CME 307 / MS&E 311: Optimization

Newton and quasi-Newton methods

Professor Udell

Management Science and Engineering
Stanford

February 28, 2024

1/33

vVvyYVvyVvyyvyy

Questions from last time

under PL, objective convergence does not imply iterates converge
local vs global convergence

gradient descent in high dimensions (see Bubeck's book)
sublinear convergence: optimization vs TCS notation

definition of river valley

is gradient descent optimal for strongly convex optimization?

2/33

Outline

Quadratic approximation

3/33

Minimize quadratic approximation

minimize f(x)

Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:

f(x) = f(x(k)) + Vf(x(k))T(X - X(k))

+%(X — x(k))TV2f(x(k))(X — X(k))

1
~ f(x0) + VF(x)Ts + ESTB/(S =: my(x)

where s = x — x(K) is the search direction and By ~ V2f(x(¥)) is the Hessian
approximation.

If B,y = 0, my is convex. to minimize,
Bis+ VIi(x¥) =0

if By is invertible,
s = —B 'Vf(x)

4/33

Why do we need B, - 07

1
x5+ — argmin my(x) = argmin f(x) + VF(x¥)Ts + ESTBks

5/33

Why do we need B, - 07

1
x5+ — argmin my(x) = argmin f(x) + VF(x¥)Ts + ESTBks

Q: What happens if By is indefinite?

5/33

Why do we need B, - 07

1
x5+ — argmin my(x) = argmin f(x) + VF(x¥)Ts + ESTBks

Q: What happens if By is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.

5/33

Why do we need B, - 07

1
x5+ — argmin my(x) = argmin f(x) + VF(x¥)Ts + ESTBks
Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how far to go.

Q: What happens if By is not invertible?

5/33

Why do we need B, - 07

1
x5+ — argmin my(x) = argmin f(x) + VF(x¥)Ts + ESTBks
Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how far to go.

Q: What happens if By is not invertible?

A: Not clear how far to go in flat directions.

5/33

Why do we need B, - 07

1
x5+ — argmin my(x) = argmin f(x) + VF(x¥)Ts + ESTBks

Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if By is not invertible?

A: Not clear how far to go in flat directions.

in practice, how to handle indefinite or singular By?

» make it psd. modify By <— By + I to be positive definite
» trust region method. minimize nonconvex my over a ball

5/33

Which quadratic approximation?

> Gradient descent. use B, = 1/ for some t > 0.
s = —tVf(x)
> Newton’s method. use B, = V2f(x).
s — —(V2F(x)) "1V F(x)
» Quasi-Newton methods. use By ~ V2f(x(K).
s=—B,'Vf(x)

global convergence as long as my(x) > f(x) for all x. but how fast?

6/33

Outline

Newton's method

7/33

Convergence rates

» linear convergence.
P EOE|
im

Jm D e =ce(0,1)

» superlinear convergence.
N
im ————— =
k—oo [[x(k=1) — x*||
» quadratic convergence.
k9 =
lim —————
e [0 = 2

<M

8/33

Newton’s method converges quadratically

Theorem (Local rate of convergence)

Suppose f is twice ctsly differentiable and V?f(x) is L-Lipschitz in a neighborhood of a
strict local minimizer x* € argmin f(x). Then Newton's method converges to x*
quadratically near x*.

recall an operator F is L-Lipschitz if

IF(x) = FD)Il < Lllx =yl

9/33

Taylor’s theorem

since f is twice continuously differentiable,

1
Vi(y) —Vf(x) = /0 V2f(x + t(y — x))(y — x)dt

source: https://www.cambridge.org/core/books/optimization-for-data-
analysis/C02C3708905D236AA354D1CE1739A6A2

10/33

Newton’s method converges quadratically (1)

proof: x* is strict local min, so Vf(x*) = 0 and V2f(x*) > 0.

KD e = (k) e Bk_IVf(x(k)) > Newton's method

— (BW)~! (B(k>(x(k> —x*) - vf(X(k)))

by taylor's theorem, V(x(K)) = fol V2 (x* + t(x®) — x*))(xF) — x*)dt, so

1
BR(x® — x*y — vr(x®) = / (sz(x(k)) — V(x* 4 () — x*))) (%) — x*ydt
0
1
1BOY —x) — x| < / [V F(x9) — V20 + (x5 — x)) [[IxY — x|t
0

1
/ Lt x% — x* |2 dt
0

)

IN

X*”Z

IN

11/33

Newton’s method converges quadratically (1)

now choose r € R small enough that for ||x(¥) — x*|| < r,
(V2 (x5 7| < 2|(V2F(x*)) 7| > possible since V£(x*) = 0
then complete the proof:

k+1) _

x|l

IN

ST A — x|
LI ()~ I8 — 2
—_——

constant

Ix

IN

12/33

Questions on Newton’s method

based on the proof, answer the following:
» if L, the Lipshitz constant of the Hessian, increases, do you expect Newton’s method to
converge faster or slower?

> interpret the quantity ||(V2f(x*))~1||. If it decreases, do you expect Newton's method
to converge faster or slower?

» why is the proof only local?

13/33

Outline

Quasi-Newton methods

14/33

Quasi-Newton methods

what's the problem with Newton's method? V2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite

15/33

Quasi-Newton methods

what's the problem with Newton's method? V2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite

quasi-Newton method: use a matrix By =~ Vf2(x(K)) (or Hy = B, ') that is

» easy to update

» easy to invert

update By at each iteration to improve/maintain approximation

15/33

Quasi-Newton methods

what's the problem with Newton's method? V2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite

quasi-Newton method: use a matrix By =~ Vf2(x(K)) (or Hy = B, ') that is

» easy to update

» easy to invert

update By at each iteration to improve/maintain approximation
can still get superlinear convergence!

15/33

BFGS

BFGS is the most popular quasi-Newton method. idea:
» take step with length ay > 0 chosen by line search
Xkt — (k) ak(_Bl:lVf(X(k))) = x(K) 4 (k)

16/33

BFGS

BFGS is the most popular quasi-Newton method. idea:
» take step with length ay > 0 chosen by line search
Xkt — (k) ak(_Bl:lVf(X(k))) = x(K) 4 (k)

» new model will be
1
mesa(x) = F(xED) 4 V() Tp 4 EPTBkHP

where p = x — x{k+1),

16/33

BFGS

BFGS is the most popular quasi-Newton method. idea:
» take step with length ay > 0 chosen by line search
Xkt — (k) ak(_Bl:lVf(X(k))) = x(K) 4 (k)

» new model will be

1
mesa(x) = F(xED) 4 V() Tp 4 EPTBkHP

k+1)

where p = x — x{ . want gradient of my; to match f at x(*) and x(

k+1)

16/33

BFGS

BFGS is the most popular quasi-Newton method. idea:
» take step with length ay > 0 chosen by line search
Xkt — (k) ak(_Bl:lVf(X(k))) = x(K) 4 (k)

» new model will be
1
mesa(x) = F(xED) 4 V() Tp 4 EPTBkHP

k+1)

where p = x — x{ . want gradient of my; to match f at x(*) and x(

match at x(k*1) by construction.

k+1)

16/33

BFGS

BFGS is the most popular quasi-Newton method. idea:
» take step with length ay > 0 chosen by line search
Xkt — (k) ak(_Bl:lVf(X(k))) = x(K) 4 (k)

» new model will be

1
mesa(x) = F(xED) 4 V() Tp 4 EPTBkHP

k+1) k+1)

where p = x — x{ . want gradient of my; to match f at x(*) and x(.

match at x(k*1) by construction. match at x(¥) if

VxR = Ume(x®) = VFAXED) 4 By (xK) — x(k+1)y
VAxED) —(x®0) = By (x*D) — x()
y(k) = Bk_,_ls(k) > secant equation

where y(K) = VF(x(kt1)) - Vf(x(F), s(k) = x(kt1) _ (k)

16/33

Secant equation

y(k) = Bk+15(k)
where y(¥) = Vf(x(k+1)) — Vf(x(k)), s(k) = x(k+1) _ (k)

> need s(KTy (k) > 0 (otherwise By, is not positive definite)

> (*) if f is strongly convex, then s(Ty(K) > 0 for all k
(pf on next slide)

> for nonconvex f, can enforce s(9)7y(kK) > 0 by using a line search that satisfies Wolfe
conditions:

F(x5) 4+ apldy — (xR
VF(x®) 4+ apt)T pk)

ac V(x0T pk)

>
> szf(x(k))Tp(k)

where p(k) = —B, 'V f(x(K) is search direction and c1, ¢, € (0,1) are constants.

17/33

Proof of (*)

Lemma (*)

if f is strongly convex, then y()Ts(K) > 0 for all k

18/33

Proof of (*)

Lemma (*)

if f is strongly convex, then y()Ts(K) > 0 for all k

proof: for f u-strongly convex, for any v,w € R",

f(v)
f(w)

Y

F(w) + VW) (v = w) + Sllv = wl?

Y

F(v) + V)T (w = v) + 5w — v

(VF(v) = VEW) (v = w) + pllv — w|?
plls®? >0

0
= (y()Tsk)

(AVARYS

setting v = x("t1) w = x(9) and using s(F) = x(k+1) — x(K) (k) = 7 f(x(k+H1)) — V£ (x(K).

18/33

v

BFGS update

Bii1 € S, has n(n + 1)/2 degrees of freedom
secant equation gives n-dimensional linear system for Bx,; = many solutions!
BFGS update chooses rank 2 update

Y, RT B TR,
y(k)Ts(k)_ s(k)TBks(k)

Bi+1 = Bi +

equivalently, can update the inverse Hessian approximation Hy = B;l:

Heor = (1 — pRs0) Ty H, (1 — gk T T L (0 k) (T

where pk) = y(k)}—s(k) (uses Sherman-Morrison-Woodbury)

each iteration uses O(n?) flops

19/33

Sherman Morrison Woodbury formula

Lemma
Sherman-Morrison-Woodbury formula for a matrix H = A+ UCV (where dimensions match)

Hl=A7—Aty(ct+vatu)tvat

can derive from formula for 2x2 (block) matrix inverse
special case: H= A+ uv' for u,v € R":
A tuyTATL

Hl=ApA1_2- " °
1+vTA- 1y

also called matrix inversion lemma or any subset of names

20/33

BFGS convergence

demo: try on Rosenbrock function f(x,y) = (1 — x)? + 100(y — x2)?

https://github.com/stanford-cme-307/demos/blob/main/qgn.jl

21/33

https://github.com/stanford-cme-307/demos/blob/main/qn.jl

Error

1.25

1.00

0.75

0.50

0.25

BFGS in practice

Error vs lteration

——— Gradient Descent
—— BFGS

—— L-BFGS
Newton

2 4 6 8 10

Iteration

22/33

Limited memory quasi-Newton methods
main disadvantage of quasi-Newton method: need to store H or B
Limited-memory BFGS (L-BFGS): don't store B explicitly!
> instead, store the m (say, m = 30) most recent values of
sj = xU) — xU=1), yj= VF(xW) — VF(xU=1)

> evaluate 6x = B,V F(x(¥)) recursively, using

v T T
SiY; Yis; S;S
Bi=|1-2) B (-2 |+ 2
Vi Si Vi Si Yi S

assuming Bx_,m, =1

23/33

Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B
Limited-memory BFGS (L-BFGS): don't store B explicitly!

>

vVVvyyVvyy

instead, store the m (say, m = 30) most recent values of

s = xU) — xU=1), yj= VF(xW) — VF(xU=1)

evaluate 6x = B,V f(x(¥)) recursively, using

v T T
SiY; YjS; Sjs
Bi=\1- o7 | B |-)+
Yj'sj vi'si) s
assuming Bx_,m, =1

advantage: for each update, just apply rank 1 + diagonal matrix to vector!
cost per update is O(n); cost per iteration is O(mn)

storage is O(mn)

when to use compared to BFGS?

23/33

Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B
Limited-memory BFGS (L-BFGS): don't store B explicitly!
> instead, store the m (say, m = 30) most recent values of
s = xU) — xU=1), yj= VF(xW) — VF(xU=1)

> evaluate 6x = B,V F(x(¥)) recursively, using

v T T
SiY; YjS; Sjs
Bi=\1- o7 | B |-)+
Yj'sj vi'si) s
assuming Bx_,m, =1

advantage: for each update, just apply rank 1 + diagonal matrix to vector!

cost per update is O(n); cost per iteration is O(mn)

storage is O(mn)

when to use compared to BFGS? if m = 10, about 100n flops/iteration, so use it when
100n <« n*> = L-BFGS is better than BFGS for n > 1000

vVVvyyVvyy

23/33

L-BFGS: interpretations

» only remember curvature of Hessian on active subspace
Sk = span{sk,...,Sk—m}
> hope: locally, VF(x(¥)) will approximately lie in active subspace
(k) S st S st
VIx\")=g>+g>, g €S g small

> L-BFGS assumes By ~ | on St, so BygS ~ g5 :
. SL . . 1
if g2 is small, it shouldn't matter much.

24/33

Outline

Preconditioning

25/33

Three perspectives

» precondition the function
» change the quadratic approximation

» change the metric

26/33

Three perspectives

» precondition the function
» change the quadratic approximation

» change the metric

three names:

» preconditioned
» quasi-Newton
» variable metric

26/33

Recap: convergence analysis for gradient descent

minimize f(x)

recall: we say (twice-differentiable) f is u-strongly convex and L-smooth if

pl < V2f(x) < LI

recall: if f is p-strongly convex and L-smooth, gradient descent converges linearly
F(x) = p* < H(F(xH) - p*)

where ¢ = (1 — k), k = £ > 1 is condition number

— wantk~1

L
©w

27/33

Recap: convergence analysis for gradient descent

minimize f(x)

recall: we say (twice-differentiable) f is u-strongly convex and L-smooth if

pl < V2f(x) < LI

recall: if f is p-strongly convex and L-smooth, gradient descent converges linearly
F(x) = p* < H(F(xH) - p*)

where ¢ = (1 — k), k = £ > 1 is condition number

— wantk~1

L
©w

idea: can we minimize another function with x =~ 1 whose solution will tell us the minimizer
of f?

27/33

Preconditioning

for D = 0, the two problems
minimize f(x) and minimize f(Dz)
have solutions related by x* = Dz*
> gradient of f(Dz) is DTV f(Dz)
> the second derivative (Hessian) of f(Dz) is DTV?f(Dz)D

a gradient step on f(Dz) with step-size t > 0 is

7zt = z—tD"Vf(Dz)
Dzt = Dz—tDD"Vf(Dz)
xt = x—tDD"Vf(x)

from prev analysis, gd on z converges fastest if
D™V?f(Dz)D =~ |
D ~ (V?f(Dz))~'/?

28/33

Approximate inverse Hessian

B = DDT is called the approximate inverse Hessian

can fix B or update it at every iteration:

» if B is constant: called preconditioned method
(e.g., preconditioned conjugate gradient)

» if B is updated: called (quasi)-Newton method

how to choose B? want

> B~ V3f(x)7!
> easy to compute (and update) B
» fast to multiply by B

29/33

Outline

Variable metric methods

30/33

Variable metric
definition of the gradient:
Flx+) = F() + (VF(x),) + 3 (5, VF()s) + ofs?)
wrt Euclidean inner product (u,v) = uTv

now define new inner product (u,v)a = u” Av for some matrix A € S7 .
compute the gradient and Hessian wrt this inner product:

Fobh) = FO)+(VF(x),5) + 5 (s, V2F()s) + ofs)

— F(x) + (AIVF(x), sha + %(s, AIV2F(x)s)a + o(s%)

so the gradient and Hessian wrt the new inner product is
1
Vaf(x) = A71VF(x), Vaf(x) = > [ATIV2f(x) + V2 f(x)A7]

source: Nesterov Introductory Lectures on Convex Optimization, p. 40

31/33

Outline

Trust region methods

32/33

Trust region methods

suppose By is indefinite. solution to model problem is unbounded!

1
argmin my(x) = argmin f(x) + V£(x9)7s + ESTB;(S

X
trust region method limits step size by choosing x(k*1) to solve trust region subproblem

minimize mg(x)
subject to ||x — x()|| < &

» nonconvex quadratic problem
» can solve with generalized eigenvalue solver

source: https://www.math.uwaterloo.ca/ hwolkowi/henry/reports/previews.d /trsalgorithm10.pdf

33/33

	Quadratic approximation
	Newton's method
	Quasi-Newton methods
	Preconditioning
	Variable metric methods
	Trust region methods

