
CME 307 / MS&E 311: Optimization

Gradient descent

Professor Udell

Management Science and Engineering
Stanford

February 28, 2024

1 / 22



Outline

Classification

Unconstrained minimization

Analysis via Polyak-Lojasiewicz condition

2 / 22



Background: classification

classification problem: m data points

▶ feature vector ai ∈ Rn, i = 1, . . . ,m

▶ label bi ∈ {−1, 1}, i = 1, . . . ,m

choose decision boundary aT x = 0 to separate data points into two classes

▶ aT x > 0 =⇒ predict class 1

▶ aT x < 0 =⇒ predict class -1

classification is correct if bia
T
i x > 0

▶ projective transformation transforms affine boundary to linear boundary

▶ classification is invariant to scalar multiplication of x

3 / 22



Background: classification

classification problem: m data points

▶ feature vector ai ∈ Rn, i = 1, . . . ,m

▶ label bi ∈ {−1, 1}, i = 1, . . . ,m

choose decision boundary aT x = 0 to separate data points into two classes

▶ aT x > 0 =⇒ predict class 1

▶ aT x < 0 =⇒ predict class -1

classification is correct if bia
T
i x > 0

▶ projective transformation transforms affine boundary to linear boundary

▶ classification is invariant to scalar multiplication of x

3 / 22



Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize
∑m

i=1 log(1 + exp
(
−biaTi x

)
) + r(x)

variable x ∈ Rn

where

▶ bi ∈ {−1, 1}, ai ∈ Rn

▶ r : Rn → R is a regularizer, e.g., ∥x∥2 or ∥x∥1

4 / 22



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn.

not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

5 / 22



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn. not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

5 / 22



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn. not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

5 / 22



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn. not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

5 / 22



Outline

Classification

Unconstrained minimization

Analysis via Polyak-Lojasiewicz condition

6 / 22



Unconstrained minimization

minimize f (x)

▶ f : Rn → R differentiable

▶ assume optimal value f ⋆ = infx f (x) is attained (and finite)

▶ assume a starting point x (0) is known

unconstrained minimization methods

▶ produce sequence of points x (k), k = 0, 1, . . . with

f (x (k))→ f ⋆

(we hope)

7 / 22



Gradient descent

minimize f (x)

idea: go downhill

Algorithm Gradient descent

Given: f : Rd → R, stepsize t, maxiters
Initialize: x = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

▶ update x :
x ← x − t∇f (x)

8 / 22



Gradient descent: choosing a step-size

▶ constant step-size. t(k) = t (constant)

▶ decreasing step-size. t(k) = 1/k

▶ line search. try different possibilities for t(k) until objective at new iterate

f (x (k)) = f (x (k−1) − t(k)∇f (x (k−1)))

decreases enough.

tradeoff: line search requires evaluating f (x) (can be expensive)

9 / 22



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo

10 / 22



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo

10 / 22



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?

A: yes! see gradient descent demo

10 / 22



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo

10 / 22



Demo: gradient descent

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

11 / 22

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb


How well does GD work?

for x ∈ Rn,

▶ f (x) = xT x

▶ f (x) = xTAx for A ⪰ 0

▶ f (x) = ∥x∥1 (nonsmooth but differentiable almost everywhere)

▶ f (x) = 1/x on x > 0 (strictly convex but not strongly convex)

https:
//github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb

12 / 22

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb


Outline

Classification

Unconstrained minimization

Analysis via Polyak-Lojasiewicz condition

13 / 22



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R→ R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

14 / 22



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R→ R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

14 / 22



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R→ R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

14 / 22



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R→ R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?

A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

14 / 22



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R→ R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

14 / 22



PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a
Polyak-Lojasiewicz function is globally optimal.)

proof: if ∇f (x̄) = 0, then

0 =
1

2
∥∇f (x)∥2 ≥ µ(f (x̄)− f ⋆) ≥ 0

=⇒ f (x̄) = f ⋆ is the global optimum.

15 / 22



PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a
Polyak-Lojasiewicz function is globally optimal.)

proof: if ∇f (x̄) = 0, then

0 =
1

2
∥∇f (x)∥2 ≥ µ(f (x̄)− f ⋆) ≥ 0

=⇒ f (x̄) = f ⋆ is the global optimum.

15 / 22



strong convexity =⇒ Polyak-Lojasiewicz

Theorem

If f is µ-strongly convex, then f is µ-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y :

min
y

f (y) ≥ min
y

(
f (x) +∇f (x)T (y − x) +

µ

2
∥y − x∥2

)
f ⋆ ≥ f (x)− 1

2µ
∥∇f (x)∥2

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

as minimum occurs for y − x = −∇f (x)/µ

16 / 22



strong convexity =⇒ Polyak-Lojasiewicz

Theorem

If f is µ-strongly convex, then f is µ-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y :

min
y

f (y) ≥ min
y

(
f (x) +∇f (x)T (y − x) +

µ

2
∥y − x∥2

)
f ⋆ ≥ f (x)− 1

2µ
∥∇f (x)∥2

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

as minimum occurs for y − x = −∇f (x)/µ

16 / 22



Types of convergence

▶ objective converges
f (x (k))→ f ⋆

▶ iterates converge
x (k) → x⋆

under

▶ strong convexity: objective converges =⇒ iterates converge
proof: use strong convexity with x = x⋆ and y = x (k):

f (x (k))− f ⋆ ≥ µ

2
∥x (k) − x⋆∥2

▶ Polyak-Lojasiewicz: not necessarily true (x⋆ may not be unique)

17 / 22



Rates of convergence

▶ linear convergence with rate c

f (x (k))− f ⋆ ≤ ck(f (x (0))− f ⋆)

▶ looks like a line on a semi-log plot
▶ example: gradient descent on smooth strongly convex function

▶ sublinear convergence
▶ looks slower than a line (curves up) on a semi-log plot
▶ example: 1/k convergence

f (x (k))− f ⋆ ≤ O(1/k)

▶ example: gradient descent on smooth convex function
▶ example: stochastic gradient descent

18 / 22



Gradient descent converges linearly

Theorem

If f : Rn → R is µ-Polyak-Lojasiewicz, L-smooth, and x⋆ = argminx f (x) exists,
then gradient descent with stepsize L

x (k+1) = x (k) − 1

L
∇f (x (k))

converges linearly to f ⋆ with rate (1− µ
L ).

19 / 22



Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

f (x (k+1))− f (x (k)) ≤ ∇f (x (k))T (x (k+1) − x (k)) +
L

2
∥x (k+1) − x (k)∥2

≤ (−1

L
+

1

2L
)∥∇f (x (k))∥2

≤ − 1

2L
∥∇f (x (k))∥2

≤ −µ

L
(f (x (k))− f ⋆)▷ using PL

decrement proportional to error =⇒ linear convergence:

f (x (k))− f ⋆ ≤ (1− µ

L
)(f (x (k−1))− f ⋆)

≤ (1− µ

L
)k(f (x (0))− f ⋆)

20 / 22



Practical convergence

▶ Gradient descent with optimal stepsize converges even faster.

f (x (k+1)) = inf
α
f (x (k) − α∇f (x (k))) ≤ f (x (k) − 1

L
∇f (x (k)))

▶ Local vs global convergence

▶ What does this proof technique tell us about the convergence of gradient
descent on non-convex functions? On functions that are convex but not
strongly convex?

21 / 22



Practical convergence

▶ Gradient descent with optimal stepsize converges even faster.

f (x (k+1)) = inf
α
f (x (k) − α∇f (x (k))) ≤ f (x (k) − 1

L
∇f (x (k)))

▶ Local vs global convergence

▶ What does this proof technique tell us about the convergence of gradient
descent on non-convex functions? On functions that are convex but not
strongly convex?

21 / 22



Practical convergence

▶ Gradient descent with optimal stepsize converges even faster.

f (x (k+1)) = inf
α
f (x (k) − α∇f (x (k))) ≤ f (x (k) − 1

L
∇f (x (k)))

▶ Local vs global convergence

▶ What does this proof technique tell us about the convergence of gradient
descent on non-convex functions? On functions that are convex but not
strongly convex?

21 / 22



Quiz

▶ A strongly convex function always satisfies the Polyak-Lojasiewicz condition

A. true
B. false

▶ Suppose f : R→ R is L-smooth and satisfies the Polyak-Lojasiewicz condition.
Then any stationary point ∇f (x) = 0 of f is a global optimum:
f (x) = argminy f (y) =: f ⋆.

A. true
B. false

▶ Suppose f : R→ R is L-smooth and satisfies the Polyak-Lojasiewicz condition.
Then gradient descent on f converges linearly from any starting point.

A. true
B. false

22 / 22


	Classification
	Unconstrained minimization
	Analysis via Polyak-Lojasiewicz condition

