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Course survey

You're interested in

» duality
modeling real-world problems
hyperparameter and blackbox optimization

fairness and ethics in optimization
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LP standard form
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Linear programming: standard form

standard form linear program (LP)

minimize ¢’ x
subject to Ax =b: dual y
x>0

optimal value p*, solution x* (if it exists)
» any x with Ax = b and x > 0 is called a feasible point
» if problem is infeasible, we say p* = oo
» p* can be finite or —o0
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Linear programming: standard form

standard form linear program (LP)

minimize ¢’ x
subject to Ax =b: dual y
x>0

optimal value p*, solution x* (if it exists)
» any x with Ax = b and x > 0 is called a feasible point
» if problem is infeasible, we say p* = oo
» p* can be finite or —o0

Q: if p* = —o0, does a solution exist? is it unique?

what about p* = c0?

henceforth assume A € R™*" has full row rank m

Q: why? how to check?

A: otherwise infeasible or redundant rows; use gaussian elimination to check and

remove
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Linear algebra review

matrix A € R™*"
» span of A:
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Linear algebra review

matrix A € R™*"

» span of A: span(A) = {Ax | x € R"} CR"
» nullspace of A: nullspace(A) = {x € R" | Ax =0} CR"
» how to compute basis for span and nullspace of A?
can use QR factorization or SVD
» how to solve Ax = b? factor-solve with QR or SVD; form normal equations
ATAx = ATb and use CG; other Krylov methods like LSQR (positive definite),
MINRES (indefinite), GMRES (general)
» solution to Ax = b is unique if m = n and A is full rank
» if m < nand Ais full rank
» solution set is a hyperplane of dimension n — m
» null space of A, nullspace(A), is a hyperplane of dimension n — m

> solution set is {x : Ax = b} = {xo + Vz} where columns of V € R"*"~" span
nullspace(A)

if these are confusing: review linear algebra and prove them all!
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LP example: diet problem

> x; servings of food i S T
minimize ¢’ x

subjectto Ax=0b
» a; amount of nutrient j in food / x>0

P c; cost per serving

» b; required amount of nutrient j
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extensions:

» foods come from recipes?
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» ranges of nutrients? /| <y <u
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Geometry of LP

minimize ¢’ x

subjectto Ax=b
x>0
the feasible set is the set of points x that satisfy all constraints

» interpretation: add up columns of A so they match b
» Ax = b defines a hyperplane

> x; > 0 is a halfspace

» x > 0 is the positive orthant

7/52



Geometry of LP: convexity

minimize ¢'x

subjectto Ax=b
x>0

> define the feasible set {x : Ax = b, x > 0}
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Geometry of LP: convexity

minimize ¢’ x
subjectto Ax=b
x>0

define the feasible set {x : Ax = b, x > 0}
define convex set: C is convex if for any x,y € C,

Ox+(1—0)y € C, 6 €[0,1]

fact: the feasible set is convex
define extreme point: x is extreme in C if it cannot be written as a linear
combination of other points in C:

xeC and x=0y+(1-0)z = x=y=z

fact: if a solution exists, then some extreme point of the feasible set is optimal )
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Geometry of LP: polytopes

minimize ¢! x

subjectto Ax=b
x>0

» define polytope P: convex hull of its extreme points vq,..., v, € R":

k k
P:{XGRH|X:ZQIVI'7 9;207 Zel:l}
i=1 i=1

» if feasible set is bounded, it is a polytope

» prove: if a solution exists, then some extreme point of the feasible set is optimal
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Modeling
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Let’s do some modeling!

» OptiMUS: https://optimus-solver.vercel.app/
» power systems:
https://jump.dev/JuMP.jl /stable/tutorials/applications/power_systems/
» multicast routing: https://colab.research.google.com/drive/
1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing
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Let’s do some modeling!

» OptiMUS: https://optimus-solver.vercel.app/
» power systems:
https://jump.dev/JuMP.jl /stable/tutorials/applications/power_systems/
» multicast routing: https://colab.research.google.com/drive/
1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing

practical solvers for MILP:

» Gurobi and COPT (cardinal optimizer) are the state-of-the-art commercial
solvers

» GLPK is a free solver that is not as fast

» JuliaOpt/JuMP is a modeling language in Julia that calls solvers like Gurobi
and is specialized for MILP applications

» CVX* (including CVXPY in python) are modeling languages that call solvers
like Gurobi with good support for convex problems

» OptiMUS is a LLM-based modeling tool for MILP
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Modeling challenges

model the following as standard form LPs:

No o =

inequality constraints. Ax < b

free variable. x € R

absolute value. constraint x| < 10

piecewise linear. objective max(xi, x2)

assighment. e.g., every class is assigned exactly one classroom
logic. e.g., class enrollment < capacity of assigned room

flow. e.g., the least cost way to ship an item from s to t
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Modeling challenges

model the following as standard form LPs:

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1-6. see https://colab.

1. inequality constraints. Ax < b

2. free variable. x € R

3. absolute value. constraint x| < 10
4.
5
6
7

piecewise linear. objective max(xi, x2)

. assignment. e.g., every class is assigned exactly one classroom
. logic. e.g., class enrollment < capacity of assigned room

. flow. e.g., the least cost way to ship an item from s to t

research.google.com/drive/1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing
for a detailed treatment of a flow problem.)
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Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize ¢’ x
subjectto Ax < b

x>0
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Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize ¢’ x
subjectto Ax < b

x>0

introduce slack variable s € R™: Ax +s=b,5s>0 < Ax<b
minimize ¢'x+0"s
subjectto Ax+s=b
x,s >0
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Split variable into parts to represent free variables

to represent the following problem in standard form,
minimize ¢’ x
subjectto Ax=b
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Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize ¢’ x
subjectto Ax=b

introduce positive variables x;,x_ so x = x; — x_:
minimize ¢’xy —cTx_

subject to Axy —Ax_ =b
Xp,x- >0
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Use epigraph variables to handle absolute value

to represent the following problem in standard form,
minimize  ||x|l1 = >_; = 1"|x

subjectto Ax=b
x>0
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Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize  [|x|[1 = >, = 1"|x;]
subject to Ax=b
x>0

introduce epigraph variable t € R” so |x;| < t;:

minimize 17t = 27:1 ti > [Ix|l1
subject to Ax=b

—t<x<t

x,t >0

Q: Why does this work? For what kinds of functions can we use this trick?
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Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise
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Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise

now solve the problem

minimize 377, >, GiXj

subject to >.7 ; Xjj =1, Vj (every class assigned one room)
3721 Xjj = 1, Vi(no more than one class per room)
Xij € {0,1} (binary variables)

where Cj; is the cost of assigning class i to room j.
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Use binary variables to handle logic

model class enrollment n; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise

solve the problem
minimize .7, > CiXj
subject to .7 ; Xu =1, ¥j (every class assigned one room
> 21 Xij =1, Vi(no more than one class per room
Y piXij <c, Y (capacity constraint
Xij € {0,1} (binary variables

~— —r N N

where Cj; is the cost of assigning class i to room j.

what if we want p to be a variable, too?
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...or use a big-M relaxation!

model class enrollment n; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j

0 otherwise

suppose M is a very large number.
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...or use a big-M relaxation!

model class enrollment n; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

{1 class i is assigned to room j
i =

0 otherwise

suppose M is a very large number. solve the problem

minimize 377, 7 CiXj

subject to > ; Xjj =1, Vj (every class assigned one room
> 21 Xij =1, Vi(no more than one class per room
pi < ¢+ (1—Xj)M, Vi,j (capacity constraint
Xij € {0,1} (binary variables

~— N

where Cj; is the cost of assigning class i to room j.
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LP inequality form

another common form for LP is inequality form
minimize ¢’ x
subjectto Ax < b
how to transform to standard form?

» inequality constraints Ax < b?
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LP inequality form

another common form for LP is inequality form
minimize ¢’ x
subjectto Ax < b
how to transform to standard form?

» inequality constraints Ax < b? slack variables s > 0

» free variable x € R"? split into positive and negative parts

we will see later that these forms are also related by duality
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LP example: production planning

X; units of product i

c; cost per unit

ajj amount of resource j used by product i
b; amount of resource j available

d; demand for product i

minimize ¢’ x
subjectto Ax< b

0<x<d
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d; demand for product i

extensions:

» fixed cost for producing product i at all?
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LP example: production planning

X; units of product i
c; cost per unit
ajj amount of resource j used by product i

b; amount of resource j available

VVvYyVvYVvyy

d; demand for product i

extensions:

» fixed cost for producing product i at all?
c"x+fTz 2z €{0,1}, x; < Mz; for M large

minimize ¢’ x

subjectto Ax< b
0<x<d
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Geometry of LP: inequality form

minimize ¢’ x

subjectto Ax < b

» Ax < b defines a polyhedron
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Solution of LP is extreme point

minimize ¢’ x

subjectto Ax < b

fact: if a solution exists and the feasible set has an extreme point, then some
extreme point of the feasible set is optimal
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Solution of LP is extreme point

minimize ¢’ x

subjectto Ax < b

fact: if a solution exists and the feasible set has an extreme point, then some
extreme point of the feasible set is optimal

cases: solution x* is unique / not unique

> unique: so c’x < cTy forall y € P\ {x}
» not unique: {X*:c"x=c’x* x € P} is a polyhedron. It is not empty (a

solution exists) and its complement is not empty (optimal value is bounded).

So, it has at least one vertex. That vertex is also a vertex of P.
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Basic feasible solution

define: x € R" is a basic feasible solution (BFS) if there is a set S C {1,...,n} of
m columns so that Ag is invertible and

Xs = Aglb, xz =0, x > 0.

» Ags € R™™ submatrix of A with columns in S, is invertible
» BFS <= extreme point
> two BFS with S, S’ are neighbors if they share m = 1 columns: |SNS'|=m—1
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Basic feasible solution

define: x € R" is a basic feasible solution (BFS) if there is a set S C {1,...,n} of
m columns so that Ag is invertible and

Xs = Aglb, xz =0, x > 0.

» Ags € R™™ submatrix of A with columns in S, is invertible
» BFS <= extreme point
> two BFS with S, S’ are neighbors if they share m = 1 columns: |SNS'|=m—1

define: active set is set of nonzero variables in x

Q: how to find a BFS?

A: start at a feasible point; move in a feasible direction until you hit another
constraint; continue until you reach a BFS
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Solving LPs

25 /52



Solving LPs

algorithms:

>

VVYyVVYYVY

enumerate all vertices and check
fourier-motzkin elimination
simplex method

ellipsoid method

interior point methods
first-order methods
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Solving LPs

algorithms:
» enumerate all vertices and check
» fourier-motzkin elimination
» simplex method
» ellipsoid method
» interior point methods
» first-order methods
> ...
remarks:
» enumeration and elimination are simple but not practical
» simplex was the first practical algorithm; still used today
» ellipsoid method is the first polynomial-time algorithm; not practical
» interior point methods are polynomial-time and practical
» first-order methods are practical and scale to large problems
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Discuss: how to solve LPs?

write down a method to solve LPs; discuss in groups.
> idea
» math
» pseudocode

complete https://forms.gle/JbP2fLd6cRVbNUoW9 when you're ready (and before
Friday noon)

(link also available from course schedule)
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https://forms.gle/JbP2fLd6cRVbNUoW9

Enumerate vertices of LP

can generate all extreme points of LP: for each S C {1,..., n} with |S| = m,

» Ags € R™™ submatrix of A with columns in S, is invertible
» solve Asxs = b for x5 and set xg = 0
» if x¢ > 0, then x is a BFS

» evaluate objective ¢’ x

the best BFS is optimal!
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» Ags € R™™ submatrix of A with columns in S, is invertible
» solve Asxs = b for x5 and set xg = 0

» if x¢ > 0, then x is a BFS

> evaluate objective ¢’ x

the best BFS is optimal!

problem: how many BFSs are there?
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Enumerate vertices of LP

can generate all extreme points of LP: for each S C {1,..., n} with |S| = m,

» Ags € R™™ submatrix of A with columns in S, is invertible
» solve Asxs = b for x5 and set xg = 0
» if x¢ > 0, then x is a BFS

> evaluate objective ¢’ x

the best BFS is optimal!

problem: how many BFSs are there?
n choose mis () = #lm), (“exponentially many”)

28 /52



Simplex algorithm

basic idea: local search on the vertices of the feasible set

» start at BFS x and evaluate objective ¢’ x

> move to a neighboring BFS x’ with better objective ¢’ x’

» repeat until no improvement possible
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Simplex algorithm

basic idea: local search on the vertices of the feasible set
» start at BFS x and evaluate objective ¢’ x

> move to a neighboring BFS x’ with better objective ¢’ x’

» repeat until no improvement possible

discuss in groups:

» how to find an initial BFS?
» how to find a neighboring BFS with better objective?

» how to prove optimality?
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Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize Y 7, z
subjectto Ax+ Dz=05b
x,z>0
where D € R™*™ is a diagonal matrix with D;; = sign(b;) for i=1,...,m.

» x =0, z=|b| is a BFS of this problem
» (x,z) = (x,0) is a BFS of this problem <= x is a BFS of the original problem

30/52



Find a better neighboring BFS

start with BFS x with active set S and turn on variable j ¢ S
xtT < x+0d, 0>0
where dj =1 and d; =0 for i ¢ S U {j}. need to solve for ds.
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» need to stay feasible wrt equality constraints, so

Ax=b, Alx+0d)=b, = Ad=0
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» construct the jth basic direction

Ad = Asds + Aj =0 = ds = —A'A;
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» need to stay feasible wrt equality constraints, so

Ax=b, Alx+0d)=b, = Ad=0

» construct the jth basic direction

Ad = Asds + Aj =0 = ds = —A'A;

» if xs > 0 (i.e., it is non-degenerate), then 3 a stepsize § > 0 st x™ > 0
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Find a better neighboring BFS

start with BFS x with active set S and turn on variable j ¢ S
xtT < x+0d, 0>0
where dj =1 and d; =0 for i ¢ S U {j}. need to solve for ds.
» need to stay feasible wrt equality constraints, so

Ax=b, Alx+0d)=b, = Ad=0

» construct the jth basic direction

Ad = Asds + Aj =0 = ds = —A'A;

» if xs > 0 (i.e., it is non-degenerate), then 3 a stepsize § > 0 st x™ > 0
» how does objective change?

c'xt=c"x+60c"d=c"x+0c —0cL A A
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Reduced cost

define reduced cost ¢ = ¢; — cJ AS'A;, j ¢S
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Reduced cost

define reduced cost ¢ = ¢; — cJ AS'A;, j ¢S

fact:

» if ¢ >0, x is optimal
» if x is optimal and nondegenerate (xs > 0), then € >0
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Duality
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Why duality?

> certify optimality

» turn V into 3

» use dual lower bound to derive stopping conditions
» new algorithms based on the dual

» solve dual, then recover primal solution
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Duality notation

» inner product
n
yIx=(y,x)=y-x=>_yx
i=1

» conjugate
(v, Ax) = (ATy,x)
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Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A € R™*" and b € R™, exactly one of the following is true:
» there exists x € R" so that Ax = b and x >0
» there exists y € R™ so that ATy >0 and (b,y) < 0

= can efficiently certify infeasibility of a linear program
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Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A € R™*" and b € R™, exactly one of the following is true:
» there exists x € R" so that Ax = b and x >0
» there exists y € R™ so that ATy >0 and (b,y) < 0

= can efficiently certify infeasibility of a linear program

proof: suppose we have x € R” so that Ax = b and x > 0.
then for any y € R,

0 = <yab*AX>:<yab>7<ATva>
(y.b) = (ATy,x)

so if ATy >0, then use x > 0 to conclude (y,b) > 0.
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Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A € R™*" and b € R™, exactly one of the following is true:
» there exists x € R" so that Ax = b and x >0
» there exists y € R™ so that ATy >0 and (b,y) < 0

= can efficiently certify infeasibility of a linear program

proof: suppose we have x € R” so that Ax = b and x > 0.
then for any y € R,

0 = <yabiAX>:<yab>7<ATy7X>
(y,b) = (ATy,x)
so if ATy >0, then use x > 0 to conclude (y,b) > 0.

(opposite direction is similar)
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Lagrange duality

primal problem with solution x* € R", optimal value p*:

minimize ¢’ x
subject to Ax =b: dual y
x>0

if x is feasible, then Ax = b, so (y, Ax — b) =0 for y € R™.
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Lagrange duality

primal problem with solution x* € R", optimal value p*:
T

minimize c¢'x
subject to Ax =b: dual y
x>0

if x is feasible, then Ax = b, so (y, Ax — b) =0 for y € R™.

define the Lagrangian
L(x,y) = c'x—{y,Ax —b)
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Lagrange duality

primal problem with solution x* € R", optimal value p*:
T

minimize c¢'x
subject to Ax =b: dual y (P)
x>0

if x is feasible, then Ax = b, so (y, Ax — b) =0 for y € R™.
define the Lagrangian
L(x,y) = c'x—{y,Ax —b)

* — . - ]
g X:Axl=nbf, x>0 Llboy) 2 ;gf) L(x,y)
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Lagrange duality

primal problem with solution x* € R", optimal value p*:

minimize ¢’ x
subject to Ax =b: dual y (P)
x>0

if x is feasible, then Ax = b, so (y, Ax — b) =0 for y € R™.
define the Lagrangian

L(x,y) = CTX—(y,Ax_b>
s X:Axi=nbf, x>0 Liy) = ;gf) L(x,y)
= infc'x+{y,b—Ax)
= {y,b)+ inf (CTX_ <Ary’x>)
= Wb+ inf (= ATy.x))
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Lagrange duality, ctd

we have a lower bound on p* for any y, and a useful one whenever ¢ — ATy > 0.

maximize bound:
maximize  (y, b)

p* > subjectto ATy <c
variable y € R"

define the dual function
y,b) ATy<c
gly) = {< )

—00 otherwise
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Lagrange duality

weak duality asserts that p* > g(y) for all y € R™.

p* = gly) VyeR”
> supg(y) =:d*
L —

D

p* > d* dual optimal value
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Strong duality

Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is c"x — b7y >0

by weak duality, duality gap is always nonnegative
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Strong duality
Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is c"x — b7y >0
by weak duality, duality gap is always nonnegative

Definition (Strong duality)
A primal-dual pair (x*, y*) satisfies strong duality if

pr=d < c'x—b'y=0
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Strong duality

Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is c"x — b7y >0

by weak duality, duality gap is always nonnegative

Definition (Strong duality)
A primal-dual pair (x*, y*) satisfies strong duality if

pr=d < c'x—b'y=0

strong duality holds

» for feasible LPs

» (later) for convex problems under constraint qualification aka Slater’s
condition. feasible region has an interior point x so that all inequality
constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded 40/52



Strong duality for LPs

primal and dual LP in standard form:

minimize ¢’ x
subjectto Ax=b

x>0

maximize b’y
subject to ATy <c¢

claim: if primal LP has a bounded feasible solution x*, then strong duality holds
i.e., dual LP has a bounded feasible solution y* and p* = d*

41/52



Logic of strong duality proof

x € R" is optimal for the primal LP with optimal value p*
|} (see next slide)
the following linear system has no solution

A —b][x] [0 AT ¢
CT _p* 1 T =1 or _bT _p*
|} (Farkas lemma)

AT c —y
>
[—bT _p*} [ ] 50,050

4

y/o is dual feasible with optimal value as least as good as p*
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R

AX —br =0, X =p7-1, (xX,7)>0
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R
AX —br =0, X =p7-1, (xX,7)>0

claim: this system has no solution. pf by contradiction:

» if 7> 0, then x'/7 is feasible for LP and ¢ x'/7 < p*
» if 7 =0, then x* + x’ is feasible for LP and ¢ (x* + x) < p*
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R
AX —br =0, X =p7-1, (xX,7)>0

claim: this system has no solution. pf by contradiction:

» if 7 > 0, then x'/7 is feasible for LP and ¢’ x'/7 < p*
» if 7 =0, then x* + x is feasible for LP and ¢ (x* + x') < p*

so use Farkas’ lemma:

Ax = b, x>0 or ATy >0, b'y<o0
A 0 AT c y
>
g H N R
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R
AX —br =0, X =p7-1, (xX,7)>0

claim: this system has no solution. pf by contradiction:

» if 7 > 0, then x'/7 is feasible for LP and ¢’ x'/7 < p*
» if 7 =0, then x* + x is feasible for LP and ¢ (x* + x') < p*

so use Farkas’ lemma:

Ax=b, x>0 or ATy >0, b'y<o0
0 AT c 3%
>
e e A R

second system is feasible = y /o is dual feasible and optimal
43/52
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Using duality
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Duality as stopping condition

want to optimize until primal suboptimality c”x — p* > 0 or dual suboptimality
d* — b"y > 0 are small enough. how?
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for x feasible, y dual feasible,
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Duality as stopping condition

want to optimize until primal suboptimality c”x — p* > 0 or dual suboptimality
d* — b"y > 0 are small enough. how?

duality gap ¢"x — bTy > 0 bounds both!

for x feasible, y dual feasible,
in practice: improve primal and dual iterates in parallel until duality gap is small

enough

45 /52



How to use duality to estimate sensitivity?

primal and dual LP in standard form:

min c"x max bTy
* = i A = * = .
P subject to XX> 0 b d subject to ATy <c¢

optimal primal and dual solution x*, y*
perturbed problem: primal and dual LP in standard form:
T

min c'x max (b+)Ty
5* = subjectto Ax = b =
P subject o Ax te d subject to ATy < ¢

x>0
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How to use duality to estimate sensitivity?

primal and dual LP in standard form:

min c"x max bTy
* p— 1 A p— * pu— .
P subject to XX> 0 b d subject to ATy <c

optimal primal and dual solution x*, y*

perturbed problem: primal and dual LP in standard form:

min c’x max (b+e)Ty
5* = subjectto Ax = b =
P stibject to XX> 0 te d subject to ATy < ¢

y* is feasible for perturbed problem, so

ﬁ* — (;* > (b—l—e)Ty* — d*—l—eTy*
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Outline

Large-scale linear programming
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Column / constraint generation

primal and dual LP, A€ R™*", n> m:

minimize ¢’ x o -
subject to Ax=b +ydual maximize b'y
x>0 subject to ATy < ¢
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Column / constraint generation

primal and dual LP, A€ R™*", n> m:
T

minimize c¢'x maximize b7
subject to Ax=0b pdual subiect t ATy <
x>0 ubj o y<c
approximate by using S C {1,...,n}: fewer variables (primal) or constraints (dual)

. . . T

minimize ¢, xs - T
) maximize b

subject to Asxs = b ¢ydual y

subject to Aly <c¢
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Column / constraint generation

primal and dual LP, A€ R™*", n> m:

minimize ¢’ x maximize b7
subject to Ax=b dual subiect to ATy <ec
x>0 ubj Y=
approximate by using S C {1,..., n}: fewer variables (primal) or constraints (dual)
. . . T
minimize ¢, Xs - T
. b
subject to Asxs = b dual m:;\))flmgzte ATy <
s >0 subject to Agy < cs
if xs is optimal for Ps and reduced cost if y is optimal for Dg and feasible for D,
¢ > 0, then xs is optimal for P then y is optimal for D

otherwise?
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Column / constraint generation

primal and dual LP, A€ R™*", n> m:
T

minimize c¢'x maximize b7
subject to Ax=b dual subiect to ATy <ec
x>0 ubj Y=
approximate by using S C {1,..., n}: fewer variables (primal) or constraints (dual)
. . . T
minimize ¢, Xs - T
. b
subject to Asxs = b dual m:;\))flmgzte ATy <
s >0 subject to Agy < cs
if xs is optimal for Ps and reduced cost if y is optimal for Dg and feasible for D,
¢ > 0, then xs is optimal for P then y is optimal for D

otherwise? find i with & = ¢; — ¢ Ag'a; < 0 (primal) or 2]y > ¢; (dual) and add
to S

» if dual constraints are all binding, Agy = Cs, so these conditions are the same!

B artive coat AF nAn 7ara nrirmal viarinhlae Aiidl +A Aacrvivia cat AF FrARcFraTnte Fhat hAalA
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Presolve

Often many constraints are redundant or can be simplified. example:

minimize  x3
subjectto x3 =1
Xo = X3 — X1
x3—x3 >0
x>0

a good presolve can often reduce problem from 1000s of variables and constraints
down to 10s!

reference: Achterberg, Tobias, et al. " Presolve reductions in mixed integer
programming.” INFORMS Journal on Computing 32.2 (2020): 473-506.
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Outline

Integer programming
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MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize ¢’ x minimize ¢’ x
subject to Ax+ Bz = b —"e3X subject to Ax + Bz = b
x>0,z>0€Z x,z>0
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MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize ¢’ x minimize ¢’ x
subject to Ax+ Bz = b —"e3X subject to Ax + Bz = b
x>0,z>0€Z x,z>0

example:
maximize x
subjectto x <z
x<1-=z
x>0,ze€{0,1}
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MILP solution vs LP solution

mixed-integer linear program (MILP):

minimize ¢’ x minimize ¢’ x
subject to Ax+ Bz = b —"e3X subject to Ax + Bz = b
x>0,z>0€Z x,z>0

example:
maximize x
subjectto x <z
x<1-=z
x>0,ze€{0,1}

draw picture: where is solution of MILP? of LP relaxation?
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Branch and bound

given MILP with integer variable z in rectangle R = (/,u), | < z < u, optimal value
p*(R), solution z*(R)

» solve LP relaxation to produce lower bound LB(R) < p*(R)
» round z to nearest feasible integer z’ to produce upper bound UB(R) > p*(R)
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given MILP with integer variable z in rectangle R = (/,u), | < z < u, optimal value
p*(R), solution z*(R)

» solve LP relaxation to produce lower bound LB(R) < p*(R)
» round z to nearest feasible integer z’ to produce upper bound UB(R) > p*(R)

if LB(R) = UB(R), then p*(R) = LB(R) = UB(R) and we are done.
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Branch and bound

given MILP with integer variable z in rectangle R = (/,u), | < z < u, optimal value
p*(R), solution z*(R)

» solve LP relaxation to produce lower bound LB(R) < p*(R)

» round z to nearest feasible integer z’ to produce upper bound UB(R) > p*(R)
if LB(R) = UB(R), then p*(R) = LB(R) = UB(R) and we are done.
otherwise, branch

» split R into two subrectangles Ry = (h, u1), R2 = (h, u2) so that
ZNR=(ZNR)U(ZNRy)
compute bounds LB(R;), UB(R1), LB(R2), UB(R»)
R C Ri1 URs so LB(R) < min(LB(R1),LB(R»))
keep best solution so far UB <— min(UB, UB(R1), UB(R2))
» prune: eliminate rectangle from consideration if LB(R) > UB

vVVvyy

draw picture in 2D
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