
CME 307 / MS&E 311: Optimization

LP modeling and solution techniques

Professor Udell

Management Science and Engineering
Stanford

February 28, 2024

1 / 52

Course survey

You’re interested in

▶ duality

▶ modeling real-world problems

▶ hyperparameter and blackbox optimization

▶ fairness and ethics in optimization

▶ . . .

2 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

3 / 52

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b : dual y

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or −∞

Q: if p⋆ = −∞, does a solution exist? is it unique?
what about p⋆ =∞?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 52

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b : dual y

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or −∞

Q: if p⋆ = −∞, does a solution exist? is it unique?
what about p⋆ =∞?

henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 52

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b : dual y

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or −∞

Q: if p⋆ = −∞, does a solution exist? is it unique?
what about p⋆ =∞?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?

A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 52

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b : dual y

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or −∞

Q: if p⋆ = −∞, does a solution exist? is it unique?
what about p⋆ =∞?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A:

span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A:

nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?

can use QR factorization or SVD
▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations

ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b?

factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if

m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank

▶ if m < n and A is full rank
▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension

n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension

n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!

5 / 52

Linear algebra review

matrix A ∈ Rm×n

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ how to compute basis for span and nullspace of A?
can use QR factorization or SVD

▶ how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)

▶ solution to Ax = b is unique if m = n and A is full rank
▶ if m < n and A is full rank

▶ solution set is a hyperplane of dimension n −m
▶ null space of A, nullspace(A), is a hyperplane of dimension n −m
▶ solution set is {x : Ax = b} = {x0 + Vz} where columns of V ∈ Rn×n−m span

nullspace(A)

if these are confusing: review linear algebra and prove them all!
5 / 52

LP example: diet problem

▶ xi servings of food i

▶ ci cost per serving

▶ aij amount of nutrient j in food i

▶ bj required amount of nutrient j

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes?

x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? l ≤ y ≤ u

6 / 52

LP example: diet problem

▶ xi servings of food i

▶ ci cost per serving

▶ aij amount of nutrient j in food i

▶ bj required amount of nutrient j

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes? x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? l ≤ y ≤ u

6 / 52

LP example: diet problem

▶ xi servings of food i

▶ ci cost per serving

▶ aij amount of nutrient j in food i

▶ bj required amount of nutrient j

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes?

x = By

▶ ensure diversity in diet?

y ≤ u

▶ ranges of nutrients? l ≤ y ≤ u

6 / 52

LP example: diet problem

▶ xi servings of food i

▶ ci cost per serving

▶ aij amount of nutrient j in food i

▶ bj required amount of nutrient j

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes?

x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? l ≤ y ≤ u

6 / 52

LP example: diet problem

▶ xi servings of food i

▶ ci cost per serving

▶ aij amount of nutrient j in food i

▶ bj required amount of nutrient j

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes?

x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients?

l ≤ y ≤ u

6 / 52

LP example: diet problem

▶ xi servings of food i

▶ ci cost per serving

▶ aij amount of nutrient j in food i

▶ bj required amount of nutrient j

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes?

x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? l ≤ y ≤ u

6 / 52

Geometry of LP

minimize cT x
subject to Ax = b

x ≥ 0

the feasible set is the set of points x that satisfy all constraints

▶ interpretation: add up columns of A so they match b

▶ Ax = b defines a hyperplane

▶ xi ≥ 0 is a halfspace

▶ x ≥ 0 is the positive orthant

7 / 52

Geometry of LP: convexity

minimize cT x
subject to Ax = b

x ≥ 0

▶ define the feasible set {x : Ax = b, x ≥ 0}

▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ fact: the feasible set is convex
▶ define extreme point: x is extreme in C if it cannot be written as a linear

combination of other points in C :

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

▶ fact: if a solution exists, then some extreme point of the feasible set is optimal

8 / 52

Geometry of LP: convexity

minimize cT x
subject to Ax = b

x ≥ 0

▶ define the feasible set {x : Ax = b, x ≥ 0}
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ fact: the feasible set is convex
▶ define extreme point: x is extreme in C if it cannot be written as a linear

combination of other points in C :

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

▶ fact: if a solution exists, then some extreme point of the feasible set is optimal

8 / 52

Geometry of LP: convexity

minimize cT x
subject to Ax = b

x ≥ 0

▶ define the feasible set {x : Ax = b, x ≥ 0}
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ fact: the feasible set is convex

▶ define extreme point: x is extreme in C if it cannot be written as a linear
combination of other points in C :

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

▶ fact: if a solution exists, then some extreme point of the feasible set is optimal

8 / 52

Geometry of LP: convexity

minimize cT x
subject to Ax = b

x ≥ 0

▶ define the feasible set {x : Ax = b, x ≥ 0}
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ fact: the feasible set is convex
▶ define extreme point: x is extreme in C if it cannot be written as a linear

combination of other points in C :

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

▶ fact: if a solution exists, then some extreme point of the feasible set is optimal

8 / 52

Geometry of LP: convexity

minimize cT x
subject to Ax = b

x ≥ 0

▶ define the feasible set {x : Ax = b, x ≥ 0}
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ fact: the feasible set is convex
▶ define extreme point: x is extreme in C if it cannot be written as a linear

combination of other points in C :

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

▶ fact: if a solution exists, then some extreme point of the feasible set is optimal
8 / 52

Geometry of LP: polytopes

minimize cT x
subject to Ax = b

x ≥ 0

▶ define polytope P: convex hull of its extreme points v1, . . . , vk ∈ Rn:

P = {x ∈ Rn | x =
k∑

i=1

θivi , θi ≥ 0,
k∑

i=1

θi = 1}

▶ if feasible set is bounded, it is a polytope

▶ prove: if a solution exists, then some extreme point of the feasible set is optimal

9 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

10 / 52

Let’s do some modeling!

▶ OptiMUS: https://optimus-solver.vercel.app/
▶ power systems:

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing: https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

practical solvers for MILP:

▶ Gurobi and COPT (cardinal optimizer) are the state-of-the-art commercial
solvers

▶ GLPK is a free solver that is not as fast
▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers like Gurobi

and is specialized for MILP applications
▶ CVX* (including CVXPY in python) are modeling languages that call solvers

like Gurobi with good support for convex problems
▶ OptiMUS is a LLM-based modeling tool for MILP

11 / 52

https://optimus-solver.vercel.app/
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

▶ OptiMUS: https://optimus-solver.vercel.app/
▶ power systems:

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing: https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

practical solvers for MILP:

▶ Gurobi and COPT (cardinal optimizer) are the state-of-the-art commercial
solvers

▶ GLPK is a free solver that is not as fast
▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers like Gurobi

and is specialized for MILP applications
▶ CVX* (including CVXPY in python) are modeling languages that call solvers

like Gurobi with good support for convex problems
▶ OptiMUS is a LLM-based modeling tool for MILP

11 / 52

https://optimus-solver.vercel.app/
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Modeling challenges

model the following as standard form LPs:

1. inequality constraints. Ax ≤ b

2. free variable. x ∈ R

3. absolute value. constraint |x | ≤ 10

4. piecewise linear. objective max(x1, x2)

5. assignment. e.g., every class is assigned exactly one classroom

6. logic. e.g., class enrollment ≤ capacity of assigned room

7. flow. e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see https://colab.
research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
for a detailed treatment of a flow problem.)

12 / 52

https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Modeling challenges

model the following as standard form LPs:

1. inequality constraints. Ax ≤ b

2. free variable. x ∈ R

3. absolute value. constraint |x | ≤ 10

4. piecewise linear. objective max(x1, x2)

5. assignment. e.g., every class is assigned exactly one classroom

6. logic. e.g., class enrollment ≤ capacity of assigned room

7. flow. e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see https://colab.
research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
for a detailed treatment of a flow problem.)

12 / 52

https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize cT x
subject to Ax ≤ b
x ≥ 0

introduce slack variable s ∈ Rm: Ax + s = b, s ≥ 0 ⇐⇒ Ax ≤ b

minimize cT x + 0T s
subject to Ax + s = b

x , s ≥ 0

13 / 52

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize cT x
subject to Ax ≤ b
x ≥ 0

introduce slack variable s ∈ Rm: Ax + s = b, s ≥ 0 ⇐⇒ Ax ≤ b

minimize cT x + 0T s
subject to Ax + s = b

x , s ≥ 0

13 / 52

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize cT x
subject to Ax = b

introduce positive variables x+, x− so x = x+ − x−:

minimize cT x+ − cT x−
subject to Ax+ − Ax− = b

x+, x− ≥ 0

14 / 52

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize cT x
subject to Ax = b

introduce positive variables x+, x− so x = x+ − x−:

minimize cT x+ − cT x−
subject to Ax+ − Ax− = b

x+, x− ≥ 0

14 / 52

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize ∥x∥1 =
∑

i = 1n|xi |
subject to Ax = b
x ≥ 0

introduce epigraph variable t ∈ Rn so |xi | ≤ ti :

minimize 1T t =
∑n

i=1 ti ≥ ∥x∥1
subject to Ax = b

−t ≤ x ≤ t
x , t ≥ 0

Q: Why does this work? For what kinds of functions can we use this trick?

15 / 52

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize ∥x∥1 =
∑

i = 1n|xi |
subject to Ax = b
x ≥ 0

introduce epigraph variable t ∈ Rn so |xi | ≤ ti :

minimize 1T t =
∑n

i=1 ti ≥ ∥x∥1
subject to Ax = b

−t ≤ x ≤ t
x , t ≥ 0

Q: Why does this work? For what kinds of functions can we use this trick?

15 / 52

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize ∥x∥1 =
∑

i = 1n|xi |
subject to Ax = b
x ≥ 0

introduce epigraph variable t ∈ Rn so |xi | ≤ ti :

minimize 1T t =
∑n

i=1 ti ≥ ∥x∥1
subject to Ax = b

−t ≤ x ≤ t
x , t ≥ 0

Q: Why does this work? For what kinds of functions can we use this trick?

15 / 52

Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

now solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

16 / 52

Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

now solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

16 / 52

Use binary variables to handle logic

model class enrollment ni ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)∑n
i=1 piXij ≤ cj , ∀j (capacity constraint)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

what if we want p to be a variable, too?

17 / 52

Use binary variables to handle logic

model class enrollment ni ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)∑n
i=1 piXij ≤ cj , ∀j (capacity constraint)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

what if we want p to be a variable, too?

17 / 52

Use binary variables to handle logic

model class enrollment ni ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)∑n
i=1 piXij ≤ cj , ∀j (capacity constraint)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

what if we want p to be a variable, too?
17 / 52

. . . or use a big-M relaxation!

model class enrollment ni ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

suppose M is a very large number.

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)

pi ≤ cj + (1− Xij)M, ∀i , j (capacity constraint)
Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

18 / 52

. . . or use a big-M relaxation!

model class enrollment ni ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

suppose M is a very large number. solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)

pi ≤ cj + (1− Xij)M, ∀i , j (capacity constraint)
Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .
18 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

19 / 52

LP inequality form

another common form for LP is inequality form

minimize cT x
subject to Ax ≤ b

how to transform to standard form?

▶ inequality constraints Ax ≤ b?

slack variables s ≥ 0

▶ free variable x ∈ Rn? split into positive and negative parts

we will see later that these forms are also related by duality

20 / 52

LP inequality form

another common form for LP is inequality form

minimize cT x
subject to Ax ≤ b

how to transform to standard form?

▶ inequality constraints Ax ≤ b? slack variables s ≥ 0

▶ free variable x ∈ Rn?

split into positive and negative parts

we will see later that these forms are also related by duality

20 / 52

LP inequality form

another common form for LP is inequality form

minimize cT x
subject to Ax ≤ b

how to transform to standard form?

▶ inequality constraints Ax ≤ b? slack variables s ≥ 0

▶ free variable x ∈ Rn? split into positive and negative parts

we will see later that these forms are also related by duality

20 / 52

LP example: production planning

▶ xi units of product i

▶ ci cost per unit

▶ aij amount of resource j used by product i

▶ bj amount of resource j available

▶ di demand for product i

minimize cT x
subject to Ax ≤ b

0 ≤ x ≤ d

extensions:

▶ fixed cost for producing product i at all?
cT x + f T z , zi ∈ {0, 1}, xi ≤ Mzi for M large

21 / 52

LP example: production planning

▶ xi units of product i

▶ ci cost per unit

▶ aij amount of resource j used by product i

▶ bj amount of resource j available

▶ di demand for product i

minimize cT x
subject to Ax ≤ b

0 ≤ x ≤ d

extensions:

▶ fixed cost for producing product i at all?

cT x + f T z , zi ∈ {0, 1}, xi ≤ Mzi for M large

21 / 52

LP example: production planning

▶ xi units of product i

▶ ci cost per unit

▶ aij amount of resource j used by product i

▶ bj amount of resource j available

▶ di demand for product i

minimize cT x
subject to Ax ≤ b

0 ≤ x ≤ d

extensions:

▶ fixed cost for producing product i at all?
cT x + f T z , zi ∈ {0, 1}, xi ≤ Mzi for M large

21 / 52

Geometry of LP: inequality form

minimize cT x
subject to Ax ≤ b

▶ Ax ≤ b defines a polyhedron

▶ =⇒ feasible set P = {x : Ax ≤ b} is a polyhedron

▶ x is a vertex of polyhedron P if there is some v so that

vT x < vT y , ∀y ∈ P \ {x}

fact: vertex ⇐⇒ extreme point

22 / 52

Geometry of LP: inequality form

minimize cT x
subject to Ax ≤ b

▶ Ax ≤ b defines a polyhedron

▶ =⇒ feasible set P = {x : Ax ≤ b} is a polyhedron

▶ x is a vertex of polyhedron P if there is some v so that

vT x < vT y , ∀y ∈ P \ {x}

fact: vertex ⇐⇒ extreme point

22 / 52

Geometry of LP: inequality form

minimize cT x
subject to Ax ≤ b

▶ Ax ≤ b defines a polyhedron

▶ =⇒ feasible set P = {x : Ax ≤ b} is a polyhedron

▶ x is a vertex of polyhedron P if there is some v so that

vT x < vT y , ∀y ∈ P \ {x}

fact: vertex ⇐⇒ extreme point

22 / 52

Geometry of LP: inequality form

minimize cT x
subject to Ax ≤ b

▶ Ax ≤ b defines a polyhedron

▶ =⇒ feasible set P = {x : Ax ≤ b} is a polyhedron

▶ x is a vertex of polyhedron P if there is some v so that

vT x < vT y , ∀y ∈ P \ {x}

fact: vertex ⇐⇒ extreme point

22 / 52

Solution of LP is extreme point

minimize cT x
subject to Ax ≤ b

fact: if a solution exists and the feasible set has an extreme point, then some
extreme point of the feasible set is optimal

cases: solution x⋆ is unique / not unique

▶ unique: so cT x < cT y for all y ∈ P \ {x}
▶ not unique: {X ⋆ : cT x = cT x⋆, x ∈ P} is a polyhedron. It is not empty (a

solution exists) and its complement is not empty (optimal value is bounded).
So, it has at least one vertex. That vertex is also a vertex of P.

23 / 52

Solution of LP is extreme point

minimize cT x
subject to Ax ≤ b

fact: if a solution exists and the feasible set has an extreme point, then some
extreme point of the feasible set is optimal

cases: solution x⋆ is unique / not unique

▶ unique: so cT x < cT y for all y ∈ P \ {x}
▶ not unique: {X ⋆ : cT x = cT x⋆, x ∈ P} is a polyhedron. It is not empty (a

solution exists) and its complement is not empty (optimal value is bounded).
So, it has at least one vertex. That vertex is also a vertex of P.

23 / 52

Solution of LP is extreme point

minimize cT x
subject to Ax ≤ b

fact: if a solution exists and the feasible set has an extreme point, then some
extreme point of the feasible set is optimal

cases: solution x⋆ is unique / not unique

▶ unique: so cT x < cT y for all y ∈ P \ {x}

▶ not unique: {X ⋆ : cT x = cT x⋆, x ∈ P} is a polyhedron. It is not empty (a
solution exists) and its complement is not empty (optimal value is bounded).
So, it has at least one vertex. That vertex is also a vertex of P.

23 / 52

Solution of LP is extreme point

minimize cT x
subject to Ax ≤ b

fact: if a solution exists and the feasible set has an extreme point, then some
extreme point of the feasible set is optimal

cases: solution x⋆ is unique / not unique

▶ unique: so cT x < cT y for all y ∈ P \ {x}
▶ not unique: {X ⋆ : cT x = cT x⋆, x ∈ P} is a polyhedron. It is not empty (a

solution exists) and its complement is not empty (optimal value is bounded).
So, it has at least one vertex. That vertex is also a vertex of P.

23 / 52

Basic feasible solution

define: x ∈ Rn is a basic feasible solution (BFS) if there is a set S ⊂ {1, . . . , n} of
m columns so that AS is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ BFS ⇐⇒ extreme point

▶ two BFS with S , S ′ are neighbors if they share m = 1 columns: |S ∩S ′| = m−1

define: active set is set of nonzero variables in x

Q: how to find a BFS?
A: start at a feasible point; move in a feasible direction until you hit another
constraint; continue until you reach a BFS

24 / 52

Basic feasible solution

define: x ∈ Rn is a basic feasible solution (BFS) if there is a set S ⊂ {1, . . . , n} of
m columns so that AS is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ BFS ⇐⇒ extreme point

▶ two BFS with S , S ′ are neighbors if they share m = 1 columns: |S ∩S ′| = m−1

define: active set is set of nonzero variables in x

Q: how to find a BFS?
A: start at a feasible point; move in a feasible direction until you hit another
constraint; continue until you reach a BFS

24 / 52

Basic feasible solution

define: x ∈ Rn is a basic feasible solution (BFS) if there is a set S ⊂ {1, . . . , n} of
m columns so that AS is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ BFS ⇐⇒ extreme point

▶ two BFS with S , S ′ are neighbors if they share m = 1 columns: |S ∩S ′| = m−1

define: active set is set of nonzero variables in x

Q: how to find a BFS?

A: start at a feasible point; move in a feasible direction until you hit another
constraint; continue until you reach a BFS

24 / 52

Basic feasible solution

define: x ∈ Rn is a basic feasible solution (BFS) if there is a set S ⊂ {1, . . . , n} of
m columns so that AS is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ BFS ⇐⇒ extreme point

▶ two BFS with S , S ′ are neighbors if they share m = 1 columns: |S ∩S ′| = m−1

define: active set is set of nonzero variables in x

Q: how to find a BFS?
A: start at a feasible point; move in a feasible direction until you hit another
constraint; continue until you reach a BFS

24 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

25 / 52

Solving LPs

algorithms:

▶ enumerate all vertices and check
▶ fourier-motzkin elimination
▶ simplex method
▶ ellipsoid method
▶ interior point methods
▶ first-order methods
▶ . . .

remarks:

▶ enumeration and elimination are simple but not practical
▶ simplex was the first practical algorithm; still used today
▶ ellipsoid method is the first polynomial-time algorithm; not practical
▶ interior point methods are polynomial-time and practical
▶ first-order methods are practical and scale to large problems

26 / 52

Solving LPs

algorithms:

▶ enumerate all vertices and check
▶ fourier-motzkin elimination
▶ simplex method
▶ ellipsoid method
▶ interior point methods
▶ first-order methods
▶ . . .

remarks:

▶ enumeration and elimination are simple but not practical
▶ simplex was the first practical algorithm; still used today
▶ ellipsoid method is the first polynomial-time algorithm; not practical
▶ interior point methods are polynomial-time and practical
▶ first-order methods are practical and scale to large problems

26 / 52

Discuss: how to solve LPs?

write down a method to solve LPs; discuss in groups.

▶ idea

▶ math

▶ pseudocode

complete https://forms.gle/JbP2fLd6cRVbNUoW9 when you’re ready (and before
Friday noon)
(link also available from course schedule)

27 / 52

https://forms.gle/JbP2fLd6cRVbNUoW9

Enumerate vertices of LP

can generate all extreme points of LP: for each S ⊆ {1, . . . , n} with |S | = m,

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ solve ASxS = b for xS and set xS̄ = 0

▶ if xS ≥ 0, then x is a BFS

▶ evaluate objective cT x

the best BFS is optimal!

problem: how many BFSs are there?
n choose m is

(n
m

)
= n!

m!(n−m)! (“exponentially many”)

28 / 52

Enumerate vertices of LP

can generate all extreme points of LP: for each S ⊆ {1, . . . , n} with |S | = m,

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ solve ASxS = b for xS and set xS̄ = 0

▶ if xS ≥ 0, then x is a BFS

▶ evaluate objective cT x

the best BFS is optimal!

problem: how many BFSs are there?

n choose m is
(n
m

)
= n!

m!(n−m)! (“exponentially many”)

28 / 52

Enumerate vertices of LP

can generate all extreme points of LP: for each S ⊆ {1, . . . , n} with |S | = m,

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ solve ASxS = b for xS and set xS̄ = 0

▶ if xS ≥ 0, then x is a BFS

▶ evaluate objective cT x

the best BFS is optimal!

problem: how many BFSs are there?
n choose m is

(n
m

)
= n!

m!(n−m)! (“exponentially many”)

28 / 52

Simplex algorithm

basic idea: local search on the vertices of the feasible set

▶ start at BFS x and evaluate objective cT x

▶ move to a neighboring BFS x ′ with better objective cT x ′

▶ repeat until no improvement possible

discuss in groups:

▶ how to find an initial BFS?

▶ how to find a neighboring BFS with better objective?

▶ how to prove optimality?

29 / 52

Simplex algorithm

basic idea: local search on the vertices of the feasible set

▶ start at BFS x and evaluate objective cT x

▶ move to a neighboring BFS x ′ with better objective cT x ′

▶ repeat until no improvement possible

discuss in groups:

▶ how to find an initial BFS?

▶ how to find a neighboring BFS with better objective?

▶ how to prove optimality?

29 / 52

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
∑m

i=1 zi
subject to Ax + Dz = b

x , z ≥ 0

where D ∈ Rm×m is a diagonal matrix with Dii = sign(bi) for i = 1, . . . ,m.

▶ x = 0, z = |b| is a BFS of this problem

▶ (x , z) = (x , 0) is a BFS of this problem ⇐⇒ x is a BFS of the original problem

30 / 52

Find a better neighboring BFS

start with BFS x with active set S and turn on variable j ̸∈ S

x+ ← x + θd , θ > 0

where dj = 1 and di = 0 for i ̸∈ S ∪ {j}. need to solve for dS .

▶ need to stay feasible wrt equality constraints, so

Ax = b, A(x + θd) = b, =⇒ Ad = 0

▶ construct the jth basic direction

Ad = ASdS + Aj = 0 =⇒ dS = −A−1
S Aj

▶ if xS > 0 (i.e., it is non-degenerate), then ∃ a stepsize θ > 0 st x+ ≥ 0
▶ how does objective change?

cT x+ = cT x + θcTd = cT x + θcj − θcTS A−1
S Aj

31 / 52

Find a better neighboring BFS

start with BFS x with active set S and turn on variable j ̸∈ S

x+ ← x + θd , θ > 0

where dj = 1 and di = 0 for i ̸∈ S ∪ {j}. need to solve for dS .

▶ need to stay feasible wrt equality constraints, so

Ax = b, A(x + θd) = b, =⇒ Ad = 0

▶ construct the jth basic direction

Ad = ASdS + Aj = 0 =⇒ dS = −A−1
S Aj

▶ if xS > 0 (i.e., it is non-degenerate), then ∃ a stepsize θ > 0 st x+ ≥ 0
▶ how does objective change?

cT x+ = cT x + θcTd = cT x + θcj − θcTS A−1
S Aj

31 / 52

Find a better neighboring BFS

start with BFS x with active set S and turn on variable j ̸∈ S

x+ ← x + θd , θ > 0

where dj = 1 and di = 0 for i ̸∈ S ∪ {j}. need to solve for dS .

▶ need to stay feasible wrt equality constraints, so

Ax = b, A(x + θd) = b, =⇒ Ad = 0

▶ construct the jth basic direction

Ad = ASdS + Aj = 0 =⇒ dS = −A−1
S Aj

▶ if xS > 0 (i.e., it is non-degenerate), then ∃ a stepsize θ > 0 st x+ ≥ 0
▶ how does objective change?

cT x+ = cT x + θcTd = cT x + θcj − θcTS A−1
S Aj

31 / 52

Find a better neighboring BFS

start with BFS x with active set S and turn on variable j ̸∈ S

x+ ← x + θd , θ > 0

where dj = 1 and di = 0 for i ̸∈ S ∪ {j}. need to solve for dS .

▶ need to stay feasible wrt equality constraints, so

Ax = b, A(x + θd) = b, =⇒ Ad = 0

▶ construct the jth basic direction

Ad = ASdS + Aj = 0 =⇒ dS = −A−1
S Aj

▶ if xS > 0 (i.e., it is non-degenerate), then ∃ a stepsize θ > 0 st x+ ≥ 0

▶ how does objective change?

cT x+ = cT x + θcTd = cT x + θcj − θcTS A−1
S Aj

31 / 52

Find a better neighboring BFS

start with BFS x with active set S and turn on variable j ̸∈ S

x+ ← x + θd , θ > 0

where dj = 1 and di = 0 for i ̸∈ S ∪ {j}. need to solve for dS .

▶ need to stay feasible wrt equality constraints, so

Ax = b, A(x + θd) = b, =⇒ Ad = 0

▶ construct the jth basic direction

Ad = ASdS + Aj = 0 =⇒ dS = −A−1
S Aj

▶ if xS > 0 (i.e., it is non-degenerate), then ∃ a stepsize θ > 0 st x+ ≥ 0
▶ how does objective change?

cT x+ = cT x + θcTd = cT x + θcj − θcTS A−1
S Aj

31 / 52

Reduced cost

define reduced cost c̄j = cj − cTS A−1
S Aj , j ̸∈ S

fact:

▶ if c̄ ≥ 0, x is optimal

▶ if x is optimal and nondegenerate (xS > 0), then c̄ ≥ 0

32 / 52

Reduced cost

define reduced cost c̄j = cj − cTS A−1
S Aj , j ̸∈ S

fact:

▶ if c̄ ≥ 0, x is optimal

▶ if x is optimal and nondegenerate (xS > 0), then c̄ ≥ 0

32 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

33 / 52

Why duality?

▶ certify optimality
▶ turn ∀ into ∃
▶ use dual lower bound to derive stopping conditions

▶ new algorithms based on the dual
▶ solve dual, then recover primal solution

34 / 52

Duality notation

▶ inner product

yT x = ⟨y , x⟩ = y · x =
n∑

i=1

yixi

▶ conjugate
⟨y ,Ax⟩ = ⟨AT y , x⟩

35 / 52

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A ∈ Rm×n and b ∈ Rm, exactly one of the following is true:

▶ there exists x ∈ Rn so that Ax = b and x ≥ 0

▶ there exists y ∈ Rm so that AT y ≥ 0 and ⟨b, y⟩ < 0

=⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have x ∈ Rn so that Ax = b and x ≥ 0.
then for any y ∈ Rm,

0 = ⟨y , b − Ax⟩ = ⟨y , b⟩ − ⟨AT y , x⟩
⟨y , b⟩ = ⟨AT y , x⟩

so if AT y ≥ 0, then use x ≥ 0 to conclude ⟨y , b⟩ ≥ 0.

(opposite direction is similar)

36 / 52

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A ∈ Rm×n and b ∈ Rm, exactly one of the following is true:

▶ there exists x ∈ Rn so that Ax = b and x ≥ 0

▶ there exists y ∈ Rm so that AT y ≥ 0 and ⟨b, y⟩ < 0

=⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have x ∈ Rn so that Ax = b and x ≥ 0.
then for any y ∈ Rm,

0 = ⟨y , b − Ax⟩ = ⟨y , b⟩ − ⟨AT y , x⟩
⟨y , b⟩ = ⟨AT y , x⟩

so if AT y ≥ 0, then use x ≥ 0 to conclude ⟨y , b⟩ ≥ 0.

(opposite direction is similar)

36 / 52

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A ∈ Rm×n and b ∈ Rm, exactly one of the following is true:

▶ there exists x ∈ Rn so that Ax = b and x ≥ 0

▶ there exists y ∈ Rm so that AT y ≥ 0 and ⟨b, y⟩ < 0

=⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have x ∈ Rn so that Ax = b and x ≥ 0.
then for any y ∈ Rm,

0 = ⟨y , b − Ax⟩ = ⟨y , b⟩ − ⟨AT y , x⟩
⟨y , b⟩ = ⟨AT y , x⟩

so if AT y ≥ 0, then use x ≥ 0 to conclude ⟨y , b⟩ ≥ 0.

(opposite direction is similar)
36 / 52

Lagrange duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize cT x
subject to Ax = b : dual y

x ≥ 0
(P)

if x is feasible, then Ax = b, so ⟨y ,Ax − b⟩ = 0 for y ∈ Rm.

define the Lagrangian

L(x , y) := cT x − ⟨y ,Ax − b⟩
p⋆ = inf

x :Ax=b, x≥0
L(x , y) ≥ inf

x≥0
L(x , y)

= inf
x≥0

cT x + ⟨y , b − Ax⟩

= ⟨y , b⟩+ inf
x≥0

(
cT x − ⟨AT y , x⟩

)
= ⟨y , b⟩+ inf

x≥0

(
⟨c − AT y , x⟩

)
unbounded below unless c − AT y ≥ 0.

37 / 52

Lagrange duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize cT x
subject to Ax = b : dual y

x ≥ 0
(P)

if x is feasible, then Ax = b, so ⟨y ,Ax − b⟩ = 0 for y ∈ Rm.
define the Lagrangian

L(x , y) := cT x − ⟨y ,Ax − b⟩

p⋆ = inf
x :Ax=b, x≥0

L(x , y) ≥ inf
x≥0
L(x , y)

= inf
x≥0

cT x + ⟨y , b − Ax⟩

= ⟨y , b⟩+ inf
x≥0

(
cT x − ⟨AT y , x⟩

)
= ⟨y , b⟩+ inf

x≥0

(
⟨c − AT y , x⟩

)
unbounded below unless c − AT y ≥ 0.

37 / 52

Lagrange duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize cT x
subject to Ax = b : dual y

x ≥ 0
(P)

if x is feasible, then Ax = b, so ⟨y ,Ax − b⟩ = 0 for y ∈ Rm.
define the Lagrangian

L(x , y) := cT x − ⟨y ,Ax − b⟩
p⋆ = inf

x :Ax=b, x≥0
L(x , y) ≥ inf

x≥0
L(x , y)

= inf
x≥0

cT x + ⟨y , b − Ax⟩

= ⟨y , b⟩+ inf
x≥0

(
cT x − ⟨AT y , x⟩

)
= ⟨y , b⟩+ inf

x≥0

(
⟨c − AT y , x⟩

)
unbounded below unless c − AT y ≥ 0.

37 / 52

Lagrange duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize cT x
subject to Ax = b : dual y

x ≥ 0
(P)

if x is feasible, then Ax = b, so ⟨y ,Ax − b⟩ = 0 for y ∈ Rm.
define the Lagrangian

L(x , y) := cT x − ⟨y ,Ax − b⟩
p⋆ = inf

x :Ax=b, x≥0
L(x , y) ≥ inf

x≥0
L(x , y)

= inf
x≥0

cT x + ⟨y , b − Ax⟩

= ⟨y , b⟩+ inf
x≥0

(
cT x − ⟨AT y , x⟩

)
= ⟨y , b⟩+ inf

x≥0

(
⟨c − AT y , x⟩

)
unbounded below unless c − AT y ≥ 0.

37 / 52

Lagrange duality, ctd

we have a lower bound on p⋆ for any y , and a useful one whenever c − AT y ≥ 0.
maximize bound:

p⋆ ≥
maximize ⟨y , b⟩
subject to AT y ≤ c
variable y ∈ Rm

define the dual function

g(y) =

{
⟨y , b⟩ AT y ≤ c

−∞ otherwise

38 / 52

Lagrange duality

weak duality asserts that p⋆ ≥ g(y) for all y ∈ Rm.

p⋆ ≥ g(y) ∀y ∈ Rm

≥ sup
y

g(y)︸ ︷︷ ︸
D

=: d⋆

p⋆ ≥ d⋆ dual optimal value

39 / 52

Strong duality

Definition (Duality gap)

The duality gap for a primal-dual pair (x , y) is cT x − bT y ≥ 0

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x⋆, y⋆) satisfies strong duality if

p⋆ = d⋆ ⇐⇒ cT x − bT y = 0

strong duality holds

▶ for feasible LPs
▶ (later) for convex problems under constraint qualification aka Slater’s

condition. feasible region has an interior point x so that all inequality
constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded

40 / 52

Strong duality

Definition (Duality gap)

The duality gap for a primal-dual pair (x , y) is cT x − bT y ≥ 0

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x⋆, y⋆) satisfies strong duality if

p⋆ = d⋆ ⇐⇒ cT x − bT y = 0

strong duality holds

▶ for feasible LPs
▶ (later) for convex problems under constraint qualification aka Slater’s

condition. feasible region has an interior point x so that all inequality
constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded

40 / 52

Strong duality

Definition (Duality gap)

The duality gap for a primal-dual pair (x , y) is cT x − bT y ≥ 0

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x⋆, y⋆) satisfies strong duality if

p⋆ = d⋆ ⇐⇒ cT x − bT y = 0

strong duality holds

▶ for feasible LPs
▶ (later) for convex problems under constraint qualification aka Slater’s

condition. feasible region has an interior point x so that all inequality
constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded 40 / 52

Strong duality for LPs

primal and dual LP in standard form:

minimize cT x
subject to Ax = b

x ≥ 0

maximize bT y
subject to AT y ≤ c

claim: if primal LP has a bounded feasible solution x⋆, then strong duality holds
i.e., dual LP has a bounded feasible solution y⋆ and p⋆ = d⋆

41 / 52

Logic of strong duality proof

x ∈ Rn is optimal for the primal LP with optimal value p⋆

⇓ (see next slide)
the following linear system has no solution[

A −b
cT −p⋆

] [
x
τ

]
=

[
0
−1

]
or

[
AT c
−bT −p⋆

]
⇓ (Farkas lemma) [

AT c
−bT −p⋆

] [
−y
σ

]
≥ 0, σ > 0

⇓
y/σ is dual feasible with optimal value as least as good as p⋆

42 / 52

Proof of strong duality for LPs

consider the following system with variables x ′ ∈ Rn, τ ∈ R

Ax ′ − bτ = 0, cT x ′ = p⋆τ − 1, (x ′, τ) ≥ 0

claim: this system has no solution. pf by contradiction:

▶ if τ > 0, then x ′/τ is feasible for LP and cT x ′/τ < p⋆

▶ if τ = 0, then x⋆ + x ′ is feasible for LP and cT (x⋆ + x ′) < p⋆

so use Farkas’ lemma:

Āx̄ = b̄, x̄ ≥ 0 or ĀT ȳ ≥ 0, b̄T ȳ < 0[
A −b
cT −p⋆

] [
x
τ

]
=

[
0
−1

]
or

[
AT c
−bT −p⋆

] [
y
σ

]
≥ 0, σ > 0

second system is feasible =⇒ y/σ is dual feasible and optimal

43 / 52

Proof of strong duality for LPs

consider the following system with variables x ′ ∈ Rn, τ ∈ R

Ax ′ − bτ = 0, cT x ′ = p⋆τ − 1, (x ′, τ) ≥ 0

claim: this system has no solution. pf by contradiction:

▶ if τ > 0, then x ′/τ is feasible for LP and cT x ′/τ < p⋆

▶ if τ = 0, then x⋆ + x ′ is feasible for LP and cT (x⋆ + x ′) < p⋆

so use Farkas’ lemma:

Āx̄ = b̄, x̄ ≥ 0 or ĀT ȳ ≥ 0, b̄T ȳ < 0[
A −b
cT −p⋆

] [
x
τ

]
=

[
0
−1

]
or

[
AT c
−bT −p⋆

] [
y
σ

]
≥ 0, σ > 0

second system is feasible =⇒ y/σ is dual feasible and optimal

43 / 52

Proof of strong duality for LPs

consider the following system with variables x ′ ∈ Rn, τ ∈ R

Ax ′ − bτ = 0, cT x ′ = p⋆τ − 1, (x ′, τ) ≥ 0

claim: this system has no solution. pf by contradiction:

▶ if τ > 0, then x ′/τ is feasible for LP and cT x ′/τ < p⋆

▶ if τ = 0, then x⋆ + x ′ is feasible for LP and cT (x⋆ + x ′) < p⋆

so use Farkas’ lemma:

Āx̄ = b̄, x̄ ≥ 0 or ĀT ȳ ≥ 0, b̄T ȳ < 0

[
A −b
cT −p⋆

] [
x
τ

]
=

[
0
−1

]
or

[
AT c
−bT −p⋆

] [
y
σ

]
≥ 0, σ > 0

second system is feasible =⇒ y/σ is dual feasible and optimal

43 / 52

Proof of strong duality for LPs

consider the following system with variables x ′ ∈ Rn, τ ∈ R

Ax ′ − bτ = 0, cT x ′ = p⋆τ − 1, (x ′, τ) ≥ 0

claim: this system has no solution. pf by contradiction:

▶ if τ > 0, then x ′/τ is feasible for LP and cT x ′/τ < p⋆

▶ if τ = 0, then x⋆ + x ′ is feasible for LP and cT (x⋆ + x ′) < p⋆

so use Farkas’ lemma:

Āx̄ = b̄, x̄ ≥ 0 or ĀT ȳ ≥ 0, b̄T ȳ < 0[
A −b
cT −p⋆

] [
x
τ

]
=

[
0
−1

]
or

[
AT c
−bT −p⋆

] [
y
σ

]
≥ 0, σ > 0

second system is feasible =⇒ y/σ is dual feasible and optimal

43 / 52

Proof of strong duality for LPs

consider the following system with variables x ′ ∈ Rn, τ ∈ R

Ax ′ − bτ = 0, cT x ′ = p⋆τ − 1, (x ′, τ) ≥ 0

claim: this system has no solution. pf by contradiction:

▶ if τ > 0, then x ′/τ is feasible for LP and cT x ′/τ < p⋆

▶ if τ = 0, then x⋆ + x ′ is feasible for LP and cT (x⋆ + x ′) < p⋆

so use Farkas’ lemma:

Āx̄ = b̄, x̄ ≥ 0 or ĀT ȳ ≥ 0, b̄T ȳ < 0[
A −b
cT −p⋆

] [
x
τ

]
=

[
0
−1

]
or

[
AT c
−bT −p⋆

] [
y
σ

]
≥ 0, σ > 0

second system is feasible =⇒ y/σ is dual feasible and optimal
43 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

44 / 52

Duality as stopping condition

want to optimize until primal suboptimality cT x − p⋆ ≥ 0 or dual suboptimality
d⋆ − bT y ≥ 0 are small enough. how?

duality gap cT x − bT y ≥ 0 bounds both!

for x feasible, y dual feasible,

cT x ≥ cT x⋆ ≥ bT y⋆ ≥ bT y

in practice: improve primal and dual iterates in parallel until duality gap is small
enough

45 / 52

Duality as stopping condition

want to optimize until primal suboptimality cT x − p⋆ ≥ 0 or dual suboptimality
d⋆ − bT y ≥ 0 are small enough. how?

duality gap cT x − bT y ≥ 0 bounds both!

for x feasible, y dual feasible,

cT x ≥ cT x⋆ ≥ bT y⋆ ≥ bT y

in practice: improve primal and dual iterates in parallel until duality gap is small
enough

45 / 52

Duality as stopping condition

want to optimize until primal suboptimality cT x − p⋆ ≥ 0 or dual suboptimality
d⋆ − bT y ≥ 0 are small enough. how?

duality gap cT x − bT y ≥ 0 bounds both!

for x feasible, y dual feasible,

cT x ≥ cT x⋆ ≥ bT y⋆ ≥ bT y

in practice: improve primal and dual iterates in parallel until duality gap is small
enough

45 / 52

How to use duality to estimate sensitivity?

primal and dual LP in standard form:

p⋆ =
min cT x
subject to Ax = b

x ≥ 0
d⋆ =

max bT y
subject to AT y ≤ c

optimal primal and dual solution x⋆, y⋆

perturbed problem: primal and dual LP in standard form:

p̃⋆ =
min cT x
subject to Ax = b + ϵ

x ≥ 0
d̃⋆ =

max (b + ϵ)T y
subject to AT y ≤ c

y⋆ is feasible for perturbed problem, so

p̃⋆ = d̃⋆ ≥ (b + ϵ)T y⋆ = d⋆ + ϵT y⋆

46 / 52

How to use duality to estimate sensitivity?

primal and dual LP in standard form:

p⋆ =
min cT x
subject to Ax = b

x ≥ 0
d⋆ =

max bT y
subject to AT y ≤ c

optimal primal and dual solution x⋆, y⋆

perturbed problem: primal and dual LP in standard form:

p̃⋆ =
min cT x
subject to Ax = b + ϵ

x ≥ 0
d̃⋆ =

max (b + ϵ)T y
subject to AT y ≤ c

y⋆ is feasible for perturbed problem, so

p̃⋆ = d̃⋆ ≥ (b + ϵ)T y⋆ = d⋆ + ϵT y⋆

46 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

47 / 52

Column / constraint generation

primal and dual LP, A ∈ Rm×n, n≫ m:

minimize cT x
subject to Ax = b

x ≥ 0
↔dual maximize bT y

subject to AT y ≤ c

approximate by using S ⊂ {1, . . . , n}: fewer variables (primal) or constraints (dual)

minimize cTs xS
subject to ASxS = b

xS ≥ 0
↔dual maximize bT y

subject to AT
S y ≤ cS

if xS is optimal for PS and reduced cost
c̄ ≥ 0, then xS is optimal for P

if y is optimal for DS and feasible for D,
then y is optimal for D

otherwise? find i with c̄i = ci − cTS A−1
S ai < 0 (primal) or aTi y > ci (dual) and add

to S

▶ if dual constraints are all binding, AT
S y = cS , so these conditions are the same!

▶ active set of non-zero primal variables dual to active set of constraints that hold
with equality

48 / 52

Column / constraint generation

primal and dual LP, A ∈ Rm×n, n≫ m:

minimize cT x
subject to Ax = b

x ≥ 0
↔dual maximize bT y

subject to AT y ≤ c

approximate by using S ⊂ {1, . . . , n}: fewer variables (primal) or constraints (dual)

minimize cTs xS
subject to ASxS = b

xS ≥ 0
↔dual maximize bT y

subject to AT
S y ≤ cS

if xS is optimal for PS and reduced cost
c̄ ≥ 0, then xS is optimal for P

if y is optimal for DS and feasible for D,
then y is optimal for D

otherwise? find i with c̄i = ci − cTS A−1
S ai < 0 (primal) or aTi y > ci (dual) and add

to S

▶ if dual constraints are all binding, AT
S y = cS , so these conditions are the same!

▶ active set of non-zero primal variables dual to active set of constraints that hold
with equality

48 / 52

Column / constraint generation

primal and dual LP, A ∈ Rm×n, n≫ m:

minimize cT x
subject to Ax = b

x ≥ 0
↔dual maximize bT y

subject to AT y ≤ c

approximate by using S ⊂ {1, . . . , n}: fewer variables (primal) or constraints (dual)

minimize cTs xS
subject to ASxS = b

xS ≥ 0
↔dual maximize bT y

subject to AT
S y ≤ cS

if xS is optimal for PS and reduced cost
c̄ ≥ 0, then xS is optimal for P

if y is optimal for DS and feasible for D,
then y is optimal for D

otherwise? find i with c̄i = ci − cTS A−1
S ai < 0 (primal) or aTi y > ci (dual) and add

to S

▶ if dual constraints are all binding, AT
S y = cS , so these conditions are the same!

▶ active set of non-zero primal variables dual to active set of constraints that hold
with equality

48 / 52

Column / constraint generation

primal and dual LP, A ∈ Rm×n, n≫ m:

minimize cT x
subject to Ax = b

x ≥ 0
↔dual maximize bT y

subject to AT y ≤ c

approximate by using S ⊂ {1, . . . , n}: fewer variables (primal) or constraints (dual)

minimize cTs xS
subject to ASxS = b

xS ≥ 0
↔dual maximize bT y

subject to AT
S y ≤ cS

if xS is optimal for PS and reduced cost
c̄ ≥ 0, then xS is optimal for P

if y is optimal for DS and feasible for D,
then y is optimal for D

otherwise?

find i with c̄i = ci − cTS A−1
S ai < 0 (primal) or aTi y > ci (dual) and add

to S

▶ if dual constraints are all binding, AT
S y = cS , so these conditions are the same!

▶ active set of non-zero primal variables dual to active set of constraints that hold
with equality

48 / 52

Column / constraint generation

primal and dual LP, A ∈ Rm×n, n≫ m:

minimize cT x
subject to Ax = b

x ≥ 0
↔dual maximize bT y

subject to AT y ≤ c

approximate by using S ⊂ {1, . . . , n}: fewer variables (primal) or constraints (dual)

minimize cTs xS
subject to ASxS = b

xS ≥ 0
↔dual maximize bT y

subject to AT
S y ≤ cS

if xS is optimal for PS and reduced cost
c̄ ≥ 0, then xS is optimal for P

if y is optimal for DS and feasible for D,
then y is optimal for D

otherwise? find i with c̄i = ci − cTS A−1
S ai < 0 (primal) or aTi y > ci (dual) and add

to S

▶ if dual constraints are all binding, AT
S y = cS , so these conditions are the same!

▶ active set of non-zero primal variables dual to active set of constraints that hold
with equality

48 / 52

Column / constraint generation

primal and dual LP, A ∈ Rm×n, n≫ m:

minimize cT x
subject to Ax = b

x ≥ 0
↔dual maximize bT y

subject to AT y ≤ c

approximate by using S ⊂ {1, . . . , n}: fewer variables (primal) or constraints (dual)

minimize cTs xS
subject to ASxS = b

xS ≥ 0
↔dual maximize bT y

subject to AT
S y ≤ cS

if xS is optimal for PS and reduced cost
c̄ ≥ 0, then xS is optimal for P

if y is optimal for DS and feasible for D,
then y is optimal for D

otherwise? find i with c̄i = ci − cTS A−1
S ai < 0 (primal) or aTi y > ci (dual) and add

to S

▶ if dual constraints are all binding, AT
S y = cS , so these conditions are the same!

▶ active set of non-zero primal variables dual to active set of constraints that hold
with equality

48 / 52

Presolve

Often many constraints are redundant or can be simplified. example:

minimize x3
subject to x1 = 1

x2 = x3 − x1
x3 − x2 ≥ 0
x ≥ 0

a good presolve can often reduce problem from 1000s of variables and constraints
down to 10s!

reference: Achterberg, Tobias, et al. ”Presolve reductions in mixed integer
programming.” INFORMS Journal on Computing 32.2 (2020): 473-506.

49 / 52

Outline

LP standard form

Modeling

LP inequality form

Solving LPs

Duality

Using duality

Large-scale linear programming

Integer programming

50 / 52

MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize cT x
subject to Ax + Bz = b

x ≥ 0, z ≥ 0 ∈ Z
→relax

minimize cT x
subject to Ax + Bz = b

x , z ≥ 0

example:
maximize x
subject to x ≤ z

x ≤ 1− z
x ≥ 0, z ∈ {0, 1}

draw picture: where is solution of MILP? of LP relaxation?

51 / 52

MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize cT x
subject to Ax + Bz = b

x ≥ 0, z ≥ 0 ∈ Z
→relax

minimize cT x
subject to Ax + Bz = b

x , z ≥ 0

example:
maximize x
subject to x ≤ z

x ≤ 1− z
x ≥ 0, z ∈ {0, 1}

draw picture: where is solution of MILP? of LP relaxation?

51 / 52

MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize cT x
subject to Ax + Bz = b

x ≥ 0, z ≥ 0 ∈ Z
→relax

minimize cT x
subject to Ax + Bz = b

x , z ≥ 0

example:
maximize x
subject to x ≤ z

x ≤ 1− z
x ≥ 0, z ∈ {0, 1}

draw picture: where is solution of MILP? of LP relaxation?

51 / 52

Branch and bound

given MILP with integer variable z in rectangle R = (l , u), l ≤ z ≤ u, optimal value
p⋆(R), solution z⋆(R)

▶ solve LP relaxation to produce lower bound LB(R) ≤ p⋆(R)
▶ round z to nearest feasible integer z ′ to produce upper bound UB(R) ≥ p⋆(R)

if LB(R) = UB(R), then p⋆(R) = LB(R) = UB(R) and we are done.

otherwise, branch

▶ split R into two subrectangles R1 = (l1, u1), R2 = (l2, u2) so that
Z ∩ R = (Z ∩ R1) ∪ (Z ∩ R2)

▶ compute bounds LB(R1), UB(R1), LB(R2), UB(R2)
▶ R ⊂ R1 ∪ R2 so LB(R) ≤ min(LB(R1), LB(R2))
▶ keep best solution so far UB← min(UB,UB(R1),UB(R2))
▶ prune: eliminate rectangle from consideration if LB(R) > UB

draw picture in 2D

52 / 52

Branch and bound

given MILP with integer variable z in rectangle R = (l , u), l ≤ z ≤ u, optimal value
p⋆(R), solution z⋆(R)

▶ solve LP relaxation to produce lower bound LB(R) ≤ p⋆(R)
▶ round z to nearest feasible integer z ′ to produce upper bound UB(R) ≥ p⋆(R)

if LB(R) = UB(R), then p⋆(R) = LB(R) = UB(R) and we are done.

otherwise, branch

▶ split R into two subrectangles R1 = (l1, u1), R2 = (l2, u2) so that
Z ∩ R = (Z ∩ R1) ∪ (Z ∩ R2)

▶ compute bounds LB(R1), UB(R1), LB(R2), UB(R2)
▶ R ⊂ R1 ∪ R2 so LB(R) ≤ min(LB(R1), LB(R2))
▶ keep best solution so far UB← min(UB,UB(R1),UB(R2))
▶ prune: eliminate rectangle from consideration if LB(R) > UB

draw picture in 2D

52 / 52

Branch and bound

given MILP with integer variable z in rectangle R = (l , u), l ≤ z ≤ u, optimal value
p⋆(R), solution z⋆(R)

▶ solve LP relaxation to produce lower bound LB(R) ≤ p⋆(R)
▶ round z to nearest feasible integer z ′ to produce upper bound UB(R) ≥ p⋆(R)

if LB(R) = UB(R), then p⋆(R) = LB(R) = UB(R) and we are done.

otherwise, branch

▶ split R into two subrectangles R1 = (l1, u1), R2 = (l2, u2) so that
Z ∩ R = (Z ∩ R1) ∪ (Z ∩ R2)

▶ compute bounds LB(R1), UB(R1), LB(R2), UB(R2)
▶ R ⊂ R1 ∪ R2 so LB(R) ≤ min(LB(R1), LB(R2))
▶ keep best solution so far UB← min(UB,UB(R1),UB(R2))
▶ prune: eliminate rectangle from consideration if LB(R) > UB

draw picture in 2D
52 / 52

	LP standard form
	Modeling
	LP inequality form
	Solving LPs
	Duality
	Using duality
	Large-scale linear programming
	Integer programming

