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Convex optimization

Convex optimization problem

minimize f (x)
subject to g(x) ≤ 0

s ∈ Rp

Ax = b

y ∈ Rm

where f : Rn → R, g : Rn → Rp are smooth and convex, A ∈ Rm×n is full rank.

KKT conditions:

∇f (x) + AT y + (∇g(x))T s = 0

Ax = b

g(x) ≤ 0

s ≥ 0

sjgj(x) = 0, j = 1, . . . , p
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Outline

IPM for linear and quadratic programs

IPM for Convex nonlinear programming

IPM for Conic Optimization
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IPM for linear and quadratic programs

Linear/Quadratic Program

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b,

x ≥ 0,

where Q ∈ Sn
+, and A ∈ Rm×n is full-rank.

▶ P := {x ∈ Rn | Ax = b, x ≥ 0} is a
polyhedron.

▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex
IPM: go through the middle!

Advantages of vertex solution vs interior solution?
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Building blocks of IPM

Ingredients for Interior Point Method

▶ Duality theory: Lagrangian function; KKT (first order optimality) condition.

▶ Barrier function: logarithmic barrier.

▶ Newton’s method (and a good linear solver)

The reward: fantastic convergence properties!

▶ Theoretical: O(
√
n log(1/ε)) iterations

▶ Practical: O(log n log(1/ε)) iterations

(but the per-iteration cost may be high due to the Newton solve: often O(n3))
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IPM: algorithmic template

IPM procedure

▶ replace inequalities with log barriers;

▶ form the Lagrangian;

▶ write down the KKT conditions of the perturbed problem;

▶ find one (or more) directions using Newton’s method on the KKT system;

▶ (decide how to combine the directions and) compute a stepsize.
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Duality and KKT conditions

Primal-dual QPs

Primal problem

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b

x ≥ 0

Dual problem

maximize b⊤y − 1
2x

⊤Qx
subject to A⊤y + s − Qx = c

s ≥ 0

KKT conditions

Ax = b

A⊤y + s − Qx = c

XSe = 0 ▷complementarity: x · s = 0

(x , s) ≥ 0

where X = diag(x1, . . . , xn),S = diag(s1, . . . , sn) ∈ Rn×n, and e = (1, . . . , 1) ∈ Rn.
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Logarithmic barrier

− ln xj
replaces the inequality

xj ≥ 0
x

y

y = − ln x

minimize −
n∑

j=1

ln xj ⇐⇒ maximize
∏

1≤j≤n

xj

=⇒ keeps every entry of x away from 0.
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Barrier primal QP

Step 1: replace inequality constraints by barrier

Replace the primal QP

minimize c⊤x + 1
2
x⊤Qx

subject to Ax = b
x ≥ 0

with the barrier primal QP

minimize c⊤x + 1
2
x⊤Qx − µ

n∑
j=1

ln xj

subject to Ax = b
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Logarithmic barrier and stationarity

Step 2: remove equality constraints using Lagrangian

L(x , y , µ) = c⊤x +
1

2
x⊤Qx − y⊤(Ax − b)− µ

n∑
j=1

ln xj

A stationary point (x , y , µ) of the Lagrangian satisfies

∇xL(x , y , µ) = 0 = c + Qx − A⊤y − µX−1e

with X−1 = diag(x−1
1 , . . . , x−1

n ) ∈ Rn×n, (xj > 0).
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KKT conditions for barrier problem

▶ Define s := µX−1e, which implies XSe = µe, to get

KKTµ

Ax = b

A⊤y + s − Qx = c

XSe = µe

(x , s) > 0

KKT

Ax = b

A⊤y + s − Qx = c

XSe = 0

(x , s) ≥ 0

KKTµ → KKT as µ → 0.
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Central path (LP case)

▶ Parameter µ controls the distance to optimality

c⊤x − b⊤y = c⊤x − x⊤A⊤y = x⊤s = nµ

▶ Analytic center (µ-center): unique point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the KKTµ conditions.

▶ The curve
Cµ = {(x(µ), y(µ), s(µ)) | µ > 0}

is called the primal-dual central path.

12 / 38



Central path (LP case)

▶ Parameter µ controls the distance to optimality

c⊤x − b⊤y = c⊤x − x⊤A⊤y = x⊤s = nµ

▶ Analytic center (µ-center): unique point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the KKTµ conditions.

▶ The curve
Cµ = {(x(µ), y(µ), s(µ)) | µ > 0}

is called the primal-dual central path.

12 / 38



Central path (LP case)

▶ Parameter µ controls the distance to optimality

c⊤x − b⊤y = c⊤x − x⊤A⊤y = x⊤s = nµ

▶ Analytic center (µ-center): unique point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the KKTµ conditions.

▶ The curve
Cµ = {(x(µ), y(µ), s(µ)) | µ > 0}

is called the primal-dual central path.

12 / 38



13 / 38



Recall Newton’s method for nonlinear equation

▶ For F : Rn → Rn smooth, solve F (x) = 0.

▶ Newton’s method: define Jacobian JF (x) so JF (x)ij =
∂Fi
∂xj

, and iterate

xk+1 = xk − αkJF (x
k)−1F (xk)

0.75 1.00 1.25 1.50 1.75

−1

1

2

xk+2 xkxk+1
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Apply Newton Method to KKTµ

The first order optimality conditions for the barrier problem form a large system of
nonlinear equations:

F (x , y , s) = 0,

where F : R2n+m 7→ R2n+m is defined as

F (x , y , s) =

 Ax −b
A⊤y + s − Qx −c

XSe −µe



▶ The first two blocks are linear.
▶ The last block, corresponding to the complementarity condition, is nonlinear.
▶ Jacobian is

JF (x , y , s) =

 A 0 0
−Q A⊤ I
S 0 X


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Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
FOC. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n · (x0)⊤s0

▶ For k = 1, 2, . . .

▶ µk = σµk−1, where σ ∈ (0, 1)
▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0

−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µke − X kSke


▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.
▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).
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Path-following algorithm

▶ Short-step path-following method: O(
√
n) complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

Given ϵ > 0, suppose that a feasible starting point
(
x0, y0, s0

)
∈ N2(0.1) satisfies(

x0
)⊤

s0 = nµ0, where µ0 ≤ 1/ϵκ,

for some positive constant κ. Then for some K = O(
√
n ln(1/ϵ)) such that

µk ≤ ϵ, ∀k ≥ K

▶ θ-neighborhood of the central path:
N2(θ) := {(x , y , s) ∈ F0 | ∥XSe − µe∥ ≤ θµ}, with µ = 1

nx
⊤s.

▶ Slow progress towards optimality
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N2(θ) := {(x , y , s) ∈ F0 | ∥XSe − µe∥ ≤ θµ}, with µ = 1

nx
⊤s.

▶ Slow progress towards optimality

17 / 38

https://doi.org/10.1016/j.ejor.2011.09.017


18 / 38



Augmented system

Newton direction A 0 0
−Q A⊤ I
S 0 X

∆x
∆y
∆s

 =

 b − Ax
c − A⊤y − s+Qx

µke − XSe

 =:

ξpξd
ξµ


use last (complementarity) block to solve for ∆s as a function of ∆x .

Augmented system

Define Θ = XS−1 (ill-conditioned!). Then ∆x and ∆y solve the Newton system
⇐⇒ [

−Q −Θ−1 A⊤

A 0

] [
∆x
∆y

]
=

[
ξd − X−1ξµ

ξp

]
▶ Newton system is nonsymmetric.
▶ Augmented system is symmetric but indefinite.
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Normal equations

Augmented system[
−Θ−1 A⊤

A 0

] [
∆x
∆y

]
=

[
ξd − X−1ξµ

ξp

]
=:

[
g
ξp

]
Normal equations

Eliminate ∆x to arrive at the Normal equations

(AΘA⊤)∆y = AΘg + ξp

▶ AΘA⊤ is symmetric and positive semidefinite. (Finally!)

▶ Normal equations in QP (A(Q +Θ)A⊤)∆y = g are generally nearly dense,
even when A and Q are sparse.

▶ LP: Normal equations are often used.

▶ QP: usually use the indefinite augmented system.
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Outline

IPM for linear and quadratic programs

IPM for Convex nonlinear programming

IPM for Conic Optimization
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IPM for NLP

▶ Convex NLP
minimize f (x) subject to g(x) ≤ 0

minimize f (x) subject to g(x) + z = 0, z ≥ 0

▶ Replace inequality z ≥ 0 with logarithmic barrier

minimizef (x)− µ
m∑
i=1

ln(zi ) subject to g(x) + z = 0

▶ Write out Lagrangian

L(x , y , z , µ) = f (x) + y⊤(g(x) + z)− µ
m∑
i=1

ln(zi )
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IPM for NLP

▶ Write conditions for stationary point

∇xL(x , z , y) = ∇f (x) + Jg (x)
⊤y = 0

∇yL(x , z , y) = g(x) + z = 0

∇zL(x , z , y) = y − µZ−1e = 0

▶ Write KKT system

∇f (x) + Jg (x)
⊤y = 0,

g(x) + z = 0

YZe = µe
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Newton for KKT of NLP

▶ Apply Newton method for KKT system

▶ Jacobian matrix of KKT system

JF (x , z , y) =

Q(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y


where Q(x , y) = ∇2f (x) +

∑m
i=1 yi∇2gi (x) is the Hessian of L

▶ Newton step for KKT systemQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µe − YZe


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From QP to NLP

▶ Newton direction for NLPQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µe − YZe



▶ Augmented system for NLP[
Q(x , y) Jg (x)

⊤

Jg (x) −ZY−1

] [
∆x
∆y

]
=

[
−∇f (x)− Jg (x)

⊤y
−g(x)− µY−1e

]
▶ Need to compute Q(x , y) and Jg (x) at each iteration

▶ Caveat: use trust region method to choose stepsize.
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Outline

IPM for linear and quadratic programs

IPM for Convex nonlinear programming

IPM for Conic Optimization
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Self-concordant function

Definition

Function f is self-concordant if for some constant Mf ≥ 0, the inequality

∇3f (x)[u, u, u] ≤ Mf ∥u∥
3/2
∇2f (x)

holds for any x ∈ dom f and u ∈ Rn.

▶ A self-concordant function is always well approximated by a quadratic model

because the error of such an approximation can be bounded by the ∥u∥3/2∇2f (x)

Theorem ([Boyd and Vandenberghe, 2004, Section 11.5])

Newton’s method with line search finds an ε approximate solution in less than
T := constant× (f (x0)− f ⋆) + log2 log2

1
ε iterations.
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Log-barrier is self-concordant

Theorem

The barrier function − ln(x) is self-concordant in R+.

Proof.

Consider f (x) = − ln(x), then

f ′(x) = −1

x
, f ′′(x) =

1

x2
, f ′′′(x) = − 2

x3

Compute and check that self-concordance holds with Mf = 2.

▶ − ln(1/xα), with α ∈ (0,∞) is not self-concordant in R+.

▶ exp (1/x) is not self-concordant in R+.
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Conic optimization

▶ Consider the optimization problem

minimize c⊤x
subject to Ax = b

x ∈ K

where K is a convex closed cone.

▶ The associated dual is

maximize b⊤y
subject to A⊤y + s = c

x ∈ K ∗ (Dual cone)

▶ Weak duality
c⊤x − b⊤y = x⊤(c − A⊤y) = x⊤s ≥ 0

▶ Conic optimization can be solved in polynomial time with IPMs
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Second-order conic optimization

▶ K = L := {(x , t) | x ∈ Rn−1, t ∈ R, ∥x∥2 ≤ t, t ≥ 0} (Lorenz or second-order
cone)

▶ Logarithmic barrier function for the second-order cone

f (x , t) =

{
− ln(t2 − ∥x∥22) if ∥x∥ < t

+∞ otherwise

Theorem

The barrier function f (x , t) is self-concordant on L.

Exercise: Prove in case n = 2.
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Semidefinite programming

▶ Variable now is a symmetric matrix X ∈ K = Sn

▶ Define X • Y = tr(X⊤Y )

SDP and its dual

minimize C • X
subject to Ai • X = bi , i = 1, . . . ,m

X ⪰ 0

maximize b⊤y
subject to

∑m
i=1 yiAi + S = C

S ⪰ 0

Ai , C ∈ Sn and b ∈ Rm given, and X , S ∈ Sn and y ∈ Rm unknown.

Theorem (Weak duality for SDP)

If X is primal feasible and (y ,S) is dual feasible, then

C • X − b⊤y = X • S ≥ 0
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Logarithmic barrier for SDP

▶ Logarithmic barrier function for the semi-definite cone

f (X ) =

{
− ln(det(X )) if X ≻ 0

+∞ otherwise

▶ Facts (for small t):

▶ det(I + tU) = 1 + t tr(U) +O(t2)
▶ ln(1 + t tr(U)) ≈ t tr(U)

▶ Let X ≻ 0 and H ∈ Sn be given. Then

f (X + tH) = − ln(det(X + tH)) = − ln(det(X (I + tX−1H)))

= − ln(det(X ))− ln(det(I + tX−1H))

= − ln(det(X ))− ln(1 + t tr(X−1H) +O(t2))

= f (X )− tX−1 • H +O(t2)
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▶ Logarithmic barrier function for the semi-definite cone

f (X ) =

{
− ln(det(X )) if X ≻ 0

+∞ otherwise

▶ Facts (for small t):
▶ det(I + tU) = 1 + t tr(U) +O(t2)
▶ ln(1 + t tr(U)) ≈ t tr(U)
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Derivatives of Logarithmic barrier for SDP

▶ First derivative of f (X )

f ′(X ) = lim
t→0

f (X + tH)− f (X )

t
= −X−1

So Df (X )[H] = −X−1 • H.

▶ Second derivative of f (X )

f ′(X + tH) = −[X (I + tX−1H)]−1 = −[I − tX−1H +O(t2)]X−1

= f ′(X ) + tX−1HX−1 +O(t2)

so f ′′(X )[H] = X−1HX−1 and D2f (X )[H,G ] = X−1HX−1 • G .

▶ f ′′′(X )[H,G ] = −X−1HX−1GX−1 − X−1GX−1HX−1
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Characterization of self-concordance for SDP

Theorem

The function f (X ) = − ln detX is a convex barrier for Sn
+.

Proof sketch.

Let φ(t) = F (X + tH). Then, prove that φ′′(t) ≥ 0 for t > 0 such that
X + tH ≻ 0. Therefore, when X ≻ 0 approaches a singular matrix, its determinant
approaches zero, and the function f (X ) → +∞.

Theorem ([Nestervov and Nemirovskii, 1994])

The barrier function f (X ) = − ln detX is self-concordant on Sn
+.
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Solving SDPs with IPMs

▶ Replace the primal SDP

minimize C • X
subject to AX = b,

X ⪰ 0,

with the primal barrier SDP

minimize C • X + µf (X )
subject to AX = b,

(with a barrier parameter µ ≥ 0 ).

▶ Formulate the Lagrangian

L(X , y ,S) = C • X + µf (X )− yT (AX − b),

with y ∈ Rm, and write the first order conditions (FOC) for a stationary point
of L:

C + µf ′(X )−A∗y = 0
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Solving SDPs with IPMs (cont’d)

▶ Use f (X ) = − ln detX and f ′(X ) = −X−1 to obtain

C − µX−1 −A∗y = 0

▶ Denote S = µX−1, i.e., XS = µI . Then, the FOC can be written as

AX = b

A∗y + S = C

XS = µI

with X , S ∈ Sn
++.
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Newton direction

Differentiating this system is hard! The Newton direction solves: A 0 0
0 A∗ I

µ
(
X−1 ⊙ X−1

)
0 I

 ·

 ∆X
∆y
∆S

 =

 ξb
ξC
ξµ

 .

We introduce a useful notation P ⊙ Q for n × n matrices P and Q is the Kronecker
product. This defines a linear operator from Sn to Sn given by

(P ⊙ Q)U =
1

2

(
PUQT + QUPT

)
.
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Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)
▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP
▶ problematic for SDP because solving a problem of size n involves linear algebra

operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]
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