
Duality

Lecture 4

October 2, 2024



Motivation

Consider an optimization problem

minimize c|x

such that Ax  b.

1. Given a feasible x, how can we know “how good” it is?

Formally, how to quantify the gap c|x� z⇤ where z⇤ is the optimal value?

2. Without a feasible x, how to certify that {x : Ax  b} is empty?

3. Suppose one constraint is: a|i x  0 where ai 2 A are unknown parameters.
How can we ensure this constraint is feasible for any ai 2 A?

4. You are o↵ered a bit more of bi, for a “suitable price”. Is the deal worthwhile?

Duality theory will provide answers to these questions (and more)
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Outline

• Consider a primal optimization problem:

(P) minimize c|x

such that Ax  b.

• We will form a dual problem; also a linear program (LP):

(D) maximize r̃|y

such that Ãy  b̃.

• We will show that the dual provides lower bounds for the primal:

r̃|y  c|x for any x feasible for (P) and y feasible for (D)

• If (P) has optimal solution x⇤, then (D) has optimal solution y⇤ and

c|x⇤ = r̃|y⇤ (strong duality)

• In the process, will uncover some fundamental ideas in optimization:

separation of convex sets =) Farkas Lemma =) strong duality
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Notation

Aj will denote the j-th column of matrix A 2 Rm⇥n

A =
⇥
A1 A2 . . . Aj . . . An

⇤

For S ✓ {1, . . . , n}, AS is the submatrix obtained from columns {Aj}j2S

e.g., for S = {1, 3}, AS =
⇥
A1 A3

⇤

a|i will denote the i-th row of matrix A 2 Rm⇥n

A| =
⇥
a1 a2 . . . ai . . . am

⇤

For x 2 Rn, two ways to view the expression Ax:

Ax =
nX

j=1

Ajxj =

2

6664

a|1x
a|2x
...

a|mx

3

7775
.

We use k · k to denote the Euclidean norm: kxk = (x|x)1/2.



Notation

Aj will denote the j-th column of matrix A 2 Rm⇥n

A =
⇥
A1 A2 . . . Aj . . . An

⇤

For S ✓ {1, . . . , n}, AS is the submatrix obtained from columns {Aj}j2S

e.g., for S = {1, 3}, AS =
⇥
A1 A3

⇤

a|i will denote the i-th row of matrix A 2 Rm⇥n

A| =
⇥
a1 a2 . . . ai . . . am

⇤

For x 2 Rn, two ways to view the expression Ax:

Ax =
nX

j=1

Ajxj =

2

6664

a|1x
a|2x
...

a|mx

3

7775
.

We use k · k to denote the Euclidean norm: kxk = (x|x)1/2.



Deriving the Dual Problem

Consider a linear optimization problem in the most general form possible:

(P) minimizex c|x
a|i x � bi, i 2 M1,
a|i x  bi, i 2 M2,
a|i x = bi, i 2 M3,
xj � 0, j 2 N1,
xj  0, j 2 N2,
xj free, j 2 N3.

(1)

We will refer to this as the primal problem, and also as problem (P)

We will also denote its feasible set with P (a polyhedron)

Let’s also assume for now that (P) has an optimal solution x⇤



Deriving the Dual Problem

Consider a linear optimization problem in the most general form possible:

(P) minimizex c|x
(pi !) a|i x � bi, i 2 M1,
(pi !) a|i x  bi, i 2 M2,
(pi !) a|i x = bi, i 2 M3,

xj � 0, j 2 N1,
xj  0, j 2 N2,
xj free, j 2 N3.

(P) is a minimization, so we seek valid lower bounds on (P). Any ideas?

Can remove constraints! Drastic, and could end up with a bound of �1!

Let’s relax some constraints!



Deriving the Dual Problem

Consider a linear optimization problem in the most general form possible:

(P) minimizex c|x
(pi !) a|i x � bi, i 2 M1,
(pi !) a|i x  bi, i 2 M2,
(pi !) a|i x = bi, i 2 M3,

xj � 0, j 2 N1,
xj  0, j 2 N2,
xj free, j 2 N3.

(P) is a minimization, so we seek valid lower bounds on (P). Any ideas?

Can remove constraints! Drastic, and could end up with a bound of �1!

Let’s relax some constraints!



Deriving the Dual Problem

Consider a linear optimization problem in the most general form possible:

(P) minimizex c|x
(pi !) a|i x � bi, i 2 M1,
(pi !) a|i x  bi, i 2 M2,
(pi !) a|i x = bi, i 2 M3,

xj � 0, j 2 N1,
xj  0, j 2 N2,
xj free, j 2 N3.

(P) is a minimization, so we seek valid lower bounds on (P). Any ideas?

Can remove constraints! Drastic, and could end up with a bound of �1!

Let’s relax some constraints!



Deriving the Dual Problem

Consider a linear optimization problem in the most general form possible:

(P) minimizex c|x
(pi !) a|i x � bi, i 2 M1,
(pi !) a|i x  bi, i 2 M2,
(pi !) a|i x = bi, i 2 M3,

xj � 0, j 2 N1,
xj  0, j 2 N2,
xj free, j 2 N3.

For every constraint i, have a price or penalty pi that penalizes violations

Add penalized terms in the objective to formulate the Lagrangean:

L(x, p) = c|x�
X

i2M1[M2[M3

pi
|(a|i x� bi) = p|b+ (c| � p|A)x.

We want this to be a valid lower bound: L(x, p)  c|x, 8x 2 P . Is it?
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Deriving the Dual Problem

Summarizing... with p satisfying (2), we have a valid lower bound:

L(x, p) := c|x�
X

i

pi
|(a|i x� bi) = p|b+ (c| � p|A)x  c|x, 8x 2 P .

How can we get a lower bound on the optimal value c|x⇤
of (P)?

For any p satisfying (2), let

g(p) := minx
⇥
p|b+ (c| � p|A)x

⇤

s.t. xj � 0, j 2 N1,

xj  0, j 2 N2,

xj free, j 2 N3.

(3)

Then, we have g(p)  c|x⇤.

Can we simplify this g(p) further?
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Deriving the Dual Problem

For p satisfying (2), the value:

g(p) := minx
⇥
p|b+ (c| � p|A)x

⇤

s.t. xj � 0, j 2 N1,

xj  0, j 2 N2,

xj free, j 2 N3

is a valid lower bound on the optimal value of (P): g(p)  c|x⇤.

Can we simplify this g(p) further?

g(p) =

8
>>>><

>>>>:

p|b, if cj � p|Aj � 0, 8 j 2 N1 and

cj � p|Aj  0, 8 j 2 N2 and

cj � p|Aj = 0, 8 j 2 N3

�1, otherwise.
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• Because we maximize g(p), we can restrict attention to p so g(p) > �1...

• Recall that (2) requires:
pi � 0, 8 i 2 M1

pi  0, 8 i 2 M2

pi free, 8 i 2 M3.
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Deriving the Dual Problem

The best lower bound on the optimal value of (P) is given by:

maximize p|b
subject to pi � 0, i 2 M1,

pi  0, i 2 M2,
pi free, i 2 M3,
p|Aj  cj , j 2 N1,
p|Aj � cj , j 2 N2,
p|Aj = cj , j 2 N3.

(5)

This is the dual of (P), which we will also refer to as (D).
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Summarizing

We obtained the following primal-dual pair of problems:

Primal (P) Dual (D)
minimizex c|x

(pi !) a|i x � bi, i 2 M1,
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xj � 0, j 2 N1,
xj  0, j 2 N2,
xj free, j 2 N3.

maximizep p|b
pi � 0, i 2 M1,
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(xj !) p|Aj  cj , j 2 N1,
(xj !) p|Aj � cj , j 2 N2,
(xj !) p|Aj = cj , j 2 N3.

Simple rules to help you derive duals quickly:

• a dual decision variable for every primal constraint (except variables signs)
– if ”=” constraint, dual variable is free
– if (”�”, minimize) or (””, maximize), dual variable � 0
– if (”�”, maximize) or (””, minimize), dual variable  0

• for every decision variable in the primal, there is a constraint in the dual
– signs for the constraint derived by reversing the above
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Example 1

min x1 + 2x2 + 3x4

� x1 + 3x2 = 5

2x1 � x2 + 3x3 � 6

x3  4

x1 � 0

x2  0

x3 free



Some Quick Results

Theorem (“Duals of equivalent primals”)

If we transform a primal P1 into an equivalent formulation P2 by:

• replacing a free variable xi with xi = x+
i � x�

i ,

• replacing an inequality with an equality by introducing a slack variable,

• removing linearly dependent rows a|i for a feasible LP in standard form,

then the duals of (P1) and (P2) are equivalent, i.e., they are either both

infeasible or they have the same optimal objective.

Theorem (The dual of the dual is the primal)

If we transform the dual into an equivalent minimization problem and then form

its dual, we obtain a problem equivalent to the original primal problem.
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Weak duality

Primal (P) Dual (D)
minimizex c|x

(pi !) a|i x � bi, i 2 M1,
(pi !) a|i x  bi, i 2 M2,
(pi !) a|i x = bi, i 2 M3,

xj � 0, j 2 N1,
xj  0, j 2 N2,
xj free, j 2 N3.

maximizep p|b
pi � 0, i 2 M1,
pi  0, i 2 M2,
pi free, i 2 M3,

(xj !) p|Aj  cj , j 2 N1,
(xj !) p|Aj � cj , j 2 N2,
(xj !) p|Aj = cj , j 2 N3.

Theorem (Weak duality)
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Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal cost in (P) is �1, then (D) must be infeasible.

(b) If the optimal cost in (D) is +1, then (P) must be infeasible.

(c) If x feasible for (P) and p feasible for (D), then:

c|x� c|x⇤  c|x� p|b and (p⇤)|b� p|b  c|x� p|b.

(d) Under the premises in (c), if p|b = c|x holds, then x and p are optimal
solutions to (P) and (D), respectively.

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and p satisfying (d) even exist?
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Strong duality

Theorem (Strong duality)

If (P) has an optimal solution, so does (D), and their optimal values are equal.

Proof. Many proofs possible...

• See Bertsimas & Tsitsiklis for a proof involving the simplex algorithm

• We provide a more general proof (some ideas work for convex optimization)

Need a tiny bit of real analysis background...
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A Few Real Analysis Results

Definition (Closed Set)

A set S ✓ Rn is called closed if it contains the limit of any sequence of
elements of S. That is, if xn 2 S, 8n � 1 and xn ! x⇤, then x⇤ 2 S.

Theorem

Every polyhedron is closed.

Proof.

• Consider P = {x 2 Rn | Ax � b} (representation is w.l.o.g.)

• Suppose that {xn}n�1 is a sequence with xn 2 S for every n, and xn ! x⇤.

• For each k, we have xk 2 P , and therefore, Axk � b.

• Then, Ax⇤ = A (limk!1 xk) = limk!1 Axk � b, so x⇤ belongs to P .

Is every convex set closed?

Theorem (Weierstrass’ Theorem)

If f : Rn ! R is a continuous function, and if S is a nonempty, closed, and

bounded subset of Rn
, then there exists some x 2 S such that f(x)  f(x) for

all x 2 S and there exists some x̄ 2 S such that f(x̄) � f(x) for all x 2 S.

i.e., a continuous function achieves its minimum and maximum
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Separating Hyperplane Theorem

The first fundamental result in optimization



Separating Hyperplane Theorem

Theorem (Simple Separating Hyperplane Theorem)

Consider a point x⇤
and a polyhedron P . If x⇤ /2 P , the there exists a vector

c 2 Rn
such that c 6= 0 and c|x⇤ < c|y holds for all y 2 P .



Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of Rn
such that S is

bounded. Then, there exists a vector c 2 Rn
such that c 6= 0 and c|x < c|y

holds for all x 2 S and y 2 U .
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Separating Hyperplane Theorem - Done!

We proved the first fundamental result in optimization! The Separating

Hyperplane Theorem for convex sets will be very useful later!

Corollary (Needed for our purposes...)

If P is a polyhedron and x⇤
satisfies x /2 P , there exists a hyperplane that

strictly separates x from P , i.e., 9c 6= 0 such that c|x⇤ < c|x 8x 2 P .
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