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Subgradients
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Basic inequality

recall basic inequality for convex differentiable 7:

Fly) > F(x)+ VF(x)T(y = x)

» first-order approximation of f at x is global underestimator
» (Vf(x),—1) supports epi f at (x, f(x))

what if f is not differentiable?
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Non-differentiable functions

are these functions differentiable?

> |t| for t € R

> |[x]|1 for x € R"

> || X]« for X € R™"

> max,-a,-Tx—i—b,- for x € R”
» Apax(X) for X € R™"
>

indicators of convex sets C

if not, where? can we find underestimators for them?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) > f(x) —|—gT(y —x) forally

picture
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
f(y) > f(x) —|—gT(y —x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) > f(x) —|—gT(y —x) forally
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Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) > f(x) —|—gT(y —x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x
Q: Can a function f have no subgradient at a point x?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x

Q: Can a function f have no subgradient at a point x?
A: Yes, if x does not lie on convex hull of f
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Subgradients and convexity

> g is a subgradient of f at x iff (g, —1) supports epi f at (x, f(x))
» g is a subgradient iff f(x) + g7 (y — x) is a global (affine) underestimator of f
» if f is convex and differentiable, V£ (x) is a subgradient of f at x

subgradients come up in several contexts:

» algorithms for nondifferentiable convex optimization

» convex analysis, e.g., optimality conditions, duality for nondifferentiable
problems

(if f(y) < f(x) +g"(y — x) for all y, then g is a supergradient)
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Subdifferential

set of all subgradients of f at x is called the subdifferential of f at x, denoted
If (x)
Of(x) ={g: f(y) = f(x) +&g"(y —x) Wy}

for any f,

» Of(x) is a closed convex set (can be empty)
> Of(x) =0 if f(x) =00

proof: use the definition
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Subdifferential
set of all subgradients of f at x is called the subdifferential of f at x, denoted
If (x)
Of(x) ={g: f(y) = f(x) +&g"(y —x) Wy}

for any f,

» Of(x) is a closed convex set (can be empty)

> Of(x) =0 if f(x) =00
proof: use the definition

if fis convex,

» Jf(x) is nonempty, for x € relintdom f
» Of(x) = {Vf(x)}, if f is differentiable at x
> if Of(x) = {g}, then f is differentiable at x and g = Vf(x)
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Compute subgradient via definition

g € Of (x) iff
fly)>f(x)+g&"(y—x) Vy € dom(f)

example. let f(x) = |x| for x € R. suppose s € sign(x), where

{1} x>0
sign(x) = ¢[-1,1] x=0
—{1} x<o.

then

f(y) = max(y,—y) > sy = s(x +y — x) = |x| + s(y — x)
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f(y) = max(y,—y) > sy = s(x +y — x) = |x| + s(y — x)

so sign(x) C Of(x) (in fact, holds with equality)

9/55



Compute subgradient via definition

g € Of (x) iff
fly)>f(x)+g&"(y—x) Vy € dom(f)

example. let f(x) = |x| for x € R. suppose s € sign(x), where

{1} x>0
sign(x) = ¢[-1,1] x=0
—{1} x<o.

then

f(y) = max(y,—y) > sy = s(x +y — x) = |x| + s(y — x)

so sign(x) C Of(x) (in fact, holds with equality)

picture
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Compute subgradient via definition
g € df(x) <= f(y) > f(x)+g"(y —x) Vy € dom(f)

example. let f(x) = max; a] x + b;.
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Compute subgradient via definition
g € df(x) <= f(y) > f(x)+g"(y —x) Vy € dom(f)
example. let f(x) = max; a x + b;. then for any i,
fly) = maxaly+ by
aly + b;
= a3/ (x+y—x)+b;
= a/x+b+al(y—x)
= f(x)+a/(y —x),

where the last line holds for i € argmax; aij + bj. so

> a; € Of(x) for each i € argmax; aJTx + b;
» Of(x) is convex, so

Co{a; : i € argmax aij + bj} C 0f(x)
J
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Compute subgradient via definition
g € df(x) <= f(y) > f(x)+g"(y —x) Vy € dom(f)
example. let f(X) = Apax(X).
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Compute subgradient via definition
gedf(x) « f(y)>f(x)+g"(y—x) Vyedom(f)
example. let f(X) = Apax(X). then
fF(Y) = sup v Yv
Ivii<i
= sup v (X+Y-=X)v, |v|<1
Ivii<1
= sup (vTXv+ vi(y —X)v) s v <1
Ivii<1

= viXv+tr(w'(Y = X)), veargmaxv'Xv
Ivii<1

= )\max(X) + tr(VVT(Y - X))a v € argmax v Xv
vii<i

> w € 9f(X) for each v € argmax|,| <1 v Xv
» Of(x) is convex, so

Co{w' : v € argmaxv'Xv} C 9f(x)
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Outline

Subgradient properties
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Properties of subgradients

subgradient inequality:

g edf(x) —= f(y)>f(x)+g"(y—x) Vyedom(f)

for convex f, we'll show

» subgradients are monotone: for any x,y € domf, g, € 0f(y), and g € Of(x),

(& —&) (y—x) =0

K)

» Of(x) is continuous: if f is (lower semi-)continuous, x(K) 5 x, g(k) — g, and

g¥) € af (x(K) for each k, then g € f(x)
> Of(x) = argmax g’ x — f(x)

these will help us compute subgradients
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Subgradients are monotone

fact. for any x,y € domf, g, € 0f(y), and g« € Of(x),
(gy - gX)T(.y - X) >0
proof. same as for differentiable case:

fly) > f(x)+ &l (y—x)  f(x)>f(y)+g (x—y)

add these to get
(& —&) (y—x) >0
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Subgradients are preserved under limits
subgradient inequality:
geIf(x) <= fy)>f(x)+g"(y —x) Vy € dom(f)

fact. if f is (lower semi-)continuous, x(¥) — x, g(k) — g, and g(¥) € af (x(¥)) for
each k, then g € Of(x)

proof.
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Subgradients are preserved under limits

subgradient inequality:
geIf(x) <= fy)>f(x)+g"(y —x) Vy € dom(f)

fact. if f is (lower semi-)continuous, x(K) — x, g(k) — g, and g(¥) € af(x(K) for
each k, then g € Of(x)

proof. For each k and for every y,

fly) > F(x9)+ (g7 (y —xH)
lim f(y) > lim (<) + (g")T(y - x1)

k—o0
fly) > f(x)+g"(y—x)

moral. To find a subgradient g € 9f(x), find points x(¥) — x where f is
differentiable, and let g = limy_,o, V£ (x(¥).
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Subgradients are preserved under limits: example

consider f(x) = |x|. we know

{-1} x<0
If(x)=4¢ 7 x=0
{1} x>0

SO

> lim, 0+ V(x) =1
> Iimxﬁo— V(X) =-1

hence
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Subgradients are preserved under limits: example

consider f(x) = |x|. we know

{-1} x<0
If(x)=4¢ 7 x=0
{1} x>0
so
> lim, 0+ V(x) =1
> Iimxﬁo— V(X) =-1
hence
» —1¢€0f(0) and —1 € 0f(0)
> 0f(0) is convex, so [—1,1] C 9f(0)
» and 0f(0) is monotone, so [—1,1] = 97(0)
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Convex functions can’t be very non-differentiable

Theorem (Rockafellar, Convex Analysis, Thm 25.5)

A convex function f is differentiable almost everywhere on the interior of its domain.
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corollary: pick x € dom f uniformly at random. f is differentiable at x w/prob 1.
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Convex functions can’t be very non-differentiable

Theorem (Rockafellar, Convex Analysis, Thm 25.5)

A convex function f is differentiable almost everywhere on the interior of its domain.

corollary: pick x € dom f uniformly at random. f is differentiable at x w/prob 1.

corollary: for a convex function f and any x, there is a sequence of points x(K) — x
where f is differentiable.
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Subgradients and fenchel conjugates

fact. g € 0f(x) < f*(g)+f(x) =g"x
(recall the conjugate function f*(g) = sup, g " x — f(x).)
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Subgradients and fenchel conjugates
proof. if f*(g) + f(x) = g"x,
f*(g) = supg’y —f(y)
y

> gly—fly) Vy

fly) > g'y—f(g) Yy
= gly—g'x+f(x) Vy
= g’ (y—x)+f(x) Vy

so g € Of(x). conversely, if g € Of(x),
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Subgradients and fenchel conjugates
proof. if f*(g) + f(x) = g"x,
f*(g) = supg’y —f(y)
y
> gly—fly) Vy
fly) > g'y—f(g) Yy
= gly—g'x+f(x) Vy
= g’ (y—x)+f(x) Vy

so g € Of(x). conversely, if g € Of(x),

fly) = g'(y—x)+f(x)
g'x—f(x) > gly—f(y)
supg’x—f(x) > supg'y—f(y)
y y
gTX_f(X) > f*(g) 19/55



Subgradients and fenchel conjugates

Conclusion.

gEeif(x) <= f (g)+f(x)=g'x
< x€argmaxg’ x — f(x)

consider the same implications for the function *:

x € 0f*(g) <= f(x)+f*(g):ng
— gcargmaxg'x—f*(g)
g

so all these conditions are equivalent, and g € 0f(x) <= x € 9f*(g)!
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g

example. let f(x) = ||x||1. compute

f*(g) = supg’x—|x|1
X
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g
example. let f(x) = ||x||1. compute

f*(g) =

supg’ x — [|x[|1
X

_ fo fgle<t
oo otherwise
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g

example. let f(x) = ||x||1. compute

f(g) = supg’x— x|
X

_ o lgle <t

oo otherwise

given X Of(x) = argmaxg'x— f*(g)
g

= argmaxg’x
lglloo<1

= sign(x)
where sign is computed elementwise.
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Compute subgradient via fenchel conjugate
Of (x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
f(G) = suptr(G, X) — || X].
X
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Compute subgradient via fenchel conjugate
Of (x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
f(G) = suptr(G, X) — || X].
X

)0 6l <1
N oo otherwise

where ||G|| = 01(G) is the operator norm of G.
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Compute subgradient via fenchel conjugate
Of (x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
f(G) = suptr(G, X) — || X].
X

_ )0 Jel=1
B oo otherwise
where ||G|| = 01(G) is the operator norm of G.

given X = U diag(o)V' T,
0f(x) = argmaxtr(G,X)—f*(G)
G

= argmaxtr(G, X)
IGll<1
= Udiag(sign(c))V"

where sign is computed elementwise.
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Subgradient method
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Subgradient method
the subgradient method minimizes a nondifferentiable convex function f

kD) ) _ gy g6)

> x(kK) is the kth iterate
» gk is any subgradient of f at x(K)
» «y > 0 is the kth step size
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Subgradient method
the subgradient method minimizes a nondifferentiable convex function f

kD) ) _ gy g6)

> x(kK) is the kth iterate
» gk is any subgradient of f at x(K)
» «y > 0 is the kth step size

warning: subgradient method is not a descent method.
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Subgradient method
the subgradient method minimizes a nondifferentiable convex function f

kD) ) _ gy g6)

> x(kK) is the kth iterate
» gk is any subgradient of f at x(K)
» «y > 0 is the kth step size

warning: subgradient method is not a descent method.
instead, keep track of best point so far

k . i
fren = min F(x1)
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How to avoid slow convergence

don't use subgradient method for very high accuracy!
instead,

» for high accuracy: rewrite problem as LP or SDP; use IPM
» for medium accuracy:
> regularize your objective (so it's strongly convex)

F(x) = f(x) + allx = x°|?
> smooth your objective (so it's smooth)
f(X) = Ey:l\yfxﬂgdf(.)/)

» infimal convolution (so it's smooth and strongly convex):

F(x) = inf £(y) + Elly = x|
y

» more on these later. ..

» for low accuracy: use a constant step size; terminate when you stop improving

much or get bored
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Proximal operators
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Proximal operator
define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z — x|)
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Proximal operator
define the proximal operator of the function f : R — R

1
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Proximal operator
define the proximal operator of the function f : R — R
1
prox;(x) = argmin(f(z) + 5z - x|)
z

» prox; : R = R
» generalized projection: define the indicator of convex set C

e ={, Tie

then the proximal operator is projection onto C:

prox; . (w) = Mc(w)
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Proximal operator
define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z — x|)

» prox; : R = R
» generalized projection: define the indicator of convex set C

0 xeC
Le(x) = {
o x¢C
then the proximal operator is projection onto C:

prox; . (w) = Mc(w)

> implicit gradient step: if z = prox,(x)
of(z)+z—x = 0
zZ = X— ﬁf(z) 27/55



Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)

» f(x) =0 (identity)
> f(x) = x2

28 /55



Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
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» f(x) =0 (identity)
» f(x) = x? (shrinkage)
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Let’s evaluate some proximal operators!
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1
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R
. 1 2
prox¢(x) = argmin(f(z) + EHZ — x[2)
V4
» f(x) =0 (identity)
=X

2 (shrinkage)
» f(x) = |x| (soft-thresholding)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)

» f(x) =0 (identity)

» f(x) = x? (shrinkage)

» f(x) = |x| (soft-thresholding)
> f(x) =10
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)

) = 0 (identity)

) = x? (shrinkage)

) = |x| (soft-thresholding)
)

)

VVvyVvYVvy
/-\/-\;H\AA
X
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox;(x) = argmin(f(z) + ||z = x[3)

) = 0 (identity)

) = x2 (shrinkage)

) = |x| (soft-thresholding)
) = 1,>0 (projection)

)= 27:1 fi(x;) (separable)

VVvyVvYVvy
/-\/-\;H\AA
X
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVYyVvYV VY

1
prox;(x) = argmin(f(z) + ||z = x[3)

f(x) = 0 (identity)

f(x) = x? (shrinkage)

f(x) = |x| (soft-thresholding)
f(x) = 1c>0 (projection)

f(x) =>_7_; fi(x;) (separable)
F(x) = lix[la
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVYyVvYV VY

1
prox;(x) = argmin(f(z) + ||z = x[3)

f(x) = 0 (identity)

f(x) = x? (shrinkage)

f(x) = |x| (soft-thresholding)

f(x) = 1x>0 (projection)

f(x) =>_7_; fi(x;) (separable)

f(x) = ||x||1 (soft-thresholding on each index)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVYyVYVV VY

1
prox;(x) = argmin(f(z) + ||z = x[3)

f(x) = 0 (identity)

f(x) = x? (shrinkage)

f(x) = |x| (soft-thresholding)

f(x) = 1x>0 (projection)

f(x) =>_7_; fi(x;) (separable)

f(x) = ||x||1 (soft-thresholding on each index)
F(X) = IIX]
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVYyVYVV VY

1
prox;(x) = argmin(f(z) + ||z = x[3)

f(x) = 0 (identity)

f(x) = x? (shrinkage)

f(x) = |x| (soft-thresholding)

f(x) = 1x>0 (projection)

f(x) =>_7_; fi(x;) (separable)

f(x) = ||x||1 (soft-thresholding on each index)
f(X) = || X]|« (soft-thresholding on singular values)
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Proxable functions

we say a function f is proxable if it's easy to evaluate prox,(x)

all examples from previous slide are proxable
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Outline

Proximal gradient method
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Proximal gradient method

suppose f is smooth, g is non-smooth. solve

minimize f(x) + g(x)

using proximal operators together with gradient steps?
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Proximal gradient method

suppose f is smooth, g is non-smooth. solve
minimize f(x) + g(x)
using proximal operators together with gradient steps? idea:
xT = prox,, (x — tVf(x))

» the proximal operator gives a fast method to step towards the minimum of g

» gradient method works well to step towards minimum of f
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VVYyVvV VY

Proximal gradient: examples

projected gradient to solve min,cq f(x) for smooth f: set g(x) = 1(yQ(x)
nonnegative least squares: f(x) = 3||Ax — b||3, g(x) = 1(x >0
lasso: f(x) = %HAX — b3, g(x) = Ax|I1

logistic loss + any regularizer
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Relations
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Functions

in much of what follows, we'll need to assume functions are

> closed: epi(f) is a closed set
> convex: f is convex

» proper: dom f is non-empty

which we abbreviate as CCP
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Relations

(x,0f(x)) and (x, prox¢(x)) define relations on R"

a relation R on R” is a subset of R"” x R"
domR = {x:(x,y) € R}

let R(x) ={y:(x,y) € R}

if R(x) is always empty or a singleton, we say R is a function

vVvyVYyVvYyy

any function f : R"” — R" defines a relation {(x, f(x)) : x € dom f}
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VVvyVvYVvyy

Relations: examples

empty relation: ()

full relation: R" x R"

identity: {(x,x): x € R"}

zero: {(x,0): x € R"}

subdifferential: {(x,g : x € domf, g € 0f(x)}
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Operations on relations

if R and S are relations, define

» composition: RS = {(x,z): (x,y) € R,(y,z) € S}
» addition: R+ S ={(x,y+2z):(x,y) € R, (x,z) € S}
» inverses: R~ = {(y,x): (x,y) € R}

use inequality on sets to mean the inequality holds for any element in the set, e.g.,

fly) > f(x)+0f(x)T(y —x) <= fly)>f(x)+g"(y—x) Vegeof(x)
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Example: fenchel conjugates and the subdifferential

if fis CPP, Of*

= Of L. proof:
(u,v) € (9F) 71

[ A A

(v,u) € Of

u € 0f(v)
0€df(v)—u

v € argmin(f(x) — u” x)

v € argmax(u’ x — f(x))

f(v)+ f(u)=u"v

u € argmax(y v — f*(y))
y

0ev—0f(u))
(u,v) € OfF
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Example: fenchel conjugates and the subdifferential

if £ is CPP, Of* = 9f 1. proof:
(u,v) € (9F)

corollary: f = **.

[ A A

(v,u) € Of
u € 0f(v)
0€df(v)—u

-

v € argmin(f(x) — u’ x)
v € argmax(u’ x — f(x))

f(v)+ f(u)=u"v

u € argmax(y v — f*(y))
y

0ev—0f(u))
(u,v) € OfF
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Fixed points
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Zeros of a relation

> x is a zero of Rif 0 € R(x)
> the zero set of R is R71(0) = {x : (x,0) € R}
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Zeros of a relation

> x is a zero of Rif 0 € R(x)
> the zero set of R is R71(0) = {x : (x,0) € R}

x is a zero of Of iff x solves minimize f(x)
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Lipschitz operators

relation F has Lipschitz constant L if for all (x,u) € F and (y,v) € F,
Ju—v] < Llx—yl

fact: if F is Lipschitz, then F is a function.
proof:
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Lipschitz operators

relation F has Lipschitz constant L if for all (x,u) € F and (y,v) € F,
Ju—v] < Llx—yl

fact: if F is Lipschitz, then F is a function.
proof: if (x,u) € F and (x,v) € F,

lu— vl <Llx—=x[|=0

» the relation F is nonexpansive if L <1

» the relation F is contractive if L < 1
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
| —tVf = {(x,x — tVf(x)) : x € domf}

is Lipschitz with parameter L = max{|1 — ta/, |1 — t3|}.
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
| —tVf = {(x,x — tVf(x)) : x € domf}

is Lipschitz with parameter L = max{|1 — ta/, |1 — t3|}.
2 a

.o _ _ K/fl _ . a, e
corollary: if t = el L= P where Kk = 3is the condition number.
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
| —tVf = {(x,x — tVf(x)) : x € domf}

is Lipschitz with parameter L = max{]l — tal, |1 — tB]}.
corollary: if t = W L= +1 1 where k = £ is the condition number.

hint: use the fundamental theorem of calculus

1
(I = tVF)(x) = (I = tVF)(y) = / (I — tV2f(Ox + (1 — 0)y))(x — y)db

0

||/ dtu</| £)t

and Jensen's inequality

source: Ryu and Yin ( )
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
| —tVf ={(x,x — tVf(x)): x € domf}
is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
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Gradient update is contractive for SSC functions
suppose f is a-strongly convex and -smooth. the relation
| —tVf ={(x,x — tVf(x)): x € domf}
is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
proof:
I = tV)(x) = (I = tVF)(y)

/01(/ — tV2f(Ox + (1 — 0)y))(x — y)cmH

1
< / (7 — £2F(6x + (1 — B)y))(x — ) db
0

1
< [ max(1 - tal. 11— e3)d0 x|
0
= max(|1 - tal,|1 - t8]) [|x -y
last ineq uses al < V2f < I = (1—-tB)I =<1 - tV2f < (1—ta)l
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Proximal map is nonexpansive

the proximal map of any convex function f is nonexpansive:

Iproxe(y) — proxq(x)] < [ly — x|
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Proximal map is nonexpansive

the proximal map of any convex function f is nonexpansive:

Iproxe(y) — proxq(x)] < [ly — x|

proof: let u = proxs(x) and v = prox(y), so
x —u € 0f(u), y —v e of(v)
then by the subgradient inequality,
f(v) > f(u) + (x —u,v—u) and fluy>f(v)+{(y —v,u—v)

add these to show

0 > (y—x+u—v,u—v)
(x—yu—v) > [lu—v|?
Ix =yl = [lu—vl

» second line shows prox, is firmly nonexpansive
» third line uses Cauchy-Schwarz to show it is nonexpansive 44/55



Proximal map is contractive for SC functions

the proximal map of an a-SC function f is ﬁ-contractive:

Iprox(y) — prox,(x)| < ly = x|

1+ 2«
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Proximal map is contractive for SC functions

the proximal map of an a-SC function f is ﬁ-contractive:

Iprox(y) — prox,(x)| < ly = x|

1+ 2«

proof: let u = proxs(x) and v = prox,(y), so
x —u € 0f(u), y —v e df(v)

by strong convexity

f(v) > f(u)+ (x—uv—u)+alv—ul
flu) > f(v)+{y—v,u—v)+alu—v|?
dd these to sh
a ese to show 0 > (y—x+u—v,u—v)+2au—v|?
(x=yu=v) > (1+2a)]u—v|’

Y

ok =yl 2 llu-v e



Fixed points

x is a fixed point of F if x = F(x)
examples:

» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point
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Fixed points

x is a fixed point of F if x = F(x)

examples:

» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
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Fixed points

x is a fixed point of F if x = F(x)

examples:
» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs, ||x — y|| = [|[F(x) = F(y)ll < [[x - y|| contradiction
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Fixed points

x is a fixed point of F if x = F(x)

examples:
» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs, ||x — y|| = [|[F(x) = F(y)ll < [[x - y|| contradiction

» a nonexpansive operator F need not have a fixed point
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Fixed points

x is a fixed point of F if x = F(x)

examples:
» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs, ||x — y|| = [|[F(x) = F(y)ll < [[x - y|| contradiction

» a nonexpansive operator F need not have a fixed point
proof: translation
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Fixed point iteration

to find a fixed point of F, try the fixed point iteration

slk4+1) — F(x("))
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Fixed point iteration

to find a fixed point of F, try the fixed point iteration

slk4+1) — F(x("))

Q: when does this converge?
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Fixed point iteration: contractive

Banach fixed point theorem: if F is a contraction, the iteration
XU = F(x )y
converges to the unique fixed point of F

properties: if L is the Lipschitz constant of F,

» distance to fixed point decreases monotonically:
XD — x| = [F (W) = FO)I| < LIxP — x|

(iteration is Fejer-monotone)

» linear convergence with rate L
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Proof

proof:
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Proof

proof: if F has Lipschitz constant L < 1,

> sequence x(k) is Cauchy:

Hx(k-i—é) o X(k)H < Hx(k-&-ﬁ) - X(k-&-ﬁ—l)H 4t Hx(k—i—l) - X(k)H
< (L4 1)||x D (R
1
< T [y (k1) (k)
< 7l x|
Lk
< (1) _ (0
< 7 Ix® - xO)

> so it converges to a point x*. must be the (unique) FP!

» converges to x* linearly with rate L

8 =t = [FOED) = FOe) Il < LX) — x| < LX) =

49 /55



Outline

Averaged operators
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Fixed point iteration: nonexpansive

if F is nonexpansive, the iteration
xUF1) = F(x (k)

need not converge to a fixed point even if one exists.

proof:
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Fixed point iteration: nonexpansive

if F is nonexpansive, the iteration
xUF1) = F(x (k)

need not converge to a fixed point even if one exists.

proof:

» let F rotate its argument by 6 degrees around the origin.
» then F is nonexpansive and has a fixed point at x* = 0.
> but if x| = r, then ||F(x(A)|| = r for all k.
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Averaged operators

an operator F is averaged if
F=0G+(1-0)l

for 0 € (0,1), G nonexpansive
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Averaged operators

an operator F is averaged if
F=0G+(1—06)
for 0 € (0,1), G nonexpansive

fact: if F is averaged, then x if FP of F <= x is FP of G
proof:
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Averaged operators

an operator F is averaged if
F=0G+(1—06)
for 0 € (0,1), G nonexpansive

fact: if F is averaged, then x if FP of F <= x is FP of G
proof:

x = Fx=0Gx+(1-0)Ix=0Gx+(1—-0)x
Ox = 0Gx

x = Gx

= if G is nonexpansive, F = %I + %G is averaged with same FPs
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Fixed point iteration: averaged

if F=60G+ (1—6)l is averaged (6 € (0,1), G nonexpansive),
the iteration
xUF1) = F(x ()

converges to a fixed point if one exists.
(also called the damped, averaged, or Mann-Krasnosel'skii iteration.)

properties: Ryu and Boyd ( )
» distance to fixed point decreases monotonically (Fejer-monotone)
» sublinear convergence of fixed point residual

1
(k+1)8(1—0)

161 —xW)2 < (@ =12

53/55



Gradient descent operator is averaged

follows Ryu and Yin (2022)
fact: if f : R" — R is S-smooth, then | — %Vf iS non-expansive
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Gradient descent operator is averaged

follows Ryu and Yin ( )
fact: if f : R" — R is S-smooth, then | — %Vf iS non-expansive

proof: since f is S-smooth,

10— 29F)x) - (1 - 2VAW)I

B B
- W—yW—;(v—%van—vamw—ywam—vanw)
< Ix—yl?
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Gradient descent operator is averaged

follows Ryu and Yin ( )
fact: if f : R" — R is S-smooth, then | — %Vf iS non-expansive

proof: since f is S-smooth,

10— 29F)x) - (1 - 2VAW)I

B B
- W—yW—;(v—%van—vanw—ywan—vanw)
< Ix—yl?

corollary: if f : R” — R is S-smooth, then | — tVf is averaged for t € (0, %)
since | — tVFf = (1— L)1 + L (I - 2Vf)
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When does proximal gradient converge?

proximal gradient converges at rate O(1/k) when | — tVf is averaged and prox,, is
nonexpansive. e.g.,

» if f is S-smooth and step size t € (0, %)

» and g is convex

proximal gradient converges linearly when, in addition, | — tVf or prox,, is
contractive. e.g.,

» if f is S-smooth and a—strongly convex and max(|1 — tal,|1 — t5]) < 1

» or if g is strongly convex
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