
CME 307 / MS&E 311: Optimization

Newton and quasi-Newton methods

Professor Udell

Management Science and Engineering
Stanford

February 28, 2024

1 / 33



Questions from last time

▶ under PL, objective convergence does not imply iterates converge

▶ local vs global convergence

▶ gradient descent in high dimensions (see Bubeck’s book)

▶ sublinear convergence: optimization vs TCS notation

▶ definition of river valley

▶ is gradient descent optimal for strongly convex optimization?

2 / 33



Outline

Quadratic approximation

Newton’s method

Quasi-Newton methods

BFGS

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

3 / 33



Minimize quadratic approximation

minimize f (x)

Suppose f : R→ R is twice differentiable. For any x ∈ R, approximate f about x :

f (x) ≈ f (x (k)) +∇f (x (k))T (x − x (k))

+
1

2
(x − x (k))T∇2f (x (k))(x − x (k))

≈ f (x (k)) +∇f (x (k))T s + 1

2
sTBks =: mk(x)

where s = x − x (k) is the search direction and Bk ≈ ∇2f (x (k)) is the Hessian
approximation.

If Bk ⪰ 0, mk is convex. to minimize,

Bks +∇f (x (k)) = 0

if Bk is invertible,
s = −B−1

k ∇f (x
(k))

4 / 33



Why do we need Bk ≻ 0?

x (k+1) = argmin
x

mk(x) = argmin
x

f (x) +∇f (x (k))T s + 1

2
sTBks

Q: What happens if Bk is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if Bk is not invertible?
A: Not clear how far to go in flat directions.

in practice, how to handle indefinite or singular Bk?

▶ make it psd. modify Bk ← Bk + γI to be positive definite

▶ trust region method. minimize nonconvex mk over a ball

5 / 33



Why do we need Bk ≻ 0?

x (k+1) = argmin
x

mk(x) = argmin
x

f (x) +∇f (x (k))T s + 1

2
sTBks

Q: What happens if Bk is indefinite?

A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if Bk is not invertible?
A: Not clear how far to go in flat directions.

in practice, how to handle indefinite or singular Bk?

▶ make it psd. modify Bk ← Bk + γI to be positive definite

▶ trust region method. minimize nonconvex mk over a ball

5 / 33



Why do we need Bk ≻ 0?

x (k+1) = argmin
x

mk(x) = argmin
x

f (x) +∇f (x (k))T s + 1

2
sTBks

Q: What happens if Bk is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.

Q: What happens if Bk is not invertible?
A: Not clear how far to go in flat directions.

in practice, how to handle indefinite or singular Bk?

▶ make it psd. modify Bk ← Bk + γI to be positive definite

▶ trust region method. minimize nonconvex mk over a ball

5 / 33



Why do we need Bk ≻ 0?

x (k+1) = argmin
x

mk(x) = argmin
x

f (x) +∇f (x (k))T s + 1

2
sTBks

Q: What happens if Bk is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if Bk is not invertible?

A: Not clear how far to go in flat directions.

in practice, how to handle indefinite or singular Bk?

▶ make it psd. modify Bk ← Bk + γI to be positive definite

▶ trust region method. minimize nonconvex mk over a ball

5 / 33



Why do we need Bk ≻ 0?

x (k+1) = argmin
x

mk(x) = argmin
x

f (x) +∇f (x (k))T s + 1

2
sTBks

Q: What happens if Bk is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if Bk is not invertible?
A: Not clear how far to go in flat directions.

in practice, how to handle indefinite or singular Bk?

▶ make it psd. modify Bk ← Bk + γI to be positive definite

▶ trust region method. minimize nonconvex mk over a ball

5 / 33



Why do we need Bk ≻ 0?

x (k+1) = argmin
x

mk(x) = argmin
x

f (x) +∇f (x (k))T s + 1

2
sTBks

Q: What happens if Bk is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if Bk is not invertible?
A: Not clear how far to go in flat directions.

in practice, how to handle indefinite or singular Bk?

▶ make it psd. modify Bk ← Bk + γI to be positive definite

▶ trust region method. minimize nonconvex mk over a ball

5 / 33



Which quadratic approximation?

▶ Gradient descent. use Bk = 1
t I for some t > 0.

s = −t∇f (x)

▶ Newton’s method. use Bk = ∇2f (x).

s = −(∇2f (x))−1∇f (x)

▶ Quasi-Newton methods. use Bk ≈ ∇2f (x (k)).

s = −B−1
k ∇f (x)

global convergence as long as mk(x) ≥ f (x) for all x . but how fast?

6 / 33



Outline

Quadratic approximation

Newton’s method

Quasi-Newton methods

BFGS

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

7 / 33



Convergence rates

▶ linear convergence.

lim
k→∞

∥x (k) − x⋆∥
∥x (k−1) − x⋆∥

= c ∈ (0, 1)

▶ superlinear convergence.

lim
k→∞

∥x (k) − x⋆∥
∥x (k−1) − x⋆∥

= 0

▶ quadratic convergence.

lim
k→∞

∥x (k) − x⋆∥
∥x (k−1) − x⋆∥2

< M

8 / 33



Newton’s method converges quadratically

Theorem (Local rate of convergence)

Suppose f is twice ctsly differentiable and ∇2f (x) is L-Lipschitz in a neighborhood of a
strict local minimizer x⋆ ∈ argmin f (x). Then Newton’s method converges to x⋆

quadratically near x⋆.

recall an operator F is L-Lipschitz if

∥F (x)− F (y)∥ ≤ L∥x − y∥

9 / 33



Taylor’s theorem

since f is twice continuously differentiable,

∇f (y)−∇f (x) =
∫ 1

0

∇2f (x + t(y − x))(y − x)dt

source: https://www.cambridge.org/core/books/optimization-for-data-
analysis/C02C3708905D236AA354D1CE1739A6A2

10 / 33



Newton’s method converges quadratically (I)

proof: x⋆ is strict local min, so ∇f (x⋆) = 0 and ∇2f (x⋆) ≻ 0.

x (k+1) − x⋆ = x (k) − x⋆ − B−1
k ∇f (x

(k))▷ Newton’s method

= (B(k))−1
(
B(k)(x (k) − x⋆)−∇f (x (k))

)

by taylor’s theorem, ∇f (x (k)) =
∫ 1

0
∇2f (x⋆ + t(x (k) − x⋆))(x (k) − x⋆)dt, so

B(k)(x (k) − x⋆) − ∇f (x (k)) =

∫ 1

0

(
∇2f (x (k)) − ∇2f (x⋆ + t(x (k) − x⋆))

)
(x (k) − x⋆)dt

∥B(k)(x (k) − x⋆) − ∇f (x (k))∥ ≤
∫ 1

0

∥∇2f (x (k)) − ∇2f (x⋆ + t(x (k) − x⋆))∥∥x (k) − x⋆∥dt

≤
∫ 1

0

Lt∥x (k) − x⋆∥2dt

≤
L

2
∥x (k) − x⋆∥2

11 / 33



Newton’s method converges quadratically (II)

now choose r ∈ R small enough that for ∥x (k) − x⋆∥ ≤ r ,

∥(∇2f (x (k)))−1∥ ≤ 2∥(∇2f (x⋆))−1∥▷ possible since ∇2f (x⋆) ≻ 0

then complete the proof:

∥x (k+1) − x⋆∥ ≤ L

2
∥(∇2f (x (k)))−1∥∥x (k) − x⋆∥2

≤ L∥(∇2f (x⋆))−1∥︸ ︷︷ ︸
constant

∥x (k) − x⋆∥2

12 / 33



Questions on Newton’s method

based on the proof, answer the following:

▶ if L, the Lipshitz constant of the Hessian, increases, do you expect Newton’s method to
converge faster or slower?

▶ interpret the quantity ∥(∇2f (x⋆))−1∥. If it decreases, do you expect Newton’s method
to converge faster or slower?

▶ why is the proof only local?

13 / 33



Outline

Quadratic approximation

Newton’s method

Quasi-Newton methods

BFGS

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

14 / 33



Quasi-Newton methods

what’s the problem with Newton’s method? ∇2f (x) is

▶ expensive to compute

▶ expensive to invert

▶ not always positive definite

quasi-Newton method: use a matrix Bk ≈ ∇f 2(x (k)) (or Hk = B−1
k ) that is

▶ easy to update

▶ easy to invert

update Bk at each iteration to improve/maintain approximation

can still get superlinear convergence!

15 / 33



Quasi-Newton methods

what’s the problem with Newton’s method? ∇2f (x) is

▶ expensive to compute

▶ expensive to invert

▶ not always positive definite

quasi-Newton method: use a matrix Bk ≈ ∇f 2(x (k)) (or Hk = B−1
k ) that is

▶ easy to update

▶ easy to invert

update Bk at each iteration to improve/maintain approximation

can still get superlinear convergence!

15 / 33



Quasi-Newton methods

what’s the problem with Newton’s method? ∇2f (x) is

▶ expensive to compute

▶ expensive to invert

▶ not always positive definite

quasi-Newton method: use a matrix Bk ≈ ∇f 2(x (k)) (or Hk = B−1
k ) that is

▶ easy to update

▶ easy to invert

update Bk at each iteration to improve/maintain approximation

can still get superlinear convergence!

15 / 33



BFGS

BFGS is the most popular quasi-Newton method. idea:

▶ take step with length αk > 0 chosen by line search

x (k+1) = x (k) + αk(−B−1
k ∇f (x

(k))) =: x (k) + s(k)

▶ new model will be

mk+1(x) = f (x (k+1)) +∇f (x (k+1))Tp +
1

2
pTBk+1p

where p = x − x (k+1). want gradient of mk+1 to match f at x (k) and x (k+1).

match at x (k+1) by construction. match at x (k) if

∇f (x (k)) = ∇mk+1(x
(k)) = ∇f (x (k+1)) + Bk+1(x

(k) − x (k+1))

∇f (x (k+1))−∇f (x (k)) = Bk+1(x
(k+1) − x (k))

y (k) = Bk+1s
(k) ▷ secant equation

where y (k) = ∇f (x (k+1))−∇f (x (k)), s(k) = x (k+1) − x (k).

16 / 33



BFGS

BFGS is the most popular quasi-Newton method. idea:

▶ take step with length αk > 0 chosen by line search

x (k+1) = x (k) + αk(−B−1
k ∇f (x

(k))) =: x (k) + s(k)

▶ new model will be

mk+1(x) = f (x (k+1)) +∇f (x (k+1))Tp +
1

2
pTBk+1p

where p = x − x (k+1).

want gradient of mk+1 to match f at x (k) and x (k+1).

match at x (k+1) by construction. match at x (k) if

∇f (x (k)) = ∇mk+1(x
(k)) = ∇f (x (k+1)) + Bk+1(x

(k) − x (k+1))

∇f (x (k+1))−∇f (x (k)) = Bk+1(x
(k+1) − x (k))

y (k) = Bk+1s
(k) ▷ secant equation

where y (k) = ∇f (x (k+1))−∇f (x (k)), s(k) = x (k+1) − x (k).

16 / 33



BFGS

BFGS is the most popular quasi-Newton method. idea:

▶ take step with length αk > 0 chosen by line search

x (k+1) = x (k) + αk(−B−1
k ∇f (x

(k))) =: x (k) + s(k)

▶ new model will be

mk+1(x) = f (x (k+1)) +∇f (x (k+1))Tp +
1

2
pTBk+1p

where p = x − x (k+1). want gradient of mk+1 to match f at x (k) and x (k+1).

match at x (k+1) by construction. match at x (k) if

∇f (x (k)) = ∇mk+1(x
(k)) = ∇f (x (k+1)) + Bk+1(x

(k) − x (k+1))

∇f (x (k+1))−∇f (x (k)) = Bk+1(x
(k+1) − x (k))

y (k) = Bk+1s
(k) ▷ secant equation

where y (k) = ∇f (x (k+1))−∇f (x (k)), s(k) = x (k+1) − x (k).

16 / 33



BFGS

BFGS is the most popular quasi-Newton method. idea:

▶ take step with length αk > 0 chosen by line search

x (k+1) = x (k) + αk(−B−1
k ∇f (x

(k))) =: x (k) + s(k)

▶ new model will be

mk+1(x) = f (x (k+1)) +∇f (x (k+1))Tp +
1

2
pTBk+1p

where p = x − x (k+1). want gradient of mk+1 to match f at x (k) and x (k+1).

match at x (k+1) by construction.

match at x (k) if

∇f (x (k)) = ∇mk+1(x
(k)) = ∇f (x (k+1)) + Bk+1(x

(k) − x (k+1))

∇f (x (k+1))−∇f (x (k)) = Bk+1(x
(k+1) − x (k))

y (k) = Bk+1s
(k) ▷ secant equation

where y (k) = ∇f (x (k+1))−∇f (x (k)), s(k) = x (k+1) − x (k).

16 / 33



BFGS

BFGS is the most popular quasi-Newton method. idea:

▶ take step with length αk > 0 chosen by line search

x (k+1) = x (k) + αk(−B−1
k ∇f (x

(k))) =: x (k) + s(k)

▶ new model will be

mk+1(x) = f (x (k+1)) +∇f (x (k+1))Tp +
1

2
pTBk+1p

where p = x − x (k+1). want gradient of mk+1 to match f at x (k) and x (k+1).

match at x (k+1) by construction. match at x (k) if

∇f (x (k)) = ∇mk+1(x
(k)) = ∇f (x (k+1)) + Bk+1(x

(k) − x (k+1))

∇f (x (k+1))−∇f (x (k)) = Bk+1(x
(k+1) − x (k))

y (k) = Bk+1s
(k) ▷ secant equation

where y (k) = ∇f (x (k+1))−∇f (x (k)), s(k) = x (k+1) − x (k).
16 / 33



Secant equation

y (k) = Bk+1s
(k)

where y (k) = ∇f (x (k+1))−∇f (x (k)), s(k) = x (k+1) − x (k).

▶ need s(k)T y (k) > 0 (otherwise Bk+1 is not positive definite)

▶ (*) if f is strongly convex, then s(k)T y (k) > 0 for all k
(pf on next slide)

▶ for nonconvex f , can enforce s(k)T y (k) > 0 by using a line search that satisfies Wolfe
conditions:

f (x (k) + αp(k))− f (x (k)) ≥ αc1∇f (x (k))Tp(k)

∇f (x (k) + αp(k))Tp(k) ≥ c2∇f (x (k))Tp(k)

where p(k) = −B−1
k ∇f (x (k)) is search direction and c1, c2 ∈ (0, 1) are constants.

17 / 33



Proof of (*)

Lemma (*)

if f is strongly convex, then y (k)T s(k) > 0 for all k

proof: for f µ-strongly convex, for any v ,w ∈ Rn,

f (v) ≥ f (w) +∇f (w)T (v − w) +
µ

2
∥v − w∥2

f (w) ≥ f (v) +∇f (v)T (w − v) +
µ

2
∥w − v∥2

0 ≥ (∇f (v)−∇f (w))T (v − w) + µ∥v − w∥2

=⇒ (y (k))T s(k) ≥ µ∥s(k)∥2 > 0

setting v = x (k+1), w = x (k) and using s(k) = x (k+1) − x (k), y (k) = ∇f (x (k+1))−∇f (x (k)).

18 / 33



Proof of (*)

Lemma (*)

if f is strongly convex, then y (k)T s(k) > 0 for all k

proof: for f µ-strongly convex, for any v ,w ∈ Rn,

f (v) ≥ f (w) +∇f (w)T (v − w) +
µ

2
∥v − w∥2

f (w) ≥ f (v) +∇f (v)T (w − v) +
µ

2
∥w − v∥2

0 ≥ (∇f (v)−∇f (w))T (v − w) + µ∥v − w∥2

=⇒ (y (k))T s(k) ≥ µ∥s(k)∥2 > 0

setting v = x (k+1), w = x (k) and using s(k) = x (k+1) − x (k), y (k) = ∇f (x (k+1))−∇f (x (k)).

18 / 33



BFGS update

▶ Bk+1 ∈ Sn
+ has n(n + 1)/2 degrees of freedom

▶ secant equation gives n-dimensional linear system for Bk+1 =⇒ many solutions!

▶ BFGS update chooses rank 2 update

Bk+1 = Bk +
y (k)y (k)T

y (k)T s(k)
− Bks

(k)s(k)TBk

s(k)TBks(k)

▶ equivalently, can update the inverse Hessian approximation Hk = B−1
k :

Hk+1 = (I − ρ(k)s(k)y (k)T )Hk(I − ρ(k)y (k)s(k)T )T + ρ(k)s(k)s(k)T

where ρ(k) = 1
y (k)T s(k)

(uses Sherman-Morrison-Woodbury)

▶ each iteration uses O(n2) flops

19 / 33



Sherman Morrison Woodbury formula

Lemma

Sherman-Morrison-Woodbury formula for a matrix H = A+UCV (where dimensions match)

H−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

can derive from formula for 2x2 (block) matrix inverse
special case: H = A+ uvT for u, v ∈ Rn:

H−1 = A−1 − A−1uvTA−1

1 + vTA−1u

also called matrix inversion lemma or any subset of names

20 / 33



BFGS convergence

demo: try on Rosenbrock function f (x , y) = (1− x)2 + 100(y − x2)2

https://github.com/stanford-cme-307/demos/blob/main/qn.jl

21 / 33

https://github.com/stanford-cme-307/demos/blob/main/qn.jl


BFGS in practice

22 / 33



Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B

Limited-memory BFGS (L-BFGS): don’t store B explicitly!

▶ instead, store the m (say, m = 30) most recent values of

sj = x (j) − x (j−1), yj = ∇f (x (j))−∇f (x (j−1))

▶ evaluate δx = Bk∇f (x (k)) recursively, using

Bj =

(
I −

sjy
T
j

yT
j sj

)
Bj−1

(
I −

yjs
T
j

yT
j sj

)
+

sjs
T
J

yT
j sj

assuming Bk−m = I

▶ advantage: for each update, just apply rank 1 + diagonal matrix to vector!
▶ cost per update is O(n); cost per iteration is O(mn)
▶ storage is O(mn)
▶ when to use compared to BFGS? if m = 10, about 100n flops/iteration, so use it when

100n≪ n2 =⇒ L-BFGS is better than BFGS for n ≥ 1000

23 / 33



Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B

Limited-memory BFGS (L-BFGS): don’t store B explicitly!

▶ instead, store the m (say, m = 30) most recent values of

sj = x (j) − x (j−1), yj = ∇f (x (j))−∇f (x (j−1))

▶ evaluate δx = Bk∇f (x (k)) recursively, using

Bj =

(
I −

sjy
T
j

yT
j sj

)
Bj−1

(
I −

yjs
T
j

yT
j sj

)
+

sjs
T
J

yT
j sj

assuming Bk−m = I
▶ advantage: for each update, just apply rank 1 + diagonal matrix to vector!
▶ cost per update is O(n); cost per iteration is O(mn)
▶ storage is O(mn)
▶ when to use compared to BFGS?

if m = 10, about 100n flops/iteration, so use it when
100n≪ n2 =⇒ L-BFGS is better than BFGS for n ≥ 1000

23 / 33



Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B

Limited-memory BFGS (L-BFGS): don’t store B explicitly!

▶ instead, store the m (say, m = 30) most recent values of

sj = x (j) − x (j−1), yj = ∇f (x (j))−∇f (x (j−1))

▶ evaluate δx = Bk∇f (x (k)) recursively, using

Bj =

(
I −

sjy
T
j

yT
j sj

)
Bj−1

(
I −

yjs
T
j

yT
j sj

)
+

sjs
T
J

yT
j sj

assuming Bk−m = I
▶ advantage: for each update, just apply rank 1 + diagonal matrix to vector!
▶ cost per update is O(n); cost per iteration is O(mn)
▶ storage is O(mn)
▶ when to use compared to BFGS? if m = 10, about 100n flops/iteration, so use it when

100n≪ n2 =⇒ L-BFGS is better than BFGS for n ≥ 1000
23 / 33



L-BFGS: interpretations

▶ only remember curvature of Hessian on active subspace

Sk = span{sk , . . . , sk−m}

▶ hope: locally, ∇f (x (k)) will approximately lie in active subspace

∇f (x (k)) = gS + gS⊥
, gS ∈ Sk , gS⊥

small

▶ L-BFGS assumes Bk ∼ I on S⊥, so Bkg
S⊥ ≈ gS⊥

;

if gS⊥
is small, it shouldn’t matter much.

24 / 33



Outline

Quadratic approximation

Newton’s method

Quasi-Newton methods

BFGS

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

25 / 33



Three perspectives

▶ precondition the function

▶ change the quadratic approximation

▶ change the metric

three names:

▶ preconditioned

▶ quasi-Newton

▶ variable metric

26 / 33



Three perspectives

▶ precondition the function

▶ change the quadratic approximation

▶ change the metric

three names:

▶ preconditioned

▶ quasi-Newton

▶ variable metric

26 / 33



Recap: convergence analysis for gradient descent

minimize f (x)

recall: we say (twice-differentiable) f is µ-strongly convex and L-smooth if

µI ⪯ ∇2f (x) ⪯ LI

recall: if f is µ-strongly convex and L-smooth, gradient descent converges linearly

f (x (k))− p⋆ ≤ ck(f (x (k))− p⋆)

where c = (1− κ), κ = L
µ ≥ 1 is condition number

=⇒ want κ ≈ 1

idea: can we minimize another function with κ ≈ 1 whose solution will tell us the minimizer
of f ?

27 / 33



Recap: convergence analysis for gradient descent

minimize f (x)

recall: we say (twice-differentiable) f is µ-strongly convex and L-smooth if

µI ⪯ ∇2f (x) ⪯ LI

recall: if f is µ-strongly convex and L-smooth, gradient descent converges linearly

f (x (k))− p⋆ ≤ ck(f (x (k))− p⋆)

where c = (1− κ), κ = L
µ ≥ 1 is condition number

=⇒ want κ ≈ 1

idea: can we minimize another function with κ ≈ 1 whose solution will tell us the minimizer
of f ?

27 / 33



Preconditioning

for D ≻ 0, the two problems

minimize f (x) and minimize f (Dz)

have solutions related by x⋆ = Dz⋆

▶ gradient of f (Dz) is DT∇f (Dz)
▶ the second derivative (Hessian) of f (Dz) is DT∇2f (Dz)D

a gradient step on f (Dz) with step-size t > 0 is

z+ = z − tDT∇f (Dz)
Dz+ = Dz − tDDT∇f (Dz)
x+ = x − tDDT∇f (x)

from prev analysis, gd on z converges fastest if

DT∇2f (Dz)D ≈ I

D ≈ (∇2f (Dz))−1/2

28 / 33



Approximate inverse Hessian

B = DDT is called the approximate inverse Hessian

can fix B or update it at every iteration:

▶ if B is constant: called preconditioned method
(e.g., preconditioned conjugate gradient)

▶ if B is updated: called (quasi)-Newton method

how to choose B? want

▶ B ≈ ∇2f (x)−1

▶ easy to compute (and update) B

▶ fast to multiply by B

29 / 33



Outline

Quadratic approximation

Newton’s method

Quasi-Newton methods

BFGS

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

30 / 33



Variable metric

definition of the gradient:

f (x + h) = f (x) + ⟨∇f (x), s⟩+ 1

2
⟨s,∇2f (x)s⟩+ o(s3)

wrt Euclidean inner product ⟨u, v⟩ = uT v

now define new inner product ⟨u, v⟩A = uTAv for some matrix A ∈ Sn
++.

compute the gradient and Hessian wrt this inner product:

f (x + h) = f (x) + ⟨∇f (x), s⟩+ 1

2
⟨s,∇2f (x)s⟩+ o(s3)

= f (x) + ⟨A−1∇f (x), s⟩A +
1

2
⟨s,A−1∇2f (x)s⟩A + o(s3)

so the gradient and Hessian wrt the new inner product is

∇Af (x) = A−1∇f (x), ∇2
Af (x) =

1

2

[
A−1∇2f (x) +∇2f (x)A−1

]
source: Nesterov Introductory Lectures on Convex Optimization, p. 40

31 / 33



Outline

Quadratic approximation

Newton’s method

Quasi-Newton methods

BFGS

L-BFGS

Preconditioning

Variable metric methods

Trust region methods

32 / 33



Trust region methods

suppose Bk is indefinite. solution to model problem is unbounded!

argmin
x

mk(x) = argmin
x

f (x) +∇f (x (k))T s + 1

2
sTBks

trust region method limits step size by choosing x (k+1) to solve trust region subproblem

minimize mk(x)
subject to ∥x − x (k)∥ ≤ δk

▶ nonconvex quadratic problem

▶ can solve with generalized eigenvalue solver

source: https://www.math.uwaterloo.ca/ hwolkowi/henry/reports/previews.d/trsalgorithm10.pdf

33 / 33


	Quadratic approximation
	Newton's method
	Quasi-Newton methods
	Preconditioning
	Variable metric methods
	Trust region methods

