian duality

▶ nonlinear duality: replace

0 ≥ Ax − b with 0 ≥ g(x)

(harder to derive explicit form for dual problem)

▶ conic duality: for cone K , replace

b − Ax ≥ 0 with b − Ax ∈ K

define slack vector s = b − Ax ∈ K
for weak duality, dual y must satisfy

⟨y , s⟩ ≥ 0 ∀s ∈ K

13 / 22



Generalize Lagrangian duality

▶ nonlinear duality: replace

0 ≥ Ax − b with 0 ≥ g(x)

(harder to derive explicit form for dual problem)

▶ conic duality: for cone K , replace

b − Ax ≥ 0 with b − Ax ∈ K

define slack vector s = b − Ax ∈ K
for weak duality, dual y must satisfy

⟨y , s⟩ ≥ 0 ∀s ∈ K

13 / 22



Dual cones

this inequality defines the dual cone K ∗:

Definition (dual cone)

the dual cone K ∗ of a cone K is the set of vectors y such that

⟨y , s⟩ ≥ 0 ∀s ∈ K

examples of cones and their duals:

▶ K acute, K ∗ obtuse

▶ K = Rm
+, K

∗ = Rm
+

▶ K = {x ∈ Rn | ∥x∥ ≤ x0}, K ∗ = {y ∈ Rn | ∥y∥ ≤ y0}
▶ K = {X ∈ Sn | X ⪰ 0}, K ∗ = {Y ∈ Sn | Y ⪰ 0}

inner product ⟨X ,Y ⟩ = tr(XTY ) =
∑

ij XijYij for X ,Y ∈ Sn
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Conic duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize ⟨c , x⟩
subject to b − Ax ∈ K : y ∈ K ∗

variable x ∈ Rn
(P)

for y ∈ K ∗, construct Lagrangian L(x , y) = ⟨c, x⟩ − ⟨y , b − Ax⟩, ensure value is
better (lower) when x and y are feasible

L(x , y) := ⟨c , x⟩ − ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
⟨c , x⟩ − ⟨y , b − Ax⟩

≥ inf
x
⟨c , x⟩ − ⟨y , b − Ax⟩

= ⟨y ,−b⟩+ inf
x
⟨c + A∗y , x⟩

which is −∞ unless c + A∗y = 0, so . . .
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better (lower) when x and y are feasible

L(x , y) := ⟨c , x⟩ − ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
⟨c , x⟩ − ⟨y , b − Ax⟩

≥ inf
x
⟨c , x⟩ − ⟨y , b − Ax⟩

= ⟨y ,−b⟩+ inf
x
⟨c + A∗y , x⟩

which is −∞ unless c + A∗y = 0, so . . .
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Conic duality

define the dual problem

maximize ⟨y ,−b⟩
subject to c + A∗y = 0
variable y ∈ K ∗

(D)

again, we have weak duality p⋆ ≥ d⋆ and,
(under a constraint qualification) strong duality p⋆ = d⋆
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Strong duality and complementary slackness

Definition (complementary slackness)

The primal-dual pair x and y are complementary if

⟨y , b − Ax⟩ = 0 ⇐⇒ yi (bi − aTi x) = 0, i = 1, . . . , n

They satisfy strict complementary slackness if for each i = 1, . . . , n, exactly one
of the following holds:

yi = 0 or (bi − aTi x) = 0.

for conic problem, strong duality ⇐⇒ complementary slackness

⟨y , b − Ax⟩ = ⟨y , b⟩ − ⟨AT y , x⟩
= ⟨y , b⟩+ ⟨c , x⟩
= ⟨c , x⟩ − ⟨y ,−b⟩
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First-order optimality condition

The KKT conditions are first-order necessary conditions for optimality of
optimization problem.

Theorem (KKT conditions)

Suppose x⋆ and y⋆ are primal and dual optimal, respectively. Then

▶ stationarity. x⋆ minimizes the Lagrangian at y⋆. If L is differentiable, then

∇xL(x⋆, y⋆) = 0.

▶ feasibility. x⋆ is primal feasible; y⋆ is dual feasible.

▶ complementary slackness. dual variable y⋆i is nonzero only if the ith
constraint is active at x⋆.

▶ KKT conditions are named after Karush, Kuhn, and Tucker.
▶ KKT conditions turn optimization problem into a system of equations.
▶ If the problem is convex, then the KKT conditions are also sufficient for

optimality. 18 / 22



KKT conditions: example

nonlinear optimization with inequality constraints:

minimize f (x)
subject to Ax ≤ b : y ≥ 0

Lagrangian L(x , y) = f (x)− ⟨y ,Ax − b⟩.
Suppose x⋆ and y⋆ are primal and dual optimal, respectively. Then

▶ stationarity. x⋆ minimizes the Lagrangian at y⋆:

∇xL(x⋆, y⋆) = 0 =⇒ ∇f (x⋆) = AT y⋆

▶ feasibility. Ax⋆ ≤ b is primal feasible; y⋆ ≥ 0 is dual feasible.

▶ complementary slackness. dual variable y⋆i is nonzero only if the ith
constraint is active at x⋆:

⟨y⋆, b − Ax⋆⟩ = 0
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KKT Example

Consider the following optimization problem:

minimize x2 + y2

subject to x + y ≤ −1 : λ ≥ 0

x − y = 0 : µ

Lagrangian:

L(x , y , λ, µ) = x2 + y2 + λ(x + y + 1) + µ(x − y)
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Lagrangian:
L(x , y , λ, µ) = x2 + y2 + λ(x + y + 1) + µ(x − y)

KKT conditions:
1. stationarity: ∇xL(x , y , λ, µ) = 0, ∇yL(x , y , λ, µ) = 0, ie,

∂L
∂x

= 2x + λ+ µ = 0

∂L
∂y

= 2y + λ− µ = 0

2. feasibility:
▶ primal: x + y ≤ −1 and x − y = 0
▶ dual: λ ≥ 0

3. complementary slackness: λ = 0 or x + y = −1 (or both)
solve!
▶ primal feasibility (PF) =⇒ x = y
▶ if λ⋆ = 0, stationarity =⇒ λ⋆ + µ⋆ = 1 and λ⋆ − µ⋆ = 1. impossible!
▶ if λ⋆ ̸= 0, PF + CS requires x = y = −1

2 .
▶ so use stationarity to solve for optimal dual: λ⋆ = 1

2 , µ
⋆ = 0

geometric intepretation: no force is needed to enforce the equality constraint
(picture!)
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Summary

▶ Duality provides lower bounds on the optimal value of an optimization problem.
▶ Construct the Lagrangian for any optimization problem by

1. adding a linear combination of the constraints to the objective,
2. restricting the associated dual variables to ensure Lagrangian provides a lower

bound when primal is feasible.

▶ Duality can be used to certify optimality or as a stopping condition.
▶ KKT conditions give necessary (and for convex problems, sufficient) conditions

for optimality,
▶ . . . and hence new ways to solve the problem by solving the KKT system.
▶ Solving KKT conditions reduces to a linear system for problems with equality

constraints,
▶ but more complex for problems with inequality (or conic) constraints.
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