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Background: classification

classification problem: m data points

» feature vector 3; € R", i=1,....m
» label b € {-1,1},i=1,....m

choose decision boundary a” x = 0 to separate data points into two classes

> a'x >0 = predict class 1
> a'x <0 = predict class -1

classification is correct if b,-a,-Tx >0

3/22



Background: classification

classification problem: m data points

» feature vector 3; € R", i=1,....m
» label b € {-1,1},i=1,....m

choose decision boundary a” x = 0 to separate data points into two classes

> a'x >0 = predict class 1
> a'x <0 = predict class -1

classification is correct if b,-a,-Tx >0

» projective transformation transforms affine boundary to linear boundary

» classification is invariant to scalar multiplication of x
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Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize Y 7, log(1 + exp (—b,-a,-Tx)) + r(x)
variable x € R”"

where

> b; € {—1,1},3;6 R"

» r:R" — Ris a regularizer, e.g., ||x]|? or ||x||1
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Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a] x) + 7||x]?
variable x € R"

where b; € {—1,1} and a; € R".
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Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a] x) + 7||x]?
variable x € R"

where b; € {—1,1} and a; € R". not differentiable!

how to solve?

» use subgradient method
» transform to conic form
» solve dual problem instead

» smooth the objective
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Unconstrained minimization

minimize f(x)

» f:R" — R differentiable
» assume optimal value f* = inf, f(x) is attained (and finite)

> assume a starting point x(9) is known

unconstrained minimization methods

> produce sequence of points x(K), k =0,1,... with
F(x9) — £

(we hope)
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Gradient descent

minimize f(x)

idea: go downbhill

Algorithm Gradient descent

Given: f: RY — R, stepsize t, maxiters
Initialize: x = 0 (or anything you'd like)
For: kK =1,..., maxiters
» update x:
x < x — tVf(x)
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Gradient descent: choosing a step-size

> constant step-size. t(K) = t (constant)
> decreasing step-size. t(X) = 1/k

> line search. try different possibilities for t(%) until objective at new iterate
f(x)) = F(x1) — g f(x(k1)))

decreases enough.

tradeoff: line search requires evaluating f(x) (can be expensive)
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Line search
define x* = x — tVf(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(x) < f(x) = ctl| V()|

for some c € (0,1), e.g,, c = .01.
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Line search
define x™ = x — tV£(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(xT) < F(x) = ctl|VF(x)|
for some ¢ € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:

> sett=1
> if step decreases objective value sufficiently, accept xT:

f(xT) < f(x) — Ct||Vf(X)||2 —  x<x"

otherwise, halve the stepsize t + t/2 and try again
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Line search
define x™ = x — tV£(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(xT) < F(x) = ctl|VF(x)|
for some ¢ € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:

> sett=1
> if step decreases objective value sufficiently, accept xT:

f(xT) < f(x) — ct|VF(X)]|? = x+x*
otherwise, halve the stepsize t + t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo
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Demo: gradient descent

https://github.com /stanford-cme-307 /demos/blob/main/gradient-descent.ipynb
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https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

How well does GD work?

for x € R",
> f(x)=x"x
> f(x)=xTAx for A= 0
f(x) = ||x|l1 (nonsmooth but differentiable almost everywhere)
(x) =

f(x) =1/x on x > 0 (strictly convex but not strongly convex)

https:
//github.com/stanford-cme-307 /demos/blob/main/gradient-descent-contours.ipynb
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https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
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Analysis via Polyak-Lojasiewicz condition
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R — R satisfies the Polyak-Lojasiewicz condition if

SIVAIR > () — £4)
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R — R satisfies the Polyak-Lojasiewicz condition if
1
SIVECI = u(F(x) - %)

Theorem ( 2016)])

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex and A: R" — R™ is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity

and yields simpler proofs 142



PL and invexity

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a
Polyak-Lojasiewicz function is globally optimal.)
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PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a
Polyak-Lojasiewicz function is globally optimal.)
proof: if Vf(x) =0, then
1
0= SIVFCIP > u(F() ~ )= 0

= f(x) = f* is the global optimum.
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strong convexity —- Polyak-Lojasiewicz

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.
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strong convexity —- Polyak-Lojasiewicz

Theorem

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y:

minf(y) > min (£(x) + VF()T(y =x)+ §lly = xIP)

y
1
fr = f(x) - ﬂHVf(X)ll2
1 *
SIVACII? = p(F(x) = £9)
as minimum occurs for y — x = —Vf(x)/u
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Types of convergence

» objective converges
f(xK) — £

» iterates converge

k) *

xK) s x
under

» strong convexity: objective converges —> iterates converge
proof: use strong convexity with x = x* and y = x(k):

F() = £ > ZJxt) — 2
» Polyak-Lojasiewicz: not necessarily true (x* may not be unique)
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Rates of convergence

» linear convergence with rate ¢

F(xK) — £ < H(F(x) — £%)

» looks like a line on a semi-log plot
P> example: gradient descent on smooth strongly convex function

» sublinear convergence

> looks slower than a line (curves up) on a semi-log plot
> example: 1/k convergence

F(xW) — F* < O(1/k)

» example: gradient descent on smooth convex function
» example: stochastic gradient descent
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Gradient descent converges linearly

Theorem

If f : R" — R is u-Polyak-Lojasiewicz, L-smooth, and x* = argmin, f(x) exists,
then gradient descent with stepsize L

(k1) (k) _ %Vf(x(k))

converges linearly to f* with rate (1 — ).
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Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

FOUHDY  F(x )y < vf(x(k))T(X(k-i-l) NG éHX(k—i—l) x|
1
< (_Z+ )HVf( )12
<

VA
< —%(f(x(k)) — £*) 1> using PL
decrement proportional to error = linear convergence:
M) = < (1= PR =)
< (=PRI -1

20/22



Practical convergence

» Gradient descent with optimal stepsize converges even faster.

F(xFHD) = inf F(x(K) — aVF(xK)) < F(x(K) — %Vf(x(k)))
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Practical convergence

» Gradient descent with optimal stepsize converges even faster.

F(xFHD) = inf F(x(K) — aVF(xK)) < F(x(K) — %Vf(x(k)))

» Local vs global convergence

» What does this proof technique tell us about the convergence of gradient
descent on non-convex functions? On functions that are convex but not
strongly convex?
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Quiz

» A strongly convex function always satisfies the Polyak-Lojasiewicz condition

A. true
B. false

» Suppose f : R — R is L-smooth and satisfies the Polyak-Lojasiewicz condition.

Then any stationary point Vf(x) = 0 of f is a global optimum:
f(x) = argmin, f(y) =: f*.

A. true

B. false

» Suppose f : R — R is L-smooth and satisfies the Polyak-Lojasiewicz condition.

Then gradient descent on f converges linearly from any starting point.

A. true
B. false
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