CME 307 / MS&E 311: Optimization

Interior Point Methods

Professor Udell

Management Science and Engineering
Stanford

March 1, 2024

with Prof. Luiz-Rafael Santos, UFSC https://lrsantos11.github.io/

Convex optimization problem

minimize
$$f(x)$$

subject to $g(x) \le 0$
 $Ax = b$

where $f: \mathbf{R}^n \to \mathbf{R}$, $g: \mathbf{R}^n \to \mathbf{R}^p$ are smooth and convex, $A \in \mathbf{R}^{m \times n}$ is full rank.

Convex optimization problem

minimize
$$f(x)$$

subject to $g(x) \le 0$
 $Ax = b$

where $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^p$ are smooth and convex, $A \in \mathbb{R}^{m \times n}$ is full rank.

KKT conditions:

Convex optimization problem

minimize
$$f(x)$$

subject to $g(x) \le 0$ $s \in \mathbb{R}^p$
 $Ax = b$ $y \in \mathbb{R}^m$

where $f: \mathbf{R}^n \to \mathbf{R}$, $g: \mathbf{R}^n \to \mathbf{R}^p$ are smooth and convex, $A \in \mathbf{R}^{m \times n}$ is full rank.

KKT conditions:

Convex optimization problem

minimize
$$f(x)$$

subject to $g(x) \le 0$ $s \in \mathbb{R}^p$
 $Ax = b$ $y \in \mathbb{R}^m$

where $f: \mathbf{R}^n \to \mathbf{R}$, $g: \mathbf{R}^n \to \mathbf{R}^p$ are smooth and convex, $A \in \mathbf{R}^{m \times n}$ is full rank.

KKT conditions:

$$abla f(x) + A^T y + (\nabla g(x))^T s = 0$$

$$Ax = b$$

$$g(x) \le 0$$

$$s \ge 0$$

$$s_j g_j(x) = 0, \quad j = 1, \dots, p$$

Outline

IPM for linear and quadratic programs

IPM for Convex nonlinear programming

IPM for Conic Optimization

Linear/Quadratic Program

$$\begin{array}{ll} \text{minimize} & c^\top x + \frac{1}{2} x^\top Q x \\ \text{subject to} & Ax = b, \\ & x \geq 0, \end{array}$$

where $Q \in \mathbf{S}_{+}^{n}$, and $A \in \mathbf{R}^{m \times n}$ is full-rank.

Linear/Quadratic Program

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

subject to $Ax = b$,
 $x \ge 0$,

where $Q \in \mathbf{S}_{+}^{n}$, and $A \in \mathbf{R}^{m \times n}$ is full-rank.

 $\mathcal{P} := \{x \in \mathbf{R}^n \mid Ax = b, x \ge 0\}$ is a polyhedron.

Linear/Quadratic Program

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

subject to $Ax = b$,
 $x \ge 0$,

where $Q \in \mathbf{S}_{+}^{n}$, and $A \in \mathbf{R}^{m \times n}$ is full-rank.

- $\mathcal{P} := \{x \in \mathbf{R}^n \mid Ax = b, x \ge 0\}$ is a polyhedron.
- ▶ If Q = 0, problem is a linear program.

Linear/Quadratic Program

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

subject to $Ax = b$,
 $x \ge 0$,

where $Q \in \mathbf{S}_{+}^{n}$, and $A \in \mathbf{R}^{m \times n}$ is full-rank.

- $\mathcal{P} := \{x \in \mathbf{R}^n \mid Ax = b, x \ge 0\}$ is a polyhedron.
- ▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Linear/Quadratic Program

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

subject to $Ax = b$,
 $x \ge 0$,

where $Q \in \mathbf{S}_{+}^{n}$, and $A \in \mathbf{R}^{m \times n}$ is full-rank.

- $\mathcal{P} := \{x \in \mathbf{R}^n \mid Ax = b, x \ge 0\}$ is a polyhedron.
- ▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex IPM: go through the middle!

Linear/Quadratic Program

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

subject to $Ax = b$,
 $x \ge 0$,

where $Q \in \mathbf{S}_{+}^{n}$, and $A \in \mathbf{R}^{m \times n}$ is full-rank.

- $\mathcal{P} := \{x \in \mathbf{R}^n \mid Ax = b, x \ge 0\}$ is a polyhedron.
- ▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Advantages of vertex solution vs interior solution?

Simplex: vertex to vertex IPM: go through the middle!

Building blocks of IPM

Ingredients for Interior Point Method

- ▶ Duality theory: Lagrangian function; KKT (first order optimality) condition.
- ▶ Barrier function: logarithmic barrier.
- Newton's method (and a good linear solver)

Building blocks of IPM

Ingredients for Interior Point Method

- ▶ Duality theory: Lagrangian function; KKT (first order optimality) condition.
- ▶ Barrier function: logarithmic barrier.
- Newton's method (and a good linear solver)

The reward: fantastic convergence properties!

- ▶ Theoretical: $O(\sqrt{n}\log(1/\varepsilon))$ iterations
- ▶ Practical: $O(\log n \log(1/\varepsilon))$ iterations

(but the per-iteration cost may be high due to the Newton solve: often $O(n^3)$)

IPM: algorithmic template

IPM procedure

- replace inequalities with log barriers;
- form the Lagrangian;
- write down the KKT conditions of the perturbed problem;
- ▶ find one (or more) directions using Newton's method on the KKT system;
- (decide how to combine the directions and) compute a stepsize.

Duality and KKT conditions

Primal-dual QPs

Primal problem

$$\begin{array}{ll} \text{minimize} & c^\top x + \frac{1}{2} x^\top Q x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Dual problem

Duality and KKT conditions

Primal-dual QPs

Primal problem

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

subject to $Ax = b$
 $x \ge 0$

Dual problem

maximize
$$b^{\top}y - \frac{1}{2}x^{\top}Qx$$

subject to $A^{\top}y + s - Qx = c$
 $s \ge 0$

KKT conditions

$$Ax = b$$

$$A^{\top}y + s - Qx = c$$

$$XSe = 0$$

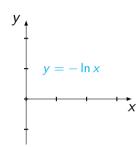
$$(x, s) > 0$$

$$\triangleright$$
 complementarity: $x \cdot s = 0$

where
$$X = \mathbf{diag}(x_1, \dots, x_n), S = \mathbf{diag}(s_1, \dots, s_n) \in \mathbf{R}^{n \times n}$$
, and $e = (1, \dots, 1) \in \mathbf{R}^n$.

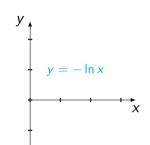
Logarithmic barrier

$$\begin{array}{c} -\ln x_j \\ \text{replaces the inequality} \\ x_j \geq 0 \end{array}$$



Logarithmic barrier

$$-\ln x_j$$
 replaces the inequality
$$x_j \ge 0$$



minimize
$$-\sum_{j=1}^{n} \ln x_j \iff \max \min z \prod_{1 \le j \le n} x_j$$

 \implies keeps every entry of x away from 0.

Barrier primal QP

Step 1: replace inequality constraints by barrier

Replace the primal QP

$$\begin{array}{ll} \text{minimize} & c^\top x + \frac{1}{2} x^\top Q x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

with the barrier primal QP

minimize
$$c^{\top}x + \frac{1}{2}x^{\top}Qx - \mu \sum_{j=1}^{n} \ln x_j$$

subject to $Ax = b$

Logarithmic barrier and stationarity

Step 2: remove equality constraints using Lagrangian

$$\mathcal{L}(x, y, \mu) = c^{\top} x + \frac{1}{2} x^{\top} Q x - y^{\top} (A x - b) - \mu \sum_{i=1}^{n} \ln x_{i}$$

Logarithmic barrier and stationarity

Step 2: remove equality constraints using Lagrangian

$$\mathcal{L}(x, y, \mu) = c^{\top} x + \frac{1}{2} x^{\top} Q x - y^{\top} (A x - b) - \mu \sum_{i=1}^{n} \ln x_i$$

A stationary point (x, y, μ) of the Lagrangian satisfies

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mathbf{y}, \mu) = 0$$
 $= c + Q\mathbf{x} - \mathbf{A}^{\mathsf{T}} \mathbf{y} - \mu \mathbf{X}^{-1} \mathbf{e}$

with
$$X^{-1} = \mathbf{diag}(x_1^{-1}, \dots, x_n^{-1}) \in \mathbf{R}^{n \times n}, (x_j > 0).$$

KKT conditions for barrier problem

▶ Define $s := \mu X^{-1}e$, which implies $XSe = \mu e$, to get

KKT_{μ}

$$Ax = b$$
 $A^{T}y + s - Qx = c$
 $XSe = \mu e$
 $(x, s) > 0$

KKT conditions for barrier problem

▶ Define $s := \mu X^{-1}e$, which implies $XSe = \mu e$, to get

 KKT_{μ} KKT

$$Ax = b$$
 $Ax = b$ $A = b$ $A^{T}y + s - Qx = c$ $XSe = \mu e$ $XSe = 0$ $(x, s) > 0$ $(x, s) \geq 0$

KKT conditions for barrier problem

▶ Define $s := \mu X^{-1}e$, which implies $XSe = \mu e$, to get

$$\mathsf{KKT}_{\mu}$$
 KKT

$$Ax = b$$
 $Ax = b$ $A = b$ $A^{T}y + s - Qx = c$ $XSe = \mu e$ $XSe = 0$ $(x, s) > 0$ $(x, s) \geq 0$

 $\mathsf{KKT}_{\mu} \to \mathsf{KKT} \ \mathsf{as} \ \mu \to \mathsf{0}.$

Central path (LP case)

 \triangleright Parameter μ controls the distance to optimality

$$c^{\top}x - b^{\top}y = c^{\top}x - x^{\top}A^{\top}y = x^{\top}s = n\mu$$

Central path (LP case)

 \triangleright Parameter μ controls the distance to optimality

$$c^{\mathsf{T}}x - b^{\mathsf{T}}y = c^{\mathsf{T}}x - x^{\mathsf{T}}A^{\mathsf{T}}y = x^{\mathsf{T}}s = n\mu$$

► Analytic center (μ -center): unique point

$$(x(\mu), y(\mu), s(\mu)), \qquad x(\mu) > 0, \ s(\mu) > 0$$

that satisfies the KKT_{μ} conditions.

Central path (LP case)

 \triangleright Parameter μ controls the distance to optimality

$$c^{\mathsf{T}}x - b^{\mathsf{T}}y = c^{\mathsf{T}}x - x^{\mathsf{T}}A^{\mathsf{T}}y = x^{\mathsf{T}}s = n\mu$$

► Analytic center (μ -center): unique point

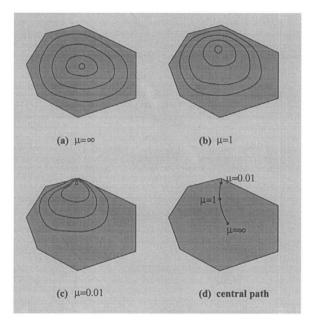
$$(x(\mu), y(\mu), s(\mu)), \qquad x(\mu) > 0, \ s(\mu) > 0$$

that satisfies the KKT_{μ} conditions.

► The curve

$$C_{\mu} = \{(x(\mu), y(\mu), s(\mu)) \mid \mu > 0\}$$

is called the primal-dual central path.



Recall Newton's method for nonlinear equation

For $F: \mathbf{R}^n \to \mathbf{R}^n$ smooth, solve F(x) = 0.

Recall Newton's method for nonlinear equation

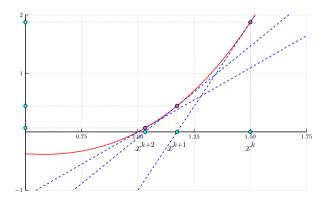
- For $F: \mathbf{R}^n \to \mathbf{R}^n$ smooth, solve F(x) = 0.
- Newton's method: define Jacobian $J_F(x)$ so $J_F(x)_{ij} = \frac{\partial F_i}{\partial x_i}$, and iterate

$$x^{k+1} = x^k - \alpha_k J_F(x^k)^{-1} F(x^k)$$

Recall Newton's method for nonlinear equation

- For $F: \mathbf{R}^n \to \mathbf{R}^n$ smooth, solve F(x) = 0.
- Newton's method: define Jacobian $J_F(x)$ so $J_F(x)_{ij} = \frac{\partial F_i}{\partial x_i}$, and iterate

$$x^{k+1} = x^k - \alpha_k J_F(x^k)^{-1} F(x^k)$$



Apply Newton Method to KKT_{μ}

The first order optimality conditions for the barrier problem form a large system of nonlinear equations:

$$F(x,y,s)=0,$$

where $F: \mathbf{R}^{2n+m} \mapsto \mathbf{R}^{2n+m}$ is defined as

$$F(x, y, s) = egin{bmatrix} Ax & -b \ A^{ op}y + s - Qx & -c \ XSe & -\mu e \end{bmatrix}$$

Apply Newton Method to KKT_{μ}

The first order optimality conditions for the barrier problem form a large system of nonlinear equations:

$$F(x,y,s)=0,$$

where $F: \mathbb{R}^{2n+m} \mapsto \mathbb{R}^{2n+m}$ is defined as

$$F(x, y, s) = egin{bmatrix} Ax & -b \ A^{ op}y + s - Qx & -c \ XSe & -\mu e \end{bmatrix}$$

- ► The first two blocks are linear.
- ▶ The last block, corresponding to the complementarity condition, is nonlinear.
- Jacobian is

$$J_F(x,y,s) = \begin{bmatrix} A & 0 & 0 \\ -Q & A^\top & I \\ S & 0 & X \end{bmatrix}$$

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter μ and make *one* (damped) Newton step towards the solution of FOC. Then reduce the barrier parameter μ and repeat.

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter μ and make *one* (damped) Newton step towards the solution of FOC. Then reduce the barrier parameter μ and repeat.

• Given (x_0, y_0, s_0) feasible, $\mu_0 = \frac{1}{n} \cdot (x^0)^{\top} s^0$

IPM Framework

Fix the barrier parameter μ and make *one* (damped) Newton step towards the solution of FOC. Then reduce the barrier parameter μ and repeat.

- Given (x_0, y_0, s_0) feasible, $\mu_0 = \frac{1}{n} \cdot (x^0)^{\top} s^0$
- ▶ For k = 1, 2, ...

IPM Framework

Fix the barrier parameter μ and make *one* (damped) Newton step towards the solution of FOC. Then reduce the barrier parameter μ and repeat.

- Given (x_0, y_0, s_0) feasible, $\mu_0 = \frac{1}{n} \cdot (x^0)^{\top} s^0$
- ▶ For k = 1, 2, ...
 - \blacktriangleright $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0,1)$

IPM Framework

Fix the barrier parameter μ and make *one* (damped) Newton step towards the solution of FOC. Then reduce the barrier parameter μ and repeat.

- Given (x_0, y_0, s_0) feasible, $\mu_0 = \frac{1}{n} \cdot (x^0)^{\top} s^0$
- ▶ For k = 1, 2, ...
 - $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0,1)$
 - Find Newton direction $(\Delta x^k, \Delta y^k, \Delta s^k)$ by solving

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^{\top} & I \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} b - A x^k \\ c - A^{\top} y^k - s^k + Q x^k \\ \mu_k e - X^k S^k e \end{bmatrix}$$

IPM Framework

Fix the barrier parameter μ and make *one* (damped) Newton step towards the solution of FOC. Then reduce the barrier parameter μ and repeat.

- Given (x_0, y_0, s_0) feasible, $\mu_0 = \frac{1}{n} \cdot (x^0)^{\top} s^0$
- ▶ For k = 1, 2, ...
 - $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0,1)$
 - Find Newton direction $(\Delta x^k, \Delta y^k, \Delta s^k)$ by solving

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^{\top} & I \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} b - Ax^k \\ c - A^{\top}y^k - s^k + Qx^k \\ \mu_k e - X^k S^k e \end{bmatrix}$$

Find step length α_k so $(x^k + \alpha_k \Delta x^k, y^k + \alpha_k \Delta y^k, s^k + \alpha_k \Delta s^k)$ is feasible.

IPM Framework

Fix the barrier parameter μ and make one (damped) Newton step towards the solution of FOC. Then reduce the barrier parameter μ and repeat.

- Given (x_0, y_0, s_0) feasible, $\mu_0 = \frac{1}{5} \cdot (x^0)^{\top} s^0$
- For k = 1, 2, ...
 - $\mu_k = \sigma \mu_{k-1}$, where $\sigma \in (0,1)$
 - Find Newton direction $(\Delta x^k, \Delta y^k, \Delta s^k)$ by solving

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^{\top} & I \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} b - Ax^k \\ c - A^{\top}y^k - s^k + Qx^k \\ \mu_k e - X^k S^k e \end{bmatrix}$$

- Find step length α_k so $(x^k + \alpha_k \Delta x^k, y^k + \alpha_k \Delta y^k, s^k + \alpha_k \Delta s^k)$ is feasible. Make step $(x^{k+1}, y^{k+1}, s^{k+1}) = (x^k + \alpha_k \Delta x^k, y^k + \alpha_k \Delta y^k, s^k + \alpha_k \Delta s^k)$.

▶ Short-step path-following method: $\mathcal{O}(\sqrt{n})$ complexity result

Short-step path-following method: $\mathcal{O}(\sqrt{n})$ complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

Given $\epsilon > 0$, suppose that a feasible starting point $(x^0, y^0, s^0) \in \mathcal{N}_2(0.1)$ satisfies

$$\left(x^{0}
ight)^{ op}s^{0}=n\mu^{0},\,\,$$
 where $\mu^{0}\leq1/\epsilon^{\kappa},$

for some positive constant κ . Then for some $K = \mathcal{O}(\sqrt{n} \ln(1/\epsilon))$ such that

$$\mu^k \le \epsilon, \quad \forall k \ge K$$

▶ Short-step path-following method: $\mathcal{O}(\sqrt{n})$ complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

Given $\epsilon > 0$, suppose that a feasible starting point $(x^0, y^0, s^0) \in \mathcal{N}_2(0.1)$ satisfies

$$\left(x^{0}
ight)^{ op}s^{0}=n\mu^{0},\,\,$$
 where $\mu^{0}\leq1/\epsilon^{\kappa},$

for some positive constant κ . Then for some $K = \mathcal{O}(\sqrt{n} \ln(1/\epsilon))$ such that

$$\mu^k \le \epsilon, \quad \forall k \ge K$$

ightharpoonup heta-neighborhood of the central path:

$$\mathcal{N}_2(\theta) := \{(x, y, s) \in \mathcal{F}^0 \mid ||XSe - \mu e|| \leq \theta \mu\}, \text{ with } \mu = \frac{1}{n} x^\top s.$$

Short-step path-following method: $\mathcal{O}(\sqrt{n})$ complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

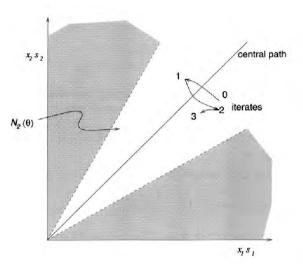
Given $\epsilon > 0$, suppose that a feasible starting point $(x^0, y^0, s^0) \in \mathcal{N}_2(0.1)$ satisfies

$$\left(x^0
ight)^{ op} s^0 = n\mu^0, \,\, ext{where} \,\, \mu^0 \leq 1/\epsilon^\kappa,$$

for some positive constant κ . Then for some $K = \mathcal{O}(\sqrt{n} \ln(1/\epsilon))$ such that

$$\mu^k \le \epsilon, \quad \forall k \ge K$$

- ightharpoonup heta-neighborhood of the central path:
 - $\mathcal{N}_2(\theta) \coloneqq \{(x,y,s) \in \mathcal{F}^0 \mid \|XSe \mu e\| \le \theta \mu\}, \text{ with } \mu = \frac{1}{n} x^\top s.$
- Slow progress towards optimality



Augmented system

Newton direction

$$\begin{bmatrix} A & 0 & 0 \\ -Q & A^{\top} & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^{\top}y - s + Qx \\ \mu_k e - XSe \end{bmatrix} =: \begin{bmatrix} \xi_p \\ \xi_d \\ \xi_{\mu} \end{bmatrix}$$

use last (complementarity) block to solve for Δs as a function of Δx .

Augmented system

Define $\Theta = XS^{-1}$ (ill-conditioned!). Then Δx and Δy solve the Newton system

$$\iff$$

$$\begin{bmatrix} -Q - \Theta^{-1} & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_{\mu} \\ \xi_{\rho} \end{bmatrix}$$

- Newton system is nonsymmetric.
- ▶ Augmented system is symmetric but indefinite.

Normal equations

Augmented system

$$\begin{bmatrix} -\Theta^{-1} & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_{\mu} \\ \xi_{\rho} \end{bmatrix} =: \begin{bmatrix} g \\ \xi_{\rho} \end{bmatrix}$$

Normal equations

Eliminate Δx to arrive at the *Normal equations*

$$(A\Theta A^{\top})\Delta y = A\Theta g + \xi_p$$

Normal equations

Augmented system

$$\begin{bmatrix} -\Theta^{-1} & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_d - X^{-1} \xi_{\mu} \\ \xi_p \end{bmatrix} =: \begin{bmatrix} g \\ \xi_p \end{bmatrix}$$

Normal equations

Eliminate Δx to arrive at the *Normal equations*

$$(A\Theta A^{\top})\Delta y = A\Theta g + \xi_p$$

- ► $A\Theta A^{\top}$ is symmetric and positive semidefinite. (Finally!)
- Normal equations in QP $(A(Q + \Theta)A^{\top})\Delta y = g$ are generally nearly dense, even when A and Q are sparse.
- ▶ LP: Normal equations are often used.
- ▶ QP: usually use the indefinite augmented system.

Outline

IPM for linear and quadratic programs

IPM for Convex nonlinear programming

IPM for Conic Optimization

Convex NLP

minimize
$$f(x)$$
 subject to $g(x) \le 0$ minimize $f(x)$ subject to $g(x) + z = 0, z \ge 0$

Convex NLP

minimize
$$f(x)$$
 subject to $g(x) \le 0$
minimize $f(x)$ subject to $g(x) + z = 0, z \ge 0$

▶ Replace inequality $z \ge 0$ with logarithmic barrier

minimize
$$f(x) - \mu \sum_{i=1}^{m} \ln(z_i)$$
 subject to $g(x) + z = 0$

Convex NLP

minimize
$$f(x)$$
 subject to $g(x) \le 0$ minimize $f(x)$ subject to $g(x) + z = 0, z \ge 0$

▶ Replace inequality $z \ge 0$ with logarithmic barrier

minimize
$$f(x) - \mu \sum_{i=1}^{m} \ln(z_i)$$
 subject to $g(x) + z = 0$

Write out Lagrangian

$$L(x, y, z, \mu) = f(x) + y^{\top}(g(x) + z) - \mu \sum_{i=1}^{m} \ln(z_i)$$

Write conditions for stationary point

$$\nabla_x L(x, z, y) = \nabla f(x) + J_g(x)^\top y = 0$$
$$\nabla_y L(x, z, y) = g(x) + z = 0$$
$$\nabla_z L(x, z, y) = y - \mu Z^{-1} e = 0$$

Write conditions for stationary point

$$\nabla_x L(x, z, y) = \nabla f(x) + J_g(x)^\top y = 0$$
$$\nabla_y L(x, z, y) = g(x) + z = 0$$
$$\nabla_z L(x, z, y) = y - \mu Z^{-1} e = 0$$

Write KKT system

$$abla f(x) + J_g(x)^{\top} y = 0,$$

 $g(x) + z = 0$
 $YZe = \mu e$

Newton for KKT of NLP

► Apply Newton method for KKT system

Newton for KKT of NLP

- ► Apply Newton method for KKT system
- ► Jacobian matrix of KKT system

$$J_F(x,z,y) = \begin{bmatrix} Q(x,y) & J_g(x)^\top & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix}$$

where
$$Q(x,y) = \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x)$$
 is the Hessian of L

Newton for KKT of NLP

- ► Apply Newton method for KKT system
- ► Jacobian matrix of KKT system

$$J_F(x,z,y) = egin{bmatrix} Q(x,y) & J_g(x)^\top & 0 \ J_g(x) & 0 & I \ 0 & Z & Y \end{bmatrix}$$

where
$$Q(x,y) = \nabla^2 f(x) + \sum_{i=1}^m y_i \nabla^2 g_i(x)$$
 is the Hessian of L

Newton step for KKT system

$$\begin{bmatrix} Q(x,y) & J_g(x)^\top & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^\top y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Newton direction for NIP

$$\begin{bmatrix} Q(x,y) & J_g(x)^\top & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^\top y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Newton direction for NI P

$$\begin{bmatrix} Q(x,y) & J_g(x)^\top & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^\top y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Augmented system for NLP

$$\begin{bmatrix} Q(x,y) & J_g(x)^{\top} \\ J_g(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^{\top} y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

Newton direction for NI P

$$\begin{bmatrix} Q(x,y) & J_g(x)^\top & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^\top y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Augmented system for NLP

$$\begin{bmatrix} Q(x,y) & J_{g}(x)^{\top} \\ J_{g}(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_{g}(x)^{\top} y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

Need to compute Q(x, y) and $J_g(x)$ at each iteration

Newton direction for NLP

$$\begin{bmatrix} Q(x,y) & J_g(x)^\top & 0 \\ J_g(x) & 0 & I \\ 0 & Z & Y \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^\top y \\ -g(x) - z \\ \mu e - YZe \end{bmatrix}$$

Augmented system for NLP

$$\begin{bmatrix} Q(x,y) & J_g(x)^{\top} \\ J_g(x) & -ZY^{-1} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(x) - J_g(x)^{\top} y \\ -g(x) - \mu Y^{-1} e \end{bmatrix}$$

- Need to compute Q(x, y) and $J_g(x)$ at each iteration
- ► Caveat: use trust region method to choose stepsize.

Outline

IPM for linear and quadratic programs

IPM for Convex nonlinear programming

IPM for Conic Optimization

Self-concordant function

Definition

Function f is *self-concordant* if for some constant $M_f \ge 0$, the inequality

$$\nabla^3 f(x)[u,u,u] \leq M_f ||u||_{\nabla^2 f(x)}^{3/2}$$

holds for any $x \in \text{dom } f$ and $u \in \mathbb{R}^n$.

▶ A self-concordant function is always well approximated by a quadratic model because the error of such an approximation can be bounded by the $||u||_{\nabla^2 f(x)}^{3/2}$

Self-concordant function

Definition

Function f is *self-concordant* if for some constant $M_f \ge 0$, the inequality

$$\nabla^3 f(x)[u,u,u] \leq M_f ||u||_{\nabla^2 f(x)}^{3/2}$$

holds for any $x \in \text{dom } f$ and $u \in \mathbb{R}^n$.

▶ A self-concordant function is always well approximated by a quadratic model because the error of such an approximation can be bounded by the $||u||_{\nabla^2 f(x)}^{3/2}$

Self-concordant function

Definition

Function f is *self-concordant* if for some constant $M_f \ge 0$, the inequality

$$\nabla^3 f(x)[u, u, u] \le M_f ||u||_{\nabla^2 f(x)}^{3/2}$$

holds for any $x \in \text{dom } f$ and $u \in \mathbb{R}^n$.

▶ A self-concordant function is always well approximated by a quadratic model because the error of such an approximation can be bounded by the $||u||_{\nabla^2 f(x)}^{3/2}$

Theorem ([Boyd and Vandenberghe, 2004, Section 11.5])

Newton's method with line search finds an ε approximate solution in less than $T := constant \times (f(x_0) - f^*) + \log_2 \log_2 \frac{1}{\varepsilon}$ iterations.

Theorem

The barrier function $-\ln(x)$ is self-concordant in \mathbf{R}_+ .

Theorem

The barrier function $-\ln(x)$ is self-concordant in \mathbf{R}_+ .

Proof.

Consider
$$f(x) = -\ln(x)$$
, then

$$f'(x) = -\frac{1}{x}, \quad f''(x) = \frac{1}{x^2}, \quad f'''(x) = -\frac{2}{x^3}$$

Theorem

The barrier function $-\ln(x)$ is self-concordant in \mathbf{R}_+ .

Proof.

Consider $f(x) = -\ln(x)$, then

$$f'(x) = -\frac{1}{x}, \quad f''(x) = \frac{1}{x^2}, \quad f'''(x) = -\frac{2}{x^3}$$

Compute and check that self-concordance holds with $M_f = 2$.

▶ $-\ln(1/x^{\alpha})$, with $\alpha \in (0, \infty)$ is not self-concordant in \mathbf{R}_{+} .

Theorem

The barrier function $-\ln(x)$ is self-concordant in \mathbf{R}_+ .

Proof.

Consider $f(x) = -\ln(x)$, then

$$f'(x) = -\frac{1}{x}, \quad f''(x) = \frac{1}{x^2}, \quad f'''(x) = -\frac{2}{x^3}$$

Compute and check that self-concordance holds with $M_f = 2$.

- ▶ $-\ln(1/x^{\alpha})$, with $\alpha \in (0, \infty)$ is not self-concordant in \mathbf{R}_{+} .
- ightharpoonup exp (1/x) is not self-concordant in \mathbf{R}_+ .

Conic optimization

Consider the optimization problem

minimize
$$c^{\top}x$$

subject to $Ax = b$
 $x \in K$

where K is a convex closed cone.

Conic optimization

Consider the optimization problem

minimize
$$c^{\top}x$$

subject to $Ax = b$
 $x \in K$

where K is a convex closed cone.

The associated dual is

Conic optimization

Consider the optimization problem

minimize
$$c^{\top}x$$

subject to $Ax = b$
 $x \in K$

where K is a convex closed cone.

► The associated dual is

maximize
$$b^{\top}y$$

subject to $A^{\top}y + s = c$
 $x \in K^*$ (Dual cone)

► Weak duality

$$c^{\top}x - b^{\top}y = x^{\top}(c - A^{\top}y) = x^{\top}s \ge 0$$

Conic optimization

Consider the optimization problem

minimize
$$c^{\top}x$$

subject to $Ax = b$
 $x \in K$

where K is a convex closed cone.

The associated dual is

maximize
$$b^{\top}y$$

subject to $A^{\top}y + s = c$
 $x \in K^*$ (Dual cone)

► Weak duality

$$c^{\top}x - b^{\top}y = x^{\top}(c - A^{\top}y) = x^{\top}s \ge 0$$

Conic optimization can be solved in polynomial time with IPMs

 $K = \mathbb{L} := \{(x, t) \mid x \in \mathbb{R}^{n-1}, t \in \mathbb{R}, ||x||_2 \le t, t \ge 0\}$ (Lorenz or second-order cone)

- $K = \mathbb{L} := \{(x, t) \mid x \in \mathbb{R}^{n-1}, t \in \mathbb{R}, ||x||_2 \le t, t \ge 0\}$ (Lorenz or second-order cone)
- ▶ Logarithmic barrier function for the second-order cone

$$f(x,t) = \begin{cases} -\ln(t^2 - ||x||_2^2) & \text{if } ||x|| < t \\ +\infty & \text{otherwise} \end{cases}$$

- $K = \mathbb{L} := \{(x, t) \mid x \in \mathbb{R}^{n-1}, t \in \mathbb{R}, ||x||_2 \le t, t \ge 0\}$ (Lorenz or second-order cone)
- ▶ Logarithmic barrier function for the second-order cone

$$f(x,t) = \begin{cases} -\ln(t^2 - ||x||_2^2) & \text{if } ||x|| < t \\ +\infty & \text{otherwise} \end{cases}$$

- $K = \mathbb{L} := \{(x, t) \mid x \in \mathbb{R}^{n-1}, t \in \mathbb{R}, ||x||_2 \le t, t \ge 0\}$ (Lorenz or second-order cone)
- ▶ Logarithmic barrier function for the second-order cone

$$f(x,t) = \begin{cases} -\ln(t^2 - ||x||_2^2) & \text{if } ||x|| < t \\ +\infty & \text{otherwise} \end{cases}$$

Theorem

The barrier function f(x,t) is self-concordant on \mathbb{L} .

- $K = \mathbb{L} := \{(x, t) \mid x \in \mathbb{R}^{n-1}, t \in \mathbb{R}, ||x||_2 \le t, t \ge 0\}$ (Lorenz or second-order cone)
- ▶ Logarithmic barrier function for the second-order cone

$$f(x,t) = \begin{cases} -\ln(t^2 - ||x||_2^2) & \text{if } ||x|| < t \\ +\infty & \text{otherwise} \end{cases}$$

Theorem

The barrier function f(x,t) is self-concordant on \mathbb{L} .

Exercise: Prove in case n = 2.

▶ Variable now is a symmetric matrix $X \in K = \mathbf{S}^n$

SDP and its dual

minimize
$$C \bullet X$$
 maximize $b^\top y$ subject to $A_i \bullet X = b_i, i = 1, \dots, m$ subject to $\sum_{i=1}^m y_i A_i + S = C$ $X \succeq 0$

 A_i , $C \in \mathbf{S}^n$ and $b \in \mathbf{R}^m$ given, and $X, S \in \mathbf{S}^n$ and $y \in \mathbf{R}^m$ unknown.

- ▶ Variable now is a symmetric matrix $X \in K = \mathbf{S}^n$
- ▶ Define $X \bullet Y = \operatorname{tr}(X^\top Y)$

SDP and its dual

minimize
$$C \bullet X$$
 maximize $b^{\top}y$ subject to $A_i \bullet X = b_i, i = 1, \dots, m$ subject to $\sum_{i=1}^{m} y_i A_i + S = C$ $S \succeq 0$

 A_i , $C \in \mathbf{S}^n$ and $b \in \mathbf{R}^m$ given, and $X, S \in \mathbf{S}^n$ and $y \in \mathbf{R}^m$ unknown.

- ▶ Variable now is a symmetric matrix $X \in K = \mathbf{S}^n$
- ▶ Define $X \bullet Y = \operatorname{tr}(X^\top Y)$

SDP and its dual

minimize
$$C \bullet X$$
 maximize $b^{\top}y$ subject to $A_i \bullet X = b_i, i = 1, \dots, m$ subject to $\sum_{i=1}^{m} y_i A_i + S = C$ $S \succeq 0$

 A_i , $C \in \mathbf{S}^n$ and $b \in \mathbf{R}^m$ given, and $X, S \in \mathbf{S}^n$ and $y \in \mathbf{R}^m$ unknown.

- ▶ Variable now is a symmetric matrix $X \in K = \mathbf{S}^n$
- ▶ Define $X \bullet Y = \operatorname{tr}(X^\top Y)$

SDP and its dual

minimize
$$C \bullet X$$
 maximize $b^{\top}y$ subject to $A_i \bullet X = b_i, i = 1, \dots, m$ subject to $\sum_{i=1}^{m} y_i A_i + S = C$ $S \succeq 0$

 $A_i, C \in \mathbf{S}^n$ and $b \in \mathbf{R}^m$ given, and $X, S \in \mathbf{S}^n$ and $y \in \mathbf{R}^m$ unknown.

Theorem (Weak duality for SDP)

If X is primal feasible and (y, S) is dual feasible, then

$$C \bullet X - b^{\top} y = X \bullet S \ge 0$$

▶ Logarithmic barrier function for the semi-definite cone

$$f(X) = \begin{cases} -\ln(\det(X)) & \text{if } X \succ 0 \\ +\infty & \text{otherwise} \end{cases}$$

▶ Logarithmic barrier function for the semi-definite cone

$$f(X) = \begin{cases} -\ln(\det(X)) & \text{if } X \succ 0 \\ +\infty & \text{otherwise} \end{cases}$$

Facts (for small *t*):

▶ Logarithmic barrier function for the semi-definite cone

$$f(X) = egin{cases} -\ln(\det(X)) & ext{if } X \succ 0 \\ +\infty & ext{otherwise} \end{cases}$$

- Facts (for small *t*):
 - $\blacktriangleright \det(I+tU) = 1 + t\operatorname{tr}(U) + \mathcal{O}(t^2)$

Logarithmic barrier function for the semi-definite cone

$$f(X) = \begin{cases} -\ln(\det(X)) & \text{if } X \succ 0 \\ +\infty & \text{otherwise} \end{cases}$$

- Facts (for small *t*):

Logarithmic barrier function for the semi-definite cone

$$f(X) = \begin{cases} -\ln(\det(X)) & \text{if } X \succ 0 \\ +\infty & \text{otherwise} \end{cases}$$

- Facts (for small t):

 - $ightharpoonup \ln(1+t\operatorname{tr}(U)) \approx t\operatorname{tr}(U)$
- ▶ Let $X \succ 0$ and $H \in \mathbf{S}^n$ be given. Then

$$\begin{split} f(X+tH) &= -\ln(\det(X+tH)) = -\ln(\det(X(I+tX^{-1}H))) \\ &= -\ln(\det(X)) - \ln(\det(I+tX^{-1}H)) \\ &= -\ln(\det(X)) - \ln(1+t\operatorname{tr}(X^{-1}H) + \mathcal{O}(t^2)) \\ &= f(X) - tX^{-1} \bullet H + \mathcal{O}(t^2) \end{split}$$

ightharpoonup First derivative of f(X)

$$f'(X) = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = -X^{-1}$$

ightharpoonup First derivative of f(X)

$$f'(X) = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = -X^{-1}$$

ightharpoonup First derivative of f(X)

$$f'(X) = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = -X^{-1}$$

So
$$Df(X)[H] = -X^{-1} \bullet H$$
.

ightharpoonup First derivative of f(X)

$$f'(X) = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = -X^{-1}$$

So
$$Df(X)[H] = -X^{-1} \bullet H$$
.

ightharpoonup Second derivative of f(X)

$$f'(X + tH) = -[X(I + tX^{-1}H)]^{-1} = -[I - tX^{-1}H + \mathcal{O}(t^2)]X^{-1}$$
$$= f'(X) + tX^{-1}HX^{-1} + \mathcal{O}(t^2)$$

ightharpoonup First derivative of f(X)

$$f'(X) = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = -X^{-1}$$

So
$$Df(X)[H] = -X^{-1} \bullet H$$
.

ightharpoonup Second derivative of f(X)

$$f'(X + tH) = -[X(I + tX^{-1}H)]^{-1} = -[I - tX^{-1}H + \mathcal{O}(t^2)]X^{-1}$$
$$= f'(X) + tX^{-1}HX^{-1} + \mathcal{O}(t^2)$$

ightharpoonup First derivative of f(X)

$$f'(X) = \lim_{t \to 0} \frac{f(X + tH) - f(X)}{t} = -X^{-1}$$

So
$$Df(X)[H] = -X^{-1} \bullet H$$
.

ightharpoonup Second derivative of f(X)

$$f'(X + tH) = -[X(I + tX^{-1}H)]^{-1} = -[I - tX^{-1}H + \mathcal{O}(t^2)]X^{-1}$$
$$= f'(X) + tX^{-1}HX^{-1} + \mathcal{O}(t^2)$$

so
$$f''(X)[H] = X^{-1}HX^{-1}$$
 and $D^2f(X)[H, G] = X^{-1}HX^{-1} \bullet G$.

$$f'''(X)[H,G] = -X^{-1}HX^{-1}GX^{-1} - X^{-1}GX^{-1}HX^{-1}$$

Characterization of self-concordance for SDP

Theorem

The function $f(X) = -\ln \det X$ is a convex barrier for \mathbf{S}_{+}^{n} .

Characterization of self-concordance for SDP

Theorem

The function $f(X) = -\ln \det X$ is a convex barrier for \mathbf{S}_{+}^{n} .

Proof sketch.

Let $\varphi(t) = F(X + tH)$. Then, prove that $\varphi''(t) \ge 0$ for t > 0 such that X + tH > 0. Therefore, when X > 0 approaches a singular matrix, its determinant approaches zero, and the function $f(X) \to +\infty$.

Characterization of self-concordance for SDP

Theorem

The function $f(X) = -\ln \det X$ is a convex barrier for \mathbf{S}_{+}^{n} .

Proof sketch.

Let $\varphi(t) = F(X + tH)$. Then, prove that $\varphi''(t) \ge 0$ for t > 0 such that X + tH > 0. Therefore, when X > 0 approaches a singular matrix, its determinant approaches zero, and the function $f(X) \to +\infty$.

Theorem ([Nestervov and Nemirovskii, 1994])

The barrier function $f(X) = -\ln \det X$ is self-concordant on \mathbf{S}_{+}^{n} .

Solving SDPs with IPMs

► Replace the primal SDP

minimize
$$C \bullet X$$

subject to $AX = b$, $X \succeq 0$,

with the primal barrier SDP

minimize
$$C \bullet X + \mu f(X)$$
 subject to $AX = b$,

(with a barrier parameter $\mu \geq 0$).

Solving SDPs with IPMs

► Replace the primal SDP

minimize
$$C \bullet X$$

subject to $AX = b$, $X \succeq 0$,

with the primal barrier SDP

minimize
$$C \bullet X + \mu f(X)$$
 subject to $AX = b$,

(with a barrier parameter $\mu \geq 0$).

Formulate the Lagrangian

$$L(X, y, S) = C \bullet X + \mu f(X) - y^{T} (AX - b),$$

with $y \in \mathcal{R}^m$, and write the first order conditions (FOC) for a stationary point of L:

$$C + \mu f'(X) - \mathcal{A}^* y = 0$$

Solving SDPs with IPMs (cont'd)

▶ Use $f(X) = -\ln \det X$ and $f'(X) = -X^{-1}$ to obtain

$$C - \mu X^{-1} - \mathcal{A}^* y = 0$$

Solving SDPs with IPMs (cont'd)

▶ Use $f(X) = -\ln \det X$ and $f'(X) = -X^{-1}$ to obtain

$$C - \mu X^{-1} - \mathcal{A}^* y = 0$$

▶ Denote $S = \mu X^{-1}$, i.e., $XS = \mu I$. Then, the FOC can be written as

$$A^{*}y + S = C$$
$$XS = \mu I$$

with $X, S \in \mathbf{S}_{++}^n$.

Newton direction

Differentiating this system is hard! The Newton direction solves:

$$\begin{bmatrix} \mathcal{A} & 0 & 0 \\ 0 & \mathcal{A}^* & \mathcal{I} \\ \mu \left(X^{-1} \odot X^{-1} \right) & 0 & \mathcal{I} \end{bmatrix} \cdot \begin{bmatrix} \Delta X \\ \Delta y \\ \Delta S \end{bmatrix} = \begin{bmatrix} \xi_b \\ \xi_C \\ \xi_\mu \end{bmatrix}.$$

We introduce a useful notation $P \odot Q$ for $n \times n$ matrices P and Q is the Kronecker product. This defines a linear operator from \mathbf{S}^n to \mathbf{S}^n given by

$$(P \odot Q)U = \frac{1}{2} \left(PUQ^T + QUP^T \right).$$

▶ IPM for SOCP and SDP with self-concordant barrier:

- ▶ IPM for SOCP and SDP with self-concordant barrier:
 - polynomial complexity (predictable behaviour)

- ▶ IPM for SOCP and SDP with self-concordant barrier:
 - polynomial complexity (predictable behaviour)
- Unified algorithm with fast convergence

- ▶ IPM for SOCP and SDP with self-concordant barrier:
 - polynomial complexity (predictable behaviour)
- Unified algorithm with fast convergence
 - ▶ from LP via QP to NLP, SOCP and SDP

- ▶ IPM for SOCP and SDP with self-concordant barrier:
 - polynomial complexity (predictable behaviour)
- Unified algorithm with fast convergence
 - ▶ from LP via QP to NLP, SOCP and SDP
- efficient for LP, QP, SOCP

- ▶ IPM for SOCP and SDP with self-concordant barrier:
 - polynomial complexity (predictable behaviour)
- Unified algorithm with fast convergence
 - from LP via QP to NLP, SOCP and SDP
- efficient for LP, QP, SOCP
- ▶ problematic for SDP because solving a problem of size n involves linear algebra operations in dimension n^2

- ▶ IPM for SOCP and SDP with self-concordant barrier:
 - polynomial complexity (predictable behaviour)
- Unified algorithm with fast convergence
 - from LP via QP to NLP, SOCP and SDP
- efficient for LP, QP, SOCP
- ▶ problematic for SDP because solving a problem of size n involves linear algebra operations in dimension n^2
 - \triangleright and this requires n^6 flops!