MODELING WITH BINARY VARIABLES

Class 3 – September 30, 2024

Context

You have several projects available

You choose which projects to fund

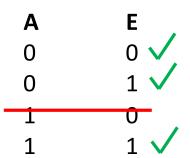
For each project, we have a binary variable indicating if it's chosen

A=1 if and only if project A is funded

If you fund A, you should also fund E

- What are the feasible values for A, E?
 - Recall that A, E are binary
 - We want: if A=1, must have E=1
- How about: **A** ≤ **E**
 - If A=1, the only option is E=1
 - If A=0, can set any value for E

ALL OPTIONS:



- Remember! "If you fund A, then you should fund B": A ≤ B
- Q: "If you do **not** fund **A**, then you should fund **B**"
 - Add a constraint: $1 A \le B$
 - "Not selecting A" is same as 1 A = 1, so this is just like Q5!

Logical Implications with Binary Variables

- Q. If you fund project A, then you should fund projects E and H.
 - Same as: "If you fund A, then fund E" and "If you fund A, then fund H"
 - A <= E, A <= H
 - Also possible to do this with one constraint: A <= (E+H)/2
 - Q. Why not $A \leq E+H$?
- Q. If you fund anything from A/B/C, then also fund H.
 - Same as: "If you fund A, then fund H" and "If you fund B, then fund H", ...
 - A <= H, B <= H, C <= H
 - Also possible to do this with one constraint: (A+B+C)/3 <= H
 - Q. Why not $A + B + C \le H$?

Modeling Complex Logical Constraints

Suppose we would like to model a constraint of the form:

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

- Y is a binary decision variable
- X_1 , ..., X_n are continuous or discrete decision variables
- a₁, ..., a_n, b are parameters/data
- This has two implications
 - (1): If Y = 1 then $a_1 X_1 + ... + a_n X_n + b \ge 0$

 - (2'): If Y = 0 then $a_1 X_1 + ... + a_n X_n + b + \epsilon \le 0$ \leftarrow instead, do this!

'ε' is a parameter with a small, positive value (e.g., 0.0000001)

if X₁ are discrete, you can typically set a precise value here

The two implications can be implemented with the constraints:

(1):
$$a_1 X_1 + ... + a_n X_n + b \ge m \cdot (1 - Y)$$

'm' is a parameter = smallest value $\mathbf{a_1} \times \mathbf{X_1} + \dots + \mathbf{a_n} \times \mathbf{X_n} + \mathbf{b}$ can take (with any X)

(2'):
$$a_1 X_1 + ... + a_n X_n + b + \epsilon \le (M + \epsilon) Y$$

'M' is a parameter = largest value $a_1 X_1 + ... + a_n X_n + b$ can take (with any X)

"Cheat-Sheet"

- (1): If Y = 1 then $a_1 X_1 + ... + a_n X_n + b \ge 0$
- (1): $a_1 X_1 + ... + a_n X_n + b \ge m \cdot (1 Y)$ 'm' is a parameter = smallest value $a_1 X_1 + ... + a_n X_n + b$ can take (with any X)
- (2'): If Y = 0 then $a_1 X_1 + ... + a_n X_n + b + \epsilon \le 0$
- (2'): $a_1 X_1 + ... + a_n X_n + b + \epsilon \le (M + \epsilon) Y$ 'M' is a parameter = largest value $a_1 X_1 + ... + a_n X_n + b$ can take (with any X)

EXAMPLE. Y=1 if and only if $A+B+C \ge 2$.

First direction. If Y=1 then A+B+C ≥ 2.

- "aX" is A+B+C. "b" is -2. "m" is -2. (m is smallest value of A+B+C-2. Because A,B,C all take 0/1 values, smallest value is achieved when they are 0.)
- Add the constraint: $A+B+C-2 \ge (-2)*(1-Y)$ which is equivalent to $A+B+C \ge 2*Y$

"Cheat-Sheet"

- (1): If Y = 1 then $a_1 X_1 + ... + a_n X_n + b \ge 0$
- (1): $a_1 X_1 + ... + a_n X_n + b \ge m \cdot (1 Y)$ 'm' is a parameter = smallest value $a_1 X_1 + ... + a_n X_n + b$ can take (with any X)
- (2'): If Y = 0 then $a_1 X_1 + ... + a_n X_n + b + \epsilon \le 0$
- (2'): $a_1 X_1 + ... + a_n X_n + b + \epsilon \le (M + \epsilon) Y$ 'M' is a parameter = largest value $a_1 X_1 + ... + a_n X_n + b$ can take (with any X)

EXAMPLE. Y=1 if and only if $A+B+C \ge 2$.

Second direction. *If* Y=0 *then* $A+B+C \le 1$.

- "aX" is A+B+C. "b" is -1. "ε" is 0. "M" is 2.

 (M is largest value of A+B+C-1. Because A,B,C all take 0/1 values, largest value is achieved when they are 1.)
- Add the constraint: A+B+C 1 ≤ 2*Y which is equivalent to A+B+C ≤ 2*Y + 1

"Cheat-Sheet"

X and Y are decisions; a, b are parameters/data; a X denotes any linear expression in X

- 1. (X,Y bin) "If X = 1 then Y = 1" \rightarrow add constraint: $X \le Y$
- 2. (X,Y bin) "If X = 1 then Y = 1, and vice-versa" \rightarrow add constraint: X = Y
- 3. (Y bin) "If Y = 1 then $a \times x + b \ge 0$ " \rightarrow add constraint: $a \times x + b \ge m \cdot (1-Y)$
 - 'm' is the *smallest* value a X + b can take
- 4. (Y bin) "If Y = 1 then $a X \ge b$ " \rightarrow add constraint: $a X b \ge m \cdot (1-Y)$
 - 'm' is the *smallest* value (a X b) can take
- 5. (Y bin) "If Y = 1 then $a X \le b$ " \rightarrow add constraint: $a X b \le M \cdot (1-Y)$
 - 'M' is the *largest* value (a X b) can take
- 6. (Y bin) "If Y = 1 then $a X + b \le 0$ " \Rightarrow add constraint: $a X + b \le M \cdot (1-Y)$
 - 'M' is *largest* value (a X + b) can take
- 7. (Y bin) "If Y = 1 then a X + b > 0" \rightarrow CAN'T DO > 0.
 - Instead, do "If Y = 1 then a $X + b \ge \varepsilon$ " for a very small number $\varepsilon > 0$
 - To implement, add the constraint: $aX + b \varepsilon \ge (m \varepsilon)(1-Y)$, where 'm' is the smallest value (aX + b) can take
 - If $(a \times x + b)$ takes integer values, this is the same as "a \times x + b \ge 1" and can be expressed exactly (no need for ε)
- 8. If you need "If Y = 0 then ...", replace Y in the constraint with 1-Y
- 9. If you need "If $a \times b \le 0$ then Y = 1", replace this with "If Y = 0, then $a \times b > 0$ "
- 10. (Y bin) Need "X * Y" \rightarrow add new variable Z ("= X * Y") and constraints:

$$Z \leq M \cdot Y$$

$$Z \ge m \cdot Y$$

$$Z \leq X - m \cdot (1 - Y)$$

$$Z \ge X - M \cdot (1 - Y)$$

m/M are smallest/largest value that X can take

3-6 are all "the same"!
Use whichever you like!