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Questions from last time

▶ why require the matrix Q in equality-constrained QP to be psd?

▶ when would you use the second-order condition to prove convexity?

▶ invexity is confusing. (luckily, also unimportant!)
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Outline

Quadratic optimization

Quadratic approximations
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Quadratic optimization

a quadratic optimization problem is written as

minimize 1
2∥Ax − b∥2 := f0(x)

variable x ∈ Rn

where

▶ A ∈ Rm×n: matrix

▶ b ∈ Rm: vector

how to solve?

take gradient and set to 0:

∇f0(x) = AT (Ax − b) = 0

=⇒ linear system solvers also solve quadratic problems
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix Q ∈ Rn×n is positive semidefinite (psd) if xTQx ≥ 0 for all
x ∈ Rn.

these matrices are so important that there are many ways to write them! for
Q ∈ Rn×n,

Q ∈ Sn
+ ⇐⇒ Q ⪰ 0 ⇐⇒ Q = QT , λmin(Q) ≥ 0

Q ∈ Sn
+ is symmetric positive definite (spd) (Q ≻ 0) if xTQx > 0 for all x ∈ Rn.

why care about psd matrices Q?

▶ least-squares objective has a psd Q = ATA
▶ level sets of xTQx are (bounded) ellipsoids
▶ the quadratic form xTQx is a metric iff Q ≻ 0
▶ eigenvalue decomp and svd coincide for psd matrices
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Quadratic program

an equality constrained quadratic program is written as

minimize 1
2x

TQx + cT x
subject to Ax = b
variable x ∈ Rn

where

▶ Q ∈ Rn×n: symmetric positive semidefinite matrix
▶ c ∈ Rn: vector

how to solve?

reduce to quadratic optimization problem:

▶ (explicit) form solution set {x : Ax = b} = {x0 +Vz | z ∈ Rn−m} by computing
a solution Ax0 = b and a basis V for the null space of A

▶ (implicit) use duality to recast problem as larger linear (KKT) system
▶ inequality constraints: harder.

http://www.cs.cornell.edu/courses/cs4220/2017sp/lec/2017-04-28.pdf has
details.
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Solving equality-constrained quadratic program

x⋆ ∈ Rn solves the equality-constrained quadratic program

minimize 1
2x

TQx + cT x
subject to Ax = b
variable x ∈ Rn

⇐⇒ there exists λ⋆ ∈ Rm such that[
Q AT

A 0

] [
x⋆

λ⋆

]
=

[
−c
b

]

proof: form Lagrangian

L(x , λ) = 1

2
xTQx + cT x + λT (Ax − b)

and solve for x̄ , λ̄ so that ∇L(x̄ , λ̄) = 0.

▶ 1
2 x̄

TQx̄ + cT x̄ provides an upper bound on p⋆. (why?)
▶ 1

2 x̄
TQx̄ + cT x̄ provides a lower bound on p⋆. (why?)
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Quadratic program: application

Markowitz portfolio optimization problem:

minimize γxTΣx − µT x
subject to

∑
i xi = 1

Ax = 0
variable x ∈ Rn

where

▶ Σ ∈ Rn×n: asset covariance matrix

▶ µ ∈ Rn: asset return vector

▶ γ ∈ R: risk aversion parameter
▶ rows of A ∈ Rm×n correspond to other portfolios

▶ ensures new portfolio is independent, e.g., of market returns
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Quadratic program: application

control system design problem:

x+ = Ax + Bu

▶ x ∈ Rn: state (e.g., position, velocity)

▶ u ∈ Rm: control (e.g., force, torque)

minimize
∑T

t=1 x
T
t Qxt + uTt Rut

subject to xt+1 = Axt + But , t = 0, . . . ,T − 1
x0 = x init
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Quadratic approximation

Suppose f : R → R is twice differentiable. For any x ∈ R, approximate f about x :

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x).

If f is a quadratic function, ∇2f (x) = H is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

y⋆ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2
(y − x)TH(y − x)

=⇒ ∇f (x) + H(y⋆ − x) = 0

y⋆ = x − H−1(∇f (x)).

If we approximate the Hessian of f by H = 1
t I for some t > 0 and choose x+ to

minimize the quadratic approximation, we obtain the gradient descent update with
step size t:

x+ = x +−t∇f (x)
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Quadratic upper bound

Definition (Smooth)

A function f : R → R is L-smooth if for all x , y ∈ R,

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator 1
L∇f is L-Lipschitz continuous:

∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥

▶ ∇2f (x) ⪯ LI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-smooth
A: λmax(A)-smooth
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Quadratic lower bound

Definition (Strongly convex)

A function f : R → R is µ-strongly convex if for all x , y ∈ R,

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator 1
µ∇f is µ-coercive:

∥∇f (y)−∇f (x)∥ ≥ µ∥y − x∥

▶ ∇2f (x) ⪰ µI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-strongly convex
A: λmin(A)-strongly convex
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Contrast to strict convexity

Definition (Strictly convex)

A function f : R → R is strictly convex if for all x , y ∈ R,

f (y) > f (x) +∇f (x)T (y − x)

intuitively, the function has no flat spots.

Q: Give an example of a function that is strictly convex but not strongly convex.
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Some important functions

for A ∈ Rm×n, b ∈ Rm, x ∈ Rn,

▶ Quadratic loss. ∥Ax − b∥2

▶ Logistic loss. f (x) =
∑m

i=1 log(1 + exp
(
bia

T
i x

)
)

where ai is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.
Q: Which of these are strongly convex? Under what conditions?
A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.
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Optimizing the upper bound

start at x (0). suppose f is L-smooth, so for all y ∈ R,

f (y) ≤ f (x (0)) +∇f (x)T (y − x (0)) +
L

2
∥y − x (0)∥2

let’s choose next iterate x (1) to minimize this upper bound:

x (1) = argmin
y

f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2

=⇒ ∇f (x (0)) + L(x (1) − x (0)) = 0

x (1) = x (0) − 1

L
∇f (x (0))

▶ gradient descent update with step size t = 1
L

▶ lower bound ensures true optimum can’t be too far away. . .
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