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Announcements

▶ website: https://stanford-cme-307.github.io/web

▶ Ed for discussion and announcements: https://edstem.org/us/courses/51411/

▶ fill out course survey (also linked on website):
https://forms.gle/7hPniFeC576S12FAA

▶ talk to me after class and/or schedule office hours (see website)

▶ class attendance is required. will post some slides, generally no recordings
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Intro exercise

Form groups of three people you haven’t met before and introduce yourselves.

▶ name, major, year

▶ why are you interested in optimization?

▶ what are you hoping to learn?
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Goals for today

▶ Understand course objectives and expectations

▶ Identify several types of optimization problem

▶ Meet at least two other students you’ve not met before

▶ Discuss challenges in a real-world optimization problem
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Outline

What is an optimization problem?

Course goals and expectations
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Exercise

Discuss in groups:

▶ give an example of a real-world optimization problem

▶ what is the problem data?

▶ what are the problem variables?

▶ how would you write it down?
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(Integer) linear optimization problem

minimize cT x
subject to Ax = b

ℓ ≤ x ≤ u
variable x ∈ Zn

▶ objective cT x

▶ equality constraints Ax = b

▶ lower and upper bounds ℓ ≤ x ≤ u

▶ integer variable

problem data:

▶ A ∈ Rm×n, b ∈ Rm

▶ c ∈ Rn

▶ ℓ ∈ Rn, u ∈ Rn
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Nonlinear optimization problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m1

hi (x) = 0, i = 1, . . . ,m2

variable x ∈ Rn

▶ objective f0
▶ inequality constraints fi
▶ equality constraints hi

problem data:

▶ (blackbox) code to evaluate fi and hi for any x ∈ Rn

▶ (first order) and to compute gradients

▶ (second order) and to compute Hessians
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Optimization problems

important optimization problem classes:

▶ linear

▶ integer

▶ nonlinear (with linear or nonlinear constraints)

▶ quadratic

▶ unconstrained

▶ finite-sum

▶ conic

▶ convex

▶ black-box with (0, 1, or 2)-order oracle

draw a picture relating these
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Discuss

Does your problem fit into one of these categories?

▶ which?

▶ if not, why not?
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Modularity in optimization

how to optimize:

1. model problem as a mathematical optimization problem

2. identify the properties of the problem

3. use an appropriate solver (or write a new one)

. . . and iterate:

▶ approximate the problem to make it easier

▶ solve a sequence of approximated problems that converge to solve the original
problem

▶ or initialize (“warm-start”) a solver for the original problem with a solution to
the approximated problem
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Outline

What is an optimization problem?

Course goals and expectations
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Course goals

look at goals on course website: https://stanford-cme-307.github.io/web/

▶ Which goals sound exciting?

▶ Which goals don’t make sense?

▶ What else do you hope to accomplish?
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Course expectations

look at grading tab on course website: https://stanford-cme-307.github.io/web/
discuss:

▶ do expectations make sense given course goals?

▶ questions about expectations?
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Course schedule

look at materials tab on course website and at spreadsheet of topics:
https://stanford-cme-307.github.io/web/
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Course project

read project expectations and ideas. discuss in groups:

▶ do you want to work on algorithms, applications, or LLM tools?

▶ pick a problem. what data would you need? what challenges would you foresee
in solving it?
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What next?

▶ website: https://stanford-cme-307.github.io/web

▶ Ed for discussion and announcements: https://edstem.org/us/courses/51411/

▶ fill out course survey (also linked on website):
https://forms.gle/7hPniFeC576S12FAA

▶ talk to me after class and/or schedule office hours (see website)

▶ class attendance is required. will post some slides, generally no recordings
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Outline

Quadratic optimization

Nonlinear optimization

Conic optimization

Integer programming

Convex optimization
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Quadratic optimization

a quadratic optimization problem is written as

minimize 1
2∥Ax − b∥2 := f0(x)

variable x ∈ Rn

where

▶ A ∈ Rm×n: matrix

▶ b ∈ Rm: vector

how to solve?

take gradient and set to 0:

∇f0(x) = AT (Ax − b) = 0

=⇒ linear system solvers also solve quadratic optimization problems
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Linear algebra review

matrix A ∈ Rm×n

▶ check matrix calculus results by checking dimensions

▶ normal equations ATAx = ATb

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

▶ ATA is symmetric positive semidefinite (proof on board)
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix Q ∈ Rn×n is positive semidefinite (psd) if xTQx ≥ 0 for all
x ∈ Rn.

these matrices are so important that there are many ways to write them! for
Q ∈ Rn×n,

Q ∈ Sn
+ ⇐⇒ Q ⪰ 0 ⇐⇒ Q = QT , λmin(Q) ≥ 0

Q ∈ Sn
+ is symmetric positive definite (spd) (Q ≻ 0) if xTQx > 0 for all x ∈ Rn.

why care about psd matrices Q?

▶ least-squares objective has a psd Q = ATA
▶ level sets of xTQx are (bounded) ellipsoids
▶ the quadratic form xTQx is a metric iff Q ≻ 0
▶ eigenvalue decomp and svd coincide for psd matrices

21 / 55



Symmetric positive semidefinite matrices

Definition

a symmetric matrix Q ∈ Rn×n is positive semidefinite (psd) if xTQx ≥ 0 for all
x ∈ Rn.

these matrices are so important that there are many ways to write them! for
Q ∈ Rn×n,

Q ∈ Sn
+ ⇐⇒ Q ⪰ 0 ⇐⇒ Q = QT , λmin(Q) ≥ 0

Q ∈ Sn
+ is symmetric positive definite (spd) (Q ≻ 0) if xTQx > 0 for all x ∈ Rn.

why care about psd matrices Q?

▶ least-squares objective has a psd Q = ATA
▶ level sets of xTQx are (bounded) ellipsoids
▶ the quadratic form xTQx is a metric iff Q ≻ 0
▶ eigenvalue decomp and svd coincide for psd matrices

21 / 55



Symmetric positive semidefinite matrices

Definition

a symmetric matrix Q ∈ Rn×n is positive semidefinite (psd) if xTQx ≥ 0 for all
x ∈ Rn.

these matrices are so important that there are many ways to write them! for
Q ∈ Rn×n,

Q ∈ Sn
+ ⇐⇒ Q ⪰ 0 ⇐⇒ Q = QT , λmin(Q) ≥ 0

Q ∈ Sn
+ is symmetric positive definite (spd) (Q ≻ 0) if xTQx > 0 for all x ∈ Rn.

why care about psd matrices Q?

▶ least-squares objective has a psd Q = ATA
▶ level sets of xTQx are (bounded) ellipsoids
▶ the quadratic form xTQx is a metric iff Q ≻ 0
▶ eigenvalue decomp and svd coincide for psd matrices

21 / 55



Quadratic program

a quadratic program is written as

minimize 1
2x

TQx + cT x
subject to Ax = b
variable x ∈ Rn

where

▶ Q ∈ Rn×n: symmetric positive semidefinite matrix

▶ c ∈ Rn: vector

how to solve?

reduce to quadratic optimization problem:

▶ (explicit) form solution set {x : Ax = b} = {x0 +Vz | z ∈ Rn−m} by computing
a solution Ax0 = b and a basis V for the null space of A

▶ (implicit) use duality to recast problem as larger linear (KKT) system
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Quadratic program: application

Markowitz portfolio optimization problem:

minimize γxTΣx − µT x
subject to

∑
i xi = 1

Ax = 0
variable x ∈ Rn

where

▶ Σ ∈ Rn×n: asset covariance matrix

▶ µ ∈ Rn: asset return vector

▶ γ ∈ R: risk aversion parameter
▶ rows of A ∈ Rm×n correspond to other portfolios

▶ ensures new portfolio is independent, e.g., of market returns
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Outline

Quadratic optimization

Nonlinear optimization

Conic optimization

Integer programming

Convex optimization
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Unconstrained smooth optimization

for f : Rn → R ctsly differentiable,

minimize f (x)
variable x ∈ Rn

how to solve?

approximate as a quadratic problem

f (x) ≈ f (x0) +∇f (x0)T (x − x0) +
1

2
(x − x0)

TH(x0)(x − x0)

and find solution xquad to the quadratic problem.
then set x0 ← xquad and repeat.
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Finite sum

finite sum optimization problem

minimize
∑m

i=1 fi (x)
variable x ∈ Rn

key fact: can approximate gradient using gradient on minibatch S ⊆ {1, . . . ,m}:

∇f (x) ≈ 1

|S |
∑
i∈S
∇fi (x)

examples:

▶ statistical learning (logistic regression, SVM)

▶ deep learning
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Background: classification

classification problem: m data points

▶ feature vector ai ∈ Rn, i = 1, . . . ,m

▶ label bi ∈ {−1, 1}, i = 1, . . . ,m

choose decision boundary aT x = 0 to separate data points into two classes

▶ aT x > 0 =⇒ predict class 1

▶ aT x < 0 =⇒ predict class -1

classification is correct if bia
T x > 0

▶ projective transformation transforms affine boundary to linear boundary

▶ classification is invariant to scalar multiplication of x
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Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize
∑m

i=1 log(1 + exp
(
−biaTi x

)
) + r(x)

variable x ∈ Rn

where

▶ bi ∈ {−1, 1}, ai ∈ Rn

▶ r : Rn → R is a regularizer, e.g., ∥x∥2 or ∥x∥1
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Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn.

not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective
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Nonlinear optimization

optimization problem: nonlinear form

minimize f0(x)
subject to fi (x) ≤ bi , i = 1, . . . ,m1

h(x) = 0
variable x ∈ Rn

▶ x = (x1, . . . , xn): optimization variables

▶ f0 : R
n → R: objective function

▶ fi : R
n → R, i = 1, . . . ,m: constraint functions

special case: unconstrained optimization
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Example: process control

You are the process engineer for a desalination plant that produces drinking water.
The plant has a variety of knobs, collected in vector x , that you can turn to control
the process. These control, e.g., how much water is pumped into the plant, how
much pressure is used to force the water through filters, and how much of each
chemical is added to the water.

▶ f0(x): cost of water produced

▶ fi (x): level of each measured impurity in the water

▶ bi : maximum allowable level of each impurity

Given a setting of the knobs, you can observe the cost of water produced and the
levels of impurities.

What is the optimal setting of the knobs?
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Oracles

an optimization oracle is your interface for accessing the problem data:
e.g., an oracle for f : Rn → R can evaluate for any x ∈ Rn:

▶ zero-order: f0(x)

▶ first-order: f0(x) and ∇f0(x)
▶ second-order: f0(x), ∇f0(x), and ∇2f0(x)

why oracles?

▶ can optimize real systems based on observed output (not just models)

▶ can use and extend old or complex but trusted code (e.g., NASA, PDE
simulations, . . . )

▶ can prove lower bounds on the oracle complexity of a problem class

source: Nesterov 2004 “Introductory Lectures on Convex Optimization”’
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Nonlinear optimization: how to solve?

depends on the oracle:

▶ first- or second-order: approximate by a sequence of quadratic problems
▶ zero-order: harder, lots of methods

▶ simulated annealing
▶ Bayesian optimization
▶ pseudo-higher-order methods, e.g., compute approximate gradient
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Solution of an optimization problem

minimize f (x)

for f : D → R. x⋆ is a

▶ local minimizer if there is a neighborhood N around x⋆ so that f (x) ≥ f (x⋆)
for all x ∈ N .

▶ global minimizer if f (x) ≥ f (x⋆) for all x ∈ D.
▶ strict local minimizer if there is a neighborhood N around x⋆ so that

f (x) > f (x⋆) for all x ∈ N .

▶ isolated local minimizer if the neighborhood N contains no other local
minimizers.

▶ unique minimizer if it is the only global minimizer.

pictures!
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First order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a differentiable function f : Rn → R, then
∇f (x⋆) = 0.

proof: suppose by contradiction that ∇f (x⋆) ̸= 0. consider points of the form
xα = x⋆ − α∇f (x⋆) for α > 0. by definition of the gradient,

lim
α→0

f (xα)− f (x⋆)

α
= −∇f (x⋆)⊤∇f (x⋆) = −∥nablaf (x⋆)∥2 < 0

so for any sufficiently small α > 0, we have f (xα) < f (x⋆), which contradicts the
fact that x⋆ is a local minimizer.
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Second order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a twice differentiable function f : Rn → R, then
∇2f (x⋆) ⪰ 0.

proof: similar to the previous proof. use the fact that the second order
approximation

f (xα) ≈ f (x⋆) +∇f (x⋆)⊤(xα − x⋆) +
1

2
(xα − x⋆)⊤∇2f (x⋆)(xα − x⋆)

is accurate locally to show a contradiction unless ∇2f (x⋆) ⪰ 0: if not, there is a
direction v such that vT∇2f (x⋆)v < 0. then f (x + αv) < f (x⋆) for α arbitrarily
small, which contradicts the fact that x⋆ is a local minimizer.
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Outline

Quadratic optimization

Nonlinear optimization

Conic optimization

Integer programming

Convex optimization
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Linear program

a linear program is written as

minimize cT x
subject to b − Ax ≥ 0
variable x ∈ Rn

where

▶ A ∈ Rm×n: matrix

▶ b ∈ Rm: vector

▶ c ∈ Rn: vector

how to solve?

▶ use the simplex method

▶ use a conic solver
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Conic form

conic form optimization problem generalizes LP:

minimize cT x
subject to b − Ax ∈ K,

where K is a convex cone:

x ∈ K ⇐⇒ rx ∈ K for any r > 0.

examples:

▶ zero cone K0 = {0}
▶ positive orthant K+ = {x : xi >= 0, i = 1, . . . , n}
▶ second order cone KSOC = {(x , t) : ∥x∥2 ≤ t}
▶ positive semidefinite (PSD) cone KSDP = {X : X = XT , vTXv ≥ 0, ∀v ∈ Rn}
▶ cartesian products of cones
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Conic form: how to solve?

Morally, conic problems are solved by reducing to a nonlinear optimization problem

▶ barrier methods (e.g., interior point methods)
▶ add a barrier term to the objective that goes to infinity when constraints are

violated

▶ penalty methods (e.g., augmented Lagrangian methods, ADMM, . . . )
▶ add a penalty term to the objective that depends on a dual variable
▶ adjust the dual variable to enforce constraints
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Conic form example: nonnegative least squares

minimize ∥Ax − b∥
subject to x ≥ 0

⇕

minimize t
subject to x ∈ K+

(Ax − b, t) ∈ KSOC
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Conic form example: SVM

minimize
∑m

i=1max(0, 1− bia
T
i x) + ∥x∥2

variable x ∈ Rn

⇕

minimize
∑

i si + t
subject to s ≥ diag(b)Ax − 1

s ≥ 0
t ≥ ∥x∥2
⇕

minimize
∑

i si + t
subject to s − diag(b)Ax + 1 ∈ K+

s ∈ K+

[t x ; xT In] ∈ KSDP
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Schur complement

Consider the block matrix

X =

[
A B
BT C

]
.

▶ the Schur complement of A in X is C − BTA−1B.

▶ X ⪰ 0 if and only if A ⪰ 0 and C − BTA−1B ⪰ 0.
(proof by partial minimization of quadratic form (u, v)TX (u, v) over u ∈ Rm

for fixed v ∈ Rn)
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Conic form example: semidefinite programming

minimize λmax(X ) + yTX−1y
subject to X ⪰ 0

⇕

minimize t1 + t2
subject to t1I − X ∈ KSDP[

t2 yT

y X

]
∈ KSDP
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Integer programming

integer linear programming generalizes linear programming:

minimize cT x
subject to b − Ax ≥ 0
variable x ∈ Zn

variants:

▶ mixed integer linear programming (MILP): x ∈ Zn−m ∪ Rm

▶ mixed integer nonlinear programming (MINLP): x ∈ Zn−m ∪ Rm and
nonlinear objective or constraints

how to solve?

▶ use Gurobi, CPLEX, . . .

▶ branch and bound and cut (i.e., a sequence of LPs)

▶ use duality to decompose into a sequence of simpler LPs
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Convex sets

Definition

A set S ⊆ Rn is convex if it contains every chord: for all θ ∈ [0, 1], w , v ∈ S ,

θw + (1− θ)v ∈ S

Q: Which of these are convex?
ellipsoid, half moon
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Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex
▶ First order condition. if f is differentiable,

f (v)− f (w) ≥ ∇f (w)⊤(v − w) ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its Hessian is always psd:

λmin(∇2f (x)) ≥ 0 for allx ∈ Rn

Q: Which of these are convex?
quadratic, l1, pwl, step, jump, logistic, logistic loss
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Convex optimization

an optimization problem is convex if:

▶ Geometrically: the feasible set and the epigraph of the objective are convex

▶ NLP: the objective and inequality constraints are convex functions, and the
equality constraints are affine

▶ Conic: all the cones are convex cones

why convex optimization?

▶ relatively complete theory

▶ efficient solvers

▶ conceptual tools that generalize

duality, stopping conditions, . . .

▶ a function f is concave if −f is convex

▶ concave maximization results in a convex optimization problem
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Local minima are global for convex functions

Theorem

If x⋆ is a local minimizer of a convex function f , then x⋆ is a global minimizer.

proof: suppose by contradiction that another point x ′ is a global minimizer, with
f (x ′) < f (x⋆). draw the chord between x ′ and x⋆. since the chord lies above f ,
every convex combination x = θx⋆ + (1− θ)x ′ of x ′ and x⋆ for θ ∈ (0, 1) has a value
f (x) < f (x⋆). this is true even for x → x⋆, contradicting our assumption that x⋆ is
a local minimizer.
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Corollary

Corollary

If f is convex and differentiable and ∇f (x⋆) = 0, then x⋆ is a global minimizer.

Q: Is a global minimizer of a convex function always unique?
A: No. Picture.
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Modern solvers

▶ algebraic modeling languages, e.g.
▶ JuMP facilitates nonlinear and mixed integer optimization
▶ CVX* (CVX, CVXPY, Convex.jl, . . . ) transform a problem into conic form

▶ and modern solvers
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https://jump.dev/
https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers


Optimization modeling

▶ Rocket control

▶ Power systems

▶ AML
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https://jump.dev/JuMP.jl/stable/tutorials/nonlinear/rocket_control/
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://jump.dev/JuMP.jl/stable/background/algebraic_modeling_languages/


Announcements

▶ website: https://stanford-cme-307.github.io/web

▶ Ed for discussion and announcements: https://edstem.org/us/courses/51411/

▶ fill out course survey (also linked on website):
https://forms.gle/7hPniFeC576S12FAA

▶ talk to me after class and/or schedule office hours (see website)

▶ class attendance is required. will post some slides, generally no recordings
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https://stanford-cme-307.github.io/web
https://edstem.org/us/courses/51411/
https://forms.gle/7hPniFeC576S12FAA
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