CME 307 / MS&E 311: Optimization # Optimality conditions and convexity Professor Udell Management Science and Engineering Stanford February 28, 2024 ### **Questions from last class** - clarify proof of strong duality - how many iterations of branch and bound? - how to use duality to solve a problem? when to stop? - duality for problems with inequality constraints? ### **Outline** Constrained and unconstrained optimization Optimality conditions Convex optimization ### **Constrained vs unconstrained optimization** #### constrained optimization - examples: scheduling, routing, packing, logistics, scheduling, control - what's hard: finding a feasible point #### unconstrained optimization - examples: data fitting, statistical/machine learning - what's hard: reducing the objective both are necessary for real-world problems! ## **Unconstrained smooth optimization** for $f: \mathbf{R}^n \to \mathbf{R}$ ctsly differentiable, minimize $$f(x)$$ variable $x \in \mathbf{R}^n$ how to solve? ## **Unconstrained smooth optimization** for $f: \mathbf{R}^n \to \mathbf{R}$ ctsly differentiable, minimize $$f(x)$$ variable $x \in \mathbf{R}^n$ how to solve? approximate as a quadratic problem $$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T H(x_0) (x - x_0)$$ and find solution x_{quad} to the quadratic problem. then set $x_0 \leftarrow x_{\text{quad}}$ and repeat. ## Nonlinear optimization optimization problem: nonlinear form $$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad i=1,\ldots,m_1 \\ & h(x)=0 \\ \text{variable} & x \in \mathbf{R}^n \end{array}$$ - \triangleright $x = (x_1, \dots, x_n)$: optimization variables - ▶ $f_0 : \mathbf{R}^n \to \mathbf{R}$: objective function - ▶ $f_i : \mathbf{R}^n \to \mathbf{R}$, i = 1, ..., m: constraint functions special case: unconstrained optimization ## **Example: process control** You are the process engineer for a desalination plant that produces drinking water. The plant has a variety of knobs, collected in vector x, that you can turn to control the process. These control, e.g., how much water is pumped into the plant, how much pressure is used to force the water through filters, and how much of each chemical is added to the water. - $ightharpoonup f_0(x)$: cost of water produced - $ightharpoonup f_i(x)$: level of each measured impurity in the water - \triangleright b_i : maximum allowable level of each impurity Given a setting of the knobs, you can observe the cost of water produced and the levels of impurities. ### What is the optimal setting of the knobs? #### **Oracles** an optimization **oracle** is your interface for accessing the problem data: *e.g.*, an oracle for $f: \mathbf{R}^n \to \mathbf{R}$ can evaluate for any $x \in \mathbf{R}^n$: ightharpoonup zero-order: $f_0(x)$ ▶ **first-order:** $f_0(x)$ and $\nabla f_0(x)$ **second-order:** $f_0(x)$, $\nabla f_0(x)$, and $\nabla^2 f_0(x)$ why oracles? - can optimize real systems based on observed output (not just models) - can use and extend old or complex but trusted code (e.g., NASA, PDE simulations, . . .) - can prove lower bounds on the oracle complexity of a problem class source: Nesterov 2004 "Introductory Lectures on Convex Optimization" ## Nonlinear optimization: how to solve? #### depends on the oracle: - first- or second-order: approximate by a sequence of quadratic problems - zero-order: harder, lots of methods - simulated annealing - Bayesian optimization - pseudo-higher-order methods, e.g., compute approximate gradient #### **Outline** Constrained and unconstrained optimization Optimality conditions Convex optimization ## Solution of an optimization problem minimize $$f(x)$$ for $f: \mathcal{D} \to \mathbf{R}$. x^* is a - **proof** global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$. - ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \ge f(x^*)$ for all $x \in \mathcal{N}$. - **isolated local minimizer** if the neighborhood $\mathcal N$ contains no other local minimizers. - unique minimizer if it is the only global minimizer. ## Solution of an optimization problem minimize $$f(x)$$ for $f: \mathcal{D} \to \mathbf{R}$. x^* is a - **proof** global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$. - ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \ge f(x^*)$ for all $x \in \mathcal{N}$. - **isolated local minimizer** if the neighborhood $\mathcal N$ contains no other local minimizers. - unique minimizer if it is the only global minimizer. ### pictures! ## First order optimality condition ### Theorem If $x^* \in \mathbf{R}^n$ is a local minimizer of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$, then $\nabla f(x^*) = 0$. ## First order optimality condition #### Theorem If $x^* \in \mathbf{R}^n$ is a local minimizer of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$, then $\nabla f(x^*) = 0$. **proof:** suppose by contradiction that $\nabla f(x^*) \neq 0$. consider points of the form $x_{\alpha} = x^* - \alpha \nabla f(x^*)$ for $\alpha > 0$. by definition of the gradient, $$\lim_{\alpha \to 0} \frac{f(x_{\alpha}) - f(x^{\star})}{\alpha} = -\nabla f(x^{\star})^{\top} \nabla f(x^{\star}) = -\|\nabla f(x^{\star})\|^{2} < 0$$ so for any sufficiently small $\alpha > 0$, we have $f(x_{\alpha}) < f(x^{*})$, which contradicts the fact that x^{*} is a local minimizer. ## **Second order optimality condition** ### Theorem If $x^* \in \mathbf{R}^n$ is a local minimizer of a twice differentiable function $f : \mathbf{R}^n \to \mathbf{R}$, then $\nabla^2 f(x^*) \succeq 0$. ## Second order optimality condition #### Theorem If $x^* \in \mathbf{R}^n$ is a local minimizer of a twice differentiable function $f : \mathbf{R}^n \to \mathbf{R}$, then $\nabla^2 f(x^*) \succeq 0$. **proof:** similar to the previous proof. use the fact that the second order approximation $$f(x_{\alpha}) \approx f(x^{\star}) + \nabla f(x^{\star})^{\top} (x_{\alpha} - x^{\star}) + \frac{1}{2} (x_{\alpha} - x^{\star})^{\top} \nabla^{2} f(x^{\star}) (x_{\alpha} - x^{\star})$$ is accurate locally to show a contradiction unless $\nabla^2 f(x^*) \succeq 0$: if not, there is a direction v such that $v^T \nabla^2 f(x^*) v < 0$. then $f(x + \alpha v) < f(x^*)$ for α arbitrarily small, which contradicts the fact that x^* is a local minimizer. #### **Outline** Constrained and unconstrained optimization Optimality conditions Convex optimization #### Convex sets ## Definition A set $S \subseteq \mathbf{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$, $$\theta w + (1 - \theta)v \in S$$ #### Convex sets ## Definition A set $S \subseteq \mathbf{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$, $$\theta w + (1 - \theta)v \in S$$ **Q:** Which of these are convex? ellipsoid, half moon a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff - a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff - ▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$ $$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$ a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff ▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$ $$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$ **Epigraph.** epi(f) = { $(x, t) : t \ge f(x)$ } is convex a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff ▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$ $$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$ - **Epigraph.** epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex - **First order condition.** if *f* is differentiable, $$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \qquad \forall w, v \in \mathbf{R}^n$$ a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff ▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$ $$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$ - **Epigraph. epi** $(f) = \{(x, t) : t \ge f(x)\}$ is convex - **First order condition.** if *f* is differentiable, $$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \qquad \forall w, v \in \mathbf{R}^n$$ **Second order condition.** If *f* is twice differentiable, its Hessian is always psd: $$\lambda_{\min}(\nabla^2 f(x)) \ge 0, \quad \forall x \in \mathbf{R}^n$$ a function $f: \mathbf{R}^n \to \mathbf{R}$ is convex iff ▶ **Chords.** it never lies above its chord: $\forall \theta \in [0,1], w, v \in \mathbb{R}^n$ $$f(\theta w + (1-\theta)v) \le \theta f(w) + (1-\theta)f(v)$$ - **Epigraph.** epi $(f) = \{(x, t) : t \ge f(x)\}$ is convex - **First order condition.** if *f* is differentiable, $$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \qquad \forall w, v \in \mathbf{R}^n$$ **Second order condition.** If *f* is twice differentiable, its Hessian is always psd: $$\lambda_{\min}(\nabla^2 f(x)) \ge 0, \quad \forall x \in \mathbf{R}^n$$ Q: Which of these are convex? quadratic, abs, pwl, step, jump, logistic, logistic loss ## **Convex optimization** an optimization problem is convex if: - ▶ **Geometrically:** the feasible set and the epigraph of the objective are convex - ▶ **NLP:** the objective and inequality constraints are convex functions, and the equality constraints are affine ## **Convex optimization** an optimization problem is convex if: - ▶ **Geometrically:** the feasible set and the epigraph of the objective are convex - ▶ NLP: the objective and inequality constraints are convex functions, and the equality constraints are affine why convex optimization? - relatively complete theory - efficient solvers - conceptual tools that generalize duality, stopping conditions, ... ## **Convex optimization** an optimization problem is convex if: - ▶ **Geometrically:** the feasible set and the epigraph of the objective are convex - ▶ NLP: the objective and inequality constraints are convex functions, and the equality constraints are affine why convex optimization? - relatively complete theory - efficient solvers - conceptual tools that generalize duality, stopping conditions, ... - ightharpoonup a function f is concave if -f is convex - ► concave maximization ⇒ a convex optimization problem ## Local minima are global for convex functions #### Theorem If x^* is a local minimizer of a convex function f, then x^* is a global minimizer. ## Local minima are global for convex functions #### Theorem If x^* is a local minimizer of a convex function f, then x^* is a global minimizer. proof? ## Local minima are global for convex functions #### Theorem If x^* is a local minimizer of a convex function f, then x^* is a global minimizer. **proof?** suppose by contradiction that another point x' is a global minimizer, with $f(x') < f(x^*)$. draw the chord between x' and x^* . since the chord lies above f, every convex combination $x = \theta x^* + (1 - \theta)x'$ of x' and x^* for $\theta \in (0,1)$ has a value $f(x) < f(x^*)$. this is true even for $x \to x^*$, contradicting our assumption that x^* is a local minimizer. ## **Corollary** ## Corollary If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer. ## **Corollary** ## Corollary If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer. Q: Is a global minimizer of a convex function always unique? ## **Corollary** ## Corollary If f is convex and differentiable and $\nabla f(x^*) = 0$, then x^* is a global minimizer. Q: Is a global minimizer of a convex function always unique? A: No. Picture. ### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. ### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. Q: Can a global minimum have a non-zero gradient? ### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. Q: Can a global minimum have a non-zero gradient? **A:** No. #### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. Q: Can a global minimum have a non-zero gradient? A: No. Q: Is a stationary point always a global minimum? #### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. **Q:** Can a global minimum have a non-zero gradient? A: No. Q: Is a stationary point always a global minimum? A: No. #### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. **Q:** Can a global minimum have a non-zero gradient? A: No. Q: Is a stationary point always a global minimum? A: No. **Q:** . . . for convex functions? ### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. **Q:** Can a global minimum have a non-zero gradient? A: No. Q: Is a stationary point always a global minimum? A: No. **Q:** . . . for convex functions? A: Yes. #### Definition $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$. Q: Can a global minimum have a non-zero gradient? A: No. Q: Is a stationary point always a global minimum? A: No. **Q:** . . . for convex functions? A: Yes. $\nabla f(x^*) = 0$ is the **first-order (necessary) condition** for optimality. #### **Invex function** #### Definition A function $f: \mathbf{R}^n \to \mathbf{R}$ is **invex** if for some vector-valued function $\eta: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n$, $$f(x) - f(u) \ge \eta(x, u)^{\top} \nabla f(u)$$ $\forall u \in \mathbf{R}^n, \ x \in \operatorname{dom} f$ ## Theorem (Craven and Glover, Ben-Israel and Mond) A function is invex iff every stationary point is a global minimum.