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Questions from last class

▶ clarify proof of strong duality

▶ how many iterations of branch and bound?

▶ how to use duality to solve a problem? when to stop?

▶ duality for problems with inequality constraints?
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Constrained vs unconstrained optimization

constrained optimization

▶ examples: scheduling, routing, packing, logistics, scheduling, control

▶ what’s hard: finding a feasible point

unconstrained optimization

▶ examples: data fitting, statistical/machine learning

▶ what’s hard: reducing the objective

both are necessary for real-world problems!
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Unconstrained smooth optimization

for f : Rn → R ctsly differentiable,

minimize f (x)
variable x ∈ Rn

how to solve?

approximate as a quadratic problem

f (x) ≈ f (x0) +∇f (x0)T (x − x0) +
1

2
(x − x0)

TH(x0)(x − x0)

and find solution xquad to the quadratic problem.
then set x0 ← xquad and repeat.
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Nonlinear optimization

optimization problem: nonlinear form

minimize f0(x)
subject to fi (x) ≤ bi , i = 1, . . . ,m1

h(x) = 0
variable x ∈ Rn

▶ x = (x1, . . . , xn): optimization variables

▶ f0 : R
n → R: objective function

▶ fi : R
n → R, i = 1, . . . ,m: constraint functions

special case: unconstrained optimization
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Example: process control

You are the process engineer for a desalination plant that produces drinking water.
The plant has a variety of knobs, collected in vector x , that you can turn to control
the process. These control, e.g., how much water is pumped into the plant, how
much pressure is used to force the water through filters, and how much of each
chemical is added to the water.

▶ f0(x): cost of water produced

▶ fi (x): level of each measured impurity in the water

▶ bi : maximum allowable level of each impurity

Given a setting of the knobs, you can observe the cost of water produced and the
levels of impurities.

What is the optimal setting of the knobs?
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Oracles

an optimization oracle is your interface for accessing the problem data:
e.g., an oracle for f : Rn → R can evaluate for any x ∈ Rn:

▶ zero-order: f0(x)

▶ first-order: f0(x) and ∇f0(x)
▶ second-order: f0(x), ∇f0(x), and ∇2f0(x)

why oracles?

▶ can optimize real systems based on observed output (not just models)

▶ can use and extend old or complex but trusted code (e.g., NASA, PDE
simulations, . . . )

▶ can prove lower bounds on the oracle complexity of a problem class

source: Nesterov 2004 “Introductory Lectures on Convex Optimization”’
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Nonlinear optimization: how to solve?

depends on the oracle:

▶ first- or second-order: approximate by a sequence of quadratic problems
▶ zero-order: harder, lots of methods

▶ simulated annealing
▶ Bayesian optimization
▶ pseudo-higher-order methods, e.g., compute approximate gradient
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Solution of an optimization problem

minimize f (x)

for f : D → R. x⋆ is a

▶ global minimizer if f (x) ≥ f (x⋆) for all x ∈ D.
▶ local minimizer if there is a neighborhood N around x⋆ so that f (x) ≥ f (x⋆)

for all x ∈ N .

▶ isolated local minimizer if the neighborhood N contains no other local
minimizers.

▶ unique minimizer if it is the only global minimizer.

pictures!
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First order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a differentiable function f : Rn → R, then
∇f (x⋆) = 0.

proof: suppose by contradiction that ∇f (x⋆) ̸= 0. consider points of the form
xα = x⋆ − α∇f (x⋆) for α > 0. by definition of the gradient,

lim
α→0

f (xα)− f (x⋆)

α
= −∇f (x⋆)⊤∇f (x⋆) = −∥∇f (x⋆)∥2 < 0

so for any sufficiently small α > 0, we have f (xα) < f (x⋆), which contradicts the
fact that x⋆ is a local minimizer.
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Second order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a twice differentiable function f : Rn → R, then
∇2f (x⋆) ⪰ 0.

proof: similar to the previous proof. use the fact that the second order
approximation

f (xα) ≈ f (x⋆) +∇f (x⋆)⊤(xα − x⋆) +
1

2
(xα − x⋆)⊤∇2f (x⋆)(xα − x⋆)

is accurate locally to show a contradiction unless ∇2f (x⋆) ⪰ 0: if not, there is a
direction v such that vT∇2f (x⋆)v < 0. then f (x + αv) < f (x⋆) for α arbitrarily
small, which contradicts the fact that x⋆ is a local minimizer.
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Convex sets

Definition

A set S ⊆ Rn is convex if it contains every chord: for all θ ∈ [0, 1], w , v ∈ S ,

θw + (1− θ)v ∈ S

Q: Which of these are convex?
ellipsoid, half moon
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Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex
▶ First order condition. if f is differentiable,

f (v) ≥ f (w) +∇f (w)⊤(v − w), ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its Hessian is always psd:

λmin(∇2f (x)) ≥ 0, ∀x ∈ Rn

Q: Which of these are convex?
quadratic, abs, pwl, step, jump, logistic, logistic loss
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Convex optimization

an optimization problem is convex if:

▶ Geometrically: the feasible set and the epigraph of the objective are convex

▶ NLP: the objective and inequality constraints are convex functions, and the
equality constraints are affine

why convex optimization?

▶ relatively complete theory

▶ efficient solvers

▶ conceptual tools that generalize

duality, stopping conditions, . . .

▶ a function f is concave if −f is convex

▶ concave maximization =⇒ a convex optimization problem

17 / 21



Convex optimization

an optimization problem is convex if:

▶ Geometrically: the feasible set and the epigraph of the objective are convex

▶ NLP: the objective and inequality constraints are convex functions, and the
equality constraints are affine

why convex optimization?

▶ relatively complete theory

▶ efficient solvers

▶ conceptual tools that generalize

duality, stopping conditions, . . .

▶ a function f is concave if −f is convex

▶ concave maximization =⇒ a convex optimization problem

17 / 21



Convex optimization

an optimization problem is convex if:

▶ Geometrically: the feasible set and the epigraph of the objective are convex

▶ NLP: the objective and inequality constraints are convex functions, and the
equality constraints are affine

why convex optimization?

▶ relatively complete theory

▶ efficient solvers

▶ conceptual tools that generalize

duality, stopping conditions, . . .

▶ a function f is concave if −f is convex

▶ concave maximization =⇒ a convex optimization problem

17 / 21



Local minima are global for convex functions

Theorem

If x⋆ is a local minimizer of a convex function f , then x⋆ is a global minimizer.

proof? suppose by contradiction that another point x ′ is a global minimizer, with
f (x ′) < f (x⋆). draw the chord between x ′ and x⋆. since the chord lies above f ,
every convex combination x = θx⋆ + (1− θ)x ′ of x ′ and x⋆ for θ ∈ (0, 1) has a value
f (x) < f (x⋆). this is true even for x → x⋆, contradicting our assumption that x⋆ is
a local minimizer.
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Corollary

Corollary

If f is convex and differentiable and ∇f (x⋆) = 0, then x⋆ is a global minimizer.

Q: Is a global minimizer of a convex function always unique?
A: No. Picture.
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First-order condition

Definition

x⋆ ∈ Rn is a stationary point of a differentiable function f : Rn → R if ∇f (x⋆) = 0.

Q: Can a global minimum have a non-zero gradient?
A: No.
Q: Is a stationary point always a global minimum?
A: No.
Q: . . . for convex functions?
A: Yes.

∇f (x⋆) = 0 is the first-order (necessary) condition for optimality.
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Invex function

Definition

A function f : Rn → R is invex if for some vector-valued function η : Rn×Rn → Rn,

f (x)− f (u) ≥ η(x , u)⊤∇f (u) ∀u ∈ Rn, x ∈ dom f

Theorem (Craven and Glover, Ben-Israel and Mond)

A function is invex iff every stationary point is a global minimum.
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