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Questions from last time

» why require the matrix @ in equality-constrained QP to be psd?
» when would you use the second-order condition to prove convexity?

> invexity is confusing. (luckily, also unimportant!)
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Outline

Quadratic optimization
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Quadratic optimization

a quadratic optimization problem is written as

minimize 1[|Ax — b[|? := fo(x)
variable  x € R”

where

» Ac R™": matrix
» b R™: vector

how to solve?
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Quadratic optimization

a quadratic optimization problem is written as

minimize 1[|Ax — b[|? := fo(x)
variable  x € R”

where

» Ac R™": matrix
» b R™: vector

how to solve? take gradient and set to O:
Vify(x) = AT(Ax — b) =0
= linear system solvers also solve quadratic problems
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix @ € R"™" is positive semidefinite (psd) if x” Qx > 0 for all
x € R".

these matrices are so important that there are many ways to write them! for
Q c Rn><n
QeS] < Q=0 += Q@=Q", A\un(Q) >0
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix @ € R"™" is positive semidefinite (psd) if x” Qx > 0 for all
x € R".

these matrices are so important that there are many ways to write them! for
Q c Rn><n

QeS” <= Q>0 <= Q@=Q", M\uin(Q) >0

Q € 57 is symmetric positive definite (spd) (Q > 0) if x” Qx > 0 for all x € R".
why care about psd matrices Q7

> least-squares objective has a psd Q = AT A
> level sets of x” @x are (bounded) ellipsoids
» the quadratic form x” Qx is a metric iff Q = 0

» eigenvalue decomp and svd coincide for psd matrices
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Quadratic program

an equality constrained quadratic program is written as
minimize %XTQX +cTx
subject to Ax=b
variable x € R"

where

> @ € R™": symmetric positive semidefinite matrix
» c € R": vector

how to solve?
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http://www.cs.cornell.edu/courses/cs4220/2017sp/lec/2017-04-28.pdf

Quadratic program

an equality constrained quadratic program is written as
minimize %XTQX +cTx
subject to Ax=b
variable x € R"

where

> @ € R™": symmetric positive semidefinite matrix
» c € R": vector

how to solve? reduce to quadratic optimization problem:

> (explicit) form solution set {x : Ax = b} = {xo+ Vz | z € R"™} by computing
a solution Axp = b and a basis V for the null space of A
» (implicit) use duality to recast problem as larger linear (KKT) system
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Quadratic program

an equality constrained quadratic program is written as
minimize %XTQX +cTx
subject to Ax=b
variable  x € R”

where

> @ € R™": symmetric positive semidefinite matrix
» c € R": vector

how to solve? reduce to quadratic optimization problem:

> (explicit) form solution set {x : Ax = b} = {xo+ Vz | z € R"™} by computing
a solution Axp = b and a basis V for the null space of A
» (implicit) use duality to recast problem as larger linear (KKT) system
» inequality constraints: harder.
http://www.cs.cornell.edu/courses/cs4220/2017sp/lec/2017-04-28.pdf has
details.
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Solving equality-constrained quadratic program

x* € R" solves the equality-constrained quadratic program
minimize %XTQX +cTx
subjectto Ax=b
variable x € R"

<= there exists \* € R" such that

5B =[]
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Solving equality-constrained quadratic program

x* € R" solves the equality-constrained quadratic program
minimize %XTQX +cTx
subjectto Ax=b
variable x € R"

<= there exists \* € R" such that
Q AT] [x*
A 0] |)\*

1
L(x,\) = EXTQX +c"x+ AT(Ax — b)

Il
|
@ﬁ
1

proof: form Lagrangian

and solve for %, \ so that VL(%,\) = 0.
> %)‘(TQX + ¢Tx provides an upper bound on p*. (why?)
> %)‘(TQX + ¢ % provides a lower bound on p*. (why?)
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Quadratic program: application

Markowitz portfolio optimization problem:

minimize  yxTIx —p’x
subject to ), x; =1

Ax =0
variable x € R"

where

> ¥ c R™": asset covariance matrix
» 1 € R": asset return vector

» ~ € R: risk aversion parameter
> rows of A € R™*" correspond to other portfolios

P ensures new portfolio is independent, e.g., of market returns
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Quadratic program: application

control system design problem:

xT = Ax + Bu

> x € R": state (e.g., position, velocity)

» u e R™: control (e.g., force, torque)

minimize Ethl x! Qxt + u/ Ruy
subject to x¢11 = Ax¢+Buy, t=0,...,T—1

X0 = Xinit
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Outline

Quadratic approximations
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Quadratic approximation

Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:

Fy) % F6) + TFG)T(y = x) + 50 = )T F(x)(y — x).

If f is a quadratic function, V2f(x) = H is constant.
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Quadratic approximation

Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:

1
F(y) = f(x) + V)T (y —x) + S = x)TV2E(x)(y = x)-
If f is a quadratic function, V2f(x) = H is constant.
Quadratic approximations are useful because quadratics are easy to minimize:

o= argmin F(x)+ V) (y = x) + %(y —x)TH(y — x)

= VFf(x)+H(ly*—x)=0
y* = x—HYVF(X)).
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Quadratic approximation
Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:
1
f(y) » F(x) + V) Ty = x) + 5y =) TVl = %).

If f is a quadratic function, V2f(x) = H is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

o= argmin F(x)+ V) (y = x) + %(y —x)TH(y — x)

= VFf(x)+H(ly*—x)=0
y* = x—HYVF(X)).

If we approximate the Hessian of f by H = %I for some t > 0 and choose x* to
minimize the quadratic approximation, we obtain the gradient descent update with
step size t:

xT =x+ —tVf(x)
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Quadratic upper bound

Definition (Smooth)
A function f : R — R is L-smooth if for all x,y € R,

F(y) < £+ VA)T(y =)+ 5 lly = xI

Equivalently, assuming the derivatives exist,
» the operator %Vf is L-Lipschitz continuous:
IVE(y) = VI < Llly = x|

> V2f(x) < LI for all x € domf.
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Quadratic upper bound

Definition (Smooth)
A function f : R — R is L-smooth if for all x,y € R,

L
Fly) < f(x)+ V()T (y — x) + Slly = x|1?.
Equivalently, assuming the derivatives exist,
» the operator %Vf is L-Lipschitz continuous:
IVE(y) = V) < Ly — ||

> V2f(x) < LI for all x € domf.

Q: For A = 0, the quadratic function f(x) = 1x" Ax is ?-smooth
A: \pax(A)-smooth
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Quadratic lower bound

Definition (Strongly convex)

A function f : R — R is u-strongly convex if for all x,y € R,
Fy) 2 F(x) + V)T (y = x) + Slly = xII%.

Equivalently, assuming the derivatives exist,
» the operator %Vf is u-coercive:
IVF(y) = V) = plly — x|

» V2f(x) = ul for all x € domf.

13/16



Quadratic lower bound

Definition (Strongly convex)

A function f : R — R is u-strongly convex if for all x,y € R,
Fy) 2 F(x) + V)T (y = x) + Slly = xII%.
Equivalently, assuming the derivatives exist,
» the operator %Vf is u-coercive:
IVF(y) = V) = plly — x|
» V2f(x) = ul for all x € domf.

Q: For A > 0, the quadratic function f(x) = %XTAX is ?-strongly convex
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Quadratic lower bound

Definition (Strongly convex)
A function f : R — R is u-strongly convex if for all x,y € R,

Fy) 2 F(x) + V)T (y = x) + Slly = xII%.
Equivalently, assuming the derivatives exist,
» the operator %Vf is u-coercive:
IVF(y) = V) = plly — x|
» V2f(x) = ul for all x € domf.

Q: For A > 0, the quadratic function f(x) = %XTAX is ?-strongly convex
A: \pin(A)-strongly convex
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Contrast to strict convexity

Definition (Strictly convex)

A function f : R — R is strictly convex if for all x,y € R,
f(y) > f(x) + V()T (y —x)

intuitively, the function has no flat spots.
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Contrast to strict convexity

Definition (Strictly convex)
A function f : R — R is strictly convex if for all x,y € R,

fly) > f(x) + VE(x)T(y —x)

intuitively, the function has no flat spots.

Q: Give an example of a function that is strictly convex but not strongly convex.
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Some important functions

for Ac R™" b R™ x € R",

» Quadratic loss. ||Ax — b|?

> Logistic loss. f(x) = >, log(1+ exp (bja] x))
where a; is ith row of A
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Some important functions

for Ac R™" b R™ x € R",

» Quadratic loss. ||Ax — b|?
> Logistic loss. f(x) = >, log(1+ exp (bja] x))
where a; is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.

Q: Which of these are strongly convex? Under what conditions?

A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.
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Optimizing the upper bound
start at x(9). suppose f is L-smooth, so for all y € R,
L
F(y) < F(xXO) + VF) Ty = x) + Sy =<7

let’s choose next iterate x(!) to minimize this upper bound:

x = argmin f(x) + Vf(x)T(y —x)+ é“y — X||2
y
= VI(x©)+ 1(x®) - x©) =0

NC X(OL%W(X@)
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Optimizing the upper bound
start at x(9). suppose f is L-smooth, so for all y € R,
y) < F4) + TF()T(y —x) 4 ]ly <O

let’s choose next iterate x(!) to minimize this upper bound:

L
x = argmin f(x) + Vf(x)T(y —x)+ EHY — X||2
y
= VI(x©)+ 1(x®) - x©) =0

NC X(OL%W(X@)

» gradient descent update with step size t = %

» lower bound ensures true optimum can't be too far away. ..
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