Duality

Lecture 4

October 2, 2024

Consider an optimization problem

 $\text{minimize } c^{\mathsf{T}}x$

such that $Ax \leq b$.

Consider an optimization problem

 $\label{eq:continuous} \begin{array}{l} \text{minimize } c^{\mathsf{T}}x \\ \\ \text{such that } Ax \leq b. \end{array}$

1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{\mathsf{T}}x - z^*$ where z^* is the optimal value?

Consider an optimization problem

 $\label{eq:continuous} \mbox{minimize } c^{\mathsf{T}}x$ such that $Ax \leq b.$

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{\mathsf{T}}x z^*$ where z^* is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?

Consider an optimization problem

 $\label{eq:continuous} \mbox{minimize } c^{\mathsf{T}}x$ such that $Ax \leq b.$

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{\mathsf{T}}x - z^*$ where z^* is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?
- 3. Suppose one constraint is: $a_i^T x \leq 0$ where $a_i \in \mathcal{A}$ are unknown parameters. How can we ensure this constraint is feasible for any $a_i \in \mathcal{A}$?

Consider an optimization problem

 $\label{eq:continuous_problem} \begin{aligned} & \text{minimize } c^{\mathsf{T}} x \\ & \text{such that } Ax \leq b. \end{aligned}$

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{\mathsf{T}}x - z^*$ where z^* is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?
- 3. Suppose one constraint is: $a_i^T x \leq 0$ where $a_i \in \mathcal{A}$ are unknown parameters. How can we ensure this constraint is feasible for any $a_i \in \mathcal{A}$?
- 4. You are offered a bit more of b_i , for a "suitable price". Is the deal worthwhile?

Duality theory will provide answers to these questions (and more)

• Consider a **primal** optimization problem:

 $(\mathscr{P}) \ \ \text{minimize} \ c^{\mathsf{T}} x$ such that $Ax \leq b$.

Consider a primal optimization problem:

 $(\mathscr{P}) \quad \text{minimize } c^{\mathsf{T}}x$ such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

 (\mathscr{D}) maximize $\tilde{r}^{\mathsf{T}}y$ such that $\tilde{A}y \leq \tilde{b}$.

Consider a primal optimization problem:

$$(\mathscr{P}) \quad \text{minimize } c^{\mathsf{T}}x$$
 such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

$$(\mathscr{D})$$
 maximize $\tilde{r}^{\mathsf{T}}y$ such that $\tilde{A}y \leq \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

```
\tilde{r}^{\mathsf{T}}y \leq c^{\mathsf{T}}x for any x feasible for (\mathscr{P}) and y feasible for (\mathscr{D})
```

Consider a primal optimization problem:

(
$$\mathscr{P}$$
) minimize $c^{\mathsf{T}}x$ such that $Ax < b$.

• We will form a dual problem; also a linear program (LP):

$$(\mathscr{D})$$
 maximize $\tilde{r}^{\mathsf{T}}y$ such that $\tilde{A}y \leq \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

```
\tilde{r}^{\mathsf{T}}y \leq c^{\mathsf{T}}x for any x feasible for (\mathscr{P}) and y feasible for (\mathscr{D})
```

ullet If (\mathscr{P}) has optimal solution x^* , then (\mathscr{D}) has optimal solution y^* and

$$c^{\mathsf{T}}x^* = \tilde{r}^{\mathsf{T}}y^*$$
 (strong duality)

Consider a primal optimization problem:

$$(\mathscr{P}) \quad \text{minimize } c^{\mathsf{T}}x$$
 such that $Ax < b$.

• We will form a dual problem; also a linear program (LP):

$$(\mathscr{D})$$
 maximize $\tilde{r}^{\mathsf{T}}y$ such that $\tilde{A}y \leq \tilde{b}$.

- We will show that the dual provides lower bounds for the primal:
 - $\tilde{r}^{\mathsf{T}}y \leq c^{\mathsf{T}}x$ for any x feasible for (\mathscr{P}) and y feasible for (\mathscr{D})
- If (\mathscr{P}) has optimal solution x^* , then (\mathscr{D}) has optimal solution y^* and $c^\mathsf{T} x^* = \tilde{r}^\mathsf{T} y^*$ (strong duality)
- In the process, will uncover some fundamental ideas in optimization:
 separation of convex sets

 Farkas Lemma

 strong duality

Notation

 A_j will denote the j-th column of matrix $A \in \mathbb{R}^{m \times n}$

$$A = \left[\begin{array}{ccccc} A_1 & A_2 & \dots & A_j & \dots & A_n \end{array} \right]$$

For $S \subseteq \{1, \ldots, n\}$, A_S is the submatrix obtained from columns $\{A_j\}_{j \in S}$

e.g., for
$$S = \{1, 3\}, A_S = [A_1 \ A_3]$$

 a_i^{T} will denote the i-th row of matrix $A \in \mathbb{R}^{m \times n}$

Notation

 A_j will denote the j-th column of matrix $A \in \mathbb{R}^{m \times n}$

$$A = \left[\begin{array}{ccccc} A_1 & A_2 & \dots & A_j & \dots & A_n \end{array} \right]$$

For $S \subseteq \{1, \ldots, n\}$, A_S is the submatrix obtained from columns $\{A_j\}_{j \in S}$

e.g., for
$$S = \{1, 3\}, A_S = [A_1 \ A_3]$$

 $oldsymbol{a_i^{\mathsf{T}}}$ will denote the i-th row of matrix $A \in \mathbb{R}^{m \times n}$

For $x \in \mathbb{R}^n$, two ways to view the expression Ax:

$$Ax = \sum_{j=1}^{n} A_j x_j = \begin{bmatrix} a_1^{\mathsf{T}} x \\ a_2^{\mathsf{T}} x \\ \vdots \\ a_m^{\mathsf{T}} x \end{bmatrix}.$$

We use $\|\cdot\|$ to denote the Euclidean norm: $\|x\| = (x^{\mathsf{T}}x)^{1/2}$.

Consider a linear optimization problem in the most general form possible:

$$(\mathscr{P}) \ \mathsf{minimize}_x \qquad c^\intercal x \\ a_i^\intercal x \geq b_i, \qquad i \in M_1, \\ a_i^\intercal x \leq b_i, \qquad i \in M_2, \\ a_i^\intercal x = b_i, \qquad i \in M_3, \\ x_j \geq 0, \qquad j \in N_1, \\ x_j \leq 0, \qquad j \in N_2, \\ x_j \ \mathsf{free}, \qquad j \in N_3.$$

We will refer to this as the **primal** problem, and also as problem (\mathscr{P})

We will also denote its feasible set with P (a polyhedron)

Let's also assume for now that (\mathcal{P}) has an optimal solution x^*

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

 (\mathscr{P}) is a minimization, so we seek **valid lower bounds** on (\mathscr{P}) . Any ideas?

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

 (\mathscr{P}) is a minimization, so we seek **valid lower bounds** on (\mathscr{P}) . Any ideas?

Can **remove** constraints! Drastic, and could end up with a bound of $-\infty$!

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

 (\mathscr{P}) is a minimization, so we seek **valid lower bounds** on (\mathscr{P}) . Any ideas?

Can **remove** constraints! Drastic, and could end up with a bound of $-\infty$!

Let's relax some constraints!

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

For every constraint i, have a **price** or **penalty** p_i that penalizes violations

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

For every constraint i, have a **price** or **penalty** p_i that penalizes violations

Add penalized terms in the objective to formulate the **Lagrangean**:

$$\mathcal{L}(x, \mathbf{p}) = c^{\mathsf{T}}x - \sum_{i \in M_1 \cup M_2 \cup M_3} \mathbf{p_i}^{\mathsf{T}}(a_i^{\mathsf{T}}x - b_i) = \mathbf{p}^{\mathsf{T}}b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)x.$$

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{cccc} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

For every constraint i, have a **price** or **penalty** p_i that penalizes violations

Add penalized terms in the objective to formulate the **Lagrangean**:

$$\mathcal{L}(x, \mathbf{p}) = c^{\mathsf{T}}x - \sum_{i \in M_1 \cup M_2 \cup M_3} \mathbf{p_i}^{\mathsf{T}}(a_i^{\mathsf{T}}x - b_i) = \mathbf{p}^{\mathsf{T}}b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)x.$$

We want this to be a valid lower bound: $\mathcal{L}(x, \mathbf{p}) \leq c^{\mathsf{T}}x, \forall x \in P$. Is it?

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

We want a valid lower bound:

$$\mathcal{L}(x, \mathbf{p}) := c^{\mathsf{T}}x - \sum_{i} \mathbf{p_i}^{\mathsf{T}}(a_i^{\mathsf{T}}x - b_i) = \mathbf{p}^{\mathsf{T}}b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)x \le c^{\mathsf{T}}x, \ \forall x \in P.$$

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

We want a valid lower bound:

$$\mathcal{L}(x, \mathbf{p}) := c^{\mathsf{T}}x - \sum_{i} \mathbf{p_i}^{\mathsf{T}}(a_i^{\mathsf{T}}x - b_i) = \mathbf{p}^{\mathsf{T}}b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)x \le c^{\mathsf{T}}x, \ \forall x \in P.$$

We must impose constraints on p: need $sign(p_i) = sign(a_i^T x - b_i)$

Consider a linear optimization problem in the most general form possible:

$$\begin{array}{lll} (\mathscr{P}) \ \mathsf{minimize}_x & c^\intercal x \\ & (p_i \to) & a_i^\intercal x \geq b_i, & i \in M_1, \\ & (p_i \to) & a_i^\intercal x \leq b_i, & i \in M_2, \\ & (p_i \to) & a_i^\intercal x = b_i, & i \in M_3, \\ & x_j \geq 0, & j \in N_1, \\ & x_j \leq 0, & j \in N_2, \\ & x_j \ \mathsf{free}, & j \in N_3. \end{array}$$

We want a valid lower bound:

$$\mathcal{L}(x, \mathbf{p}) := c^{\mathsf{T}}x - \sum_{i} \mathbf{p_i}^{\mathsf{T}}(a_i^{\mathsf{T}}x - b_i) = \mathbf{p}^{\mathsf{T}}b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)x \le c^{\mathsf{T}}x, \ \forall x \in P.$$

We must impose constraints on p: need sign $(p_i) = \text{sign}(a_i^\intercal x - b_i)$

$$p_i \ge 0, \quad \forall i \in M_1$$
 $p_i \le 0, \quad \forall i \in M_2$
 $p_i \text{ free, } \forall i \in M_3.$

$$(2)$$

Summarizing... with p satisfying (2), we have a valid lower bound:

$$\mathcal{L}(x, \mathbf{p}) := c^{\mathsf{T}}x - \sum_{i} \mathbf{p_i}^{\mathsf{T}} (a_i^{\mathsf{T}}x - b_i) = \mathbf{p}^{\mathsf{T}}b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)x \le c^{\mathsf{T}}x, \ \forall x \in P.$$

How can we get a lower bound on the **optimal value** $c^{\intercal}x^*$ of (\mathscr{P}) ?

Summarizing... with p satisfying (2), we have a valid lower bound:

$$\mathcal{L}(x, \mathbf{p}) := c^{\mathsf{T}} x - \sum_{i} \mathbf{p_i}^{\mathsf{T}} (a_i^{\mathsf{T}} x - b_i) = \mathbf{p}^{\mathsf{T}} b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} A) x \le c^{\mathsf{T}} x, \ \forall x \in P.$$

How can we get a lower bound on the **optimal value** $c^{\intercal}x^*$ of (\mathscr{P}) ?

For any p satisfying (2), let

$$g(\mathbf{p}) := \min_{x} \left[\mathbf{p}^{\mathsf{T}} b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} A) x \right]$$
s.t. $x_{j} \geq 0, \ j \in N_{1},$

$$x_{j} \leq 0, \ j \in N_{2},$$

$$x_{j} \text{ free, } j \in N_{3}.$$

$$(3)$$

Then, we have $g(\mathbf{p}) \leq c^{\mathsf{T}} x^*$.

Can we simplify this g(p) further?

For p satisfying (2), the value:

$$g(\pmb{p}) := \min_x \ ig[\pmb{p}^{\mathsf{T}} b + (c^{\mathsf{T}} - \pmb{p}^{\mathsf{T}} A) x ig]$$
 s.t. $x_j \geq 0, \ j \in N_1,$ $x_j \leq 0, \ j \in N_2,$ x_j free, $j \in N_3$

is a valid lower bound on the optimal value of (\mathscr{P}) : $g(\mathbf{p}) \leq c^{\mathsf{T}}x^*$.

Can we simplify this g(p) further?

For p satisfying (2), the value:

$$g(\mathbf{p}) := \min_{x} \ egin{bmatrix} \mathbf{p}^{\mathsf{T}}b + (c^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}}A)x \end{bmatrix}$$
 s.t. $x_{j} \geq 0, \ j \in N_{1},$ $x_{j} \leq 0, \ j \in N_{2},$ $x_{j} \ ext{free}, \ j \in N_{3}$

is a valid lower bound on the optimal value of (\mathscr{P}) : $g(\mathbf{p}) \leq c^{\mathsf{T}}x^*$.

Can we simplify this g(p) further?

$$g(\textbf{\textit{p}}) = \begin{cases} \textbf{\textit{p}}^\intercal b, & \text{if } c_j - \textbf{\textit{p}}^\intercal A_j \geq 0, \forall j \in N_1 \text{ and} \\ c_j - \textbf{\textit{p}}^\intercal A_j \leq 0, \forall j \in N_2 \text{ and} \\ c_j - \textbf{\textit{p}}^\intercal A_j = 0, \forall j \in N_3 \\ -\infty, & \text{otherwise.} \end{cases}$$

For p satisfying (2), the value:

$$g(\textbf{\textit{p}}) = \begin{cases} \textbf{\textit{p}}^\intercal b, & \text{if } c_j - \textbf{\textit{p}}^\intercal A_j \geq 0, \forall j \in N_1 \text{ and} \\ c_j - \textbf{\textit{p}}^\intercal A_j \leq 0, \forall j \in N_2 \text{ and} \\ c_j - \textbf{\textit{p}}^\intercal A_j = 0, \forall j \in N_3 \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the optimal value (\mathscr{P}) : $g(\mathbf{p}) \leq c^{\mathsf{T}}x^*$.

How can we get the **best** lower bound?

For p satisfying (2), the value:

$$g(\boldsymbol{p}) = \begin{cases} \boldsymbol{p}^\intercal b, & \text{if } c_j - \boldsymbol{p}^\intercal A_j \geq 0, \forall j \in N_1 \text{ and} \\ c_j - \boldsymbol{p}^\intercal A_j \leq 0, \forall j \in N_2 \text{ and} \\ c_j - \boldsymbol{p}^\intercal A_j = 0, \forall j \in N_3 \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the optimal value (\mathscr{P}) : $g(\mathbf{p}) \leq c^{\mathsf{T}}x^*$.

How can we get the **best** lower bound?

$$maximize_{p} \{g(p) : p \text{ satisfying (2)}\}. \tag{4}$$

For p satisfying (2), the value:

$$g(\mathbf{p}) = \begin{cases} \mathbf{p}^{\mathsf{T}}b, & \text{if } c_j - \mathbf{p}^{\mathsf{T}}A_j \geq 0, \forall j \in N_1 \text{ and} \\ c_j - \mathbf{p}^{\mathsf{T}}A_j \leq 0, \forall j \in N_2 \text{ and} \\ c_j - \mathbf{p}^{\mathsf{T}}A_j = 0, \forall j \in N_3 \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the optimal value (\mathscr{P}) : $g(\mathbf{p}) \leq c^{\mathsf{T}}x^*$.

How can we get the **best** lower bound?

$$\mathsf{maximize}_{p} \{ g(p) : p \mathsf{ satisfying } (2) \}. \tag{4}$$

• Because we maximize $g(\mathbf{p})$, we can restrict attention to \mathbf{p} so $g(\mathbf{p}) > -\infty...$

For p satisfying (2), the value:

$$g(\pmb{p}) = \begin{cases} \pmb{p}^\intercal b, & \text{if } c_j - \pmb{p}^\intercal A_j \geq 0, \forall j \in N_1 \text{ and} \\ c_j - \pmb{p}^\intercal A_j \leq 0, \forall j \in N_2 \text{ and} \\ c_j - \pmb{p}^\intercal A_j = 0, \forall j \in N_3 \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the optimal value (\mathscr{P}) : $g(\mathbf{p}) \leq c^{\mathsf{T}}x^*$.

How can we get the **best** lower bound?

$$\mathsf{maximize}_{p} \{ g(p) : p \mathsf{ satisfying } (2) \}. \tag{4}$$

- Because we maximize $g(\mathbf{p})$, we can restrict attention to \mathbf{p} so $g(\mathbf{p}) > -\infty...$
- Recall that (2) requires:

$$egin{aligned} & oldsymbol{p_i} \geq 0, & orall i \in M_1 \ & oldsymbol{p_i} \leq 0, & orall i \in M_2 \ & oldsymbol{p_i} & ext{free,} & orall i \in M_3. \end{aligned}$$

The **best lower bound** on the optimal value of (\mathcal{P}) is given by:

$$\begin{array}{lll} \text{maximize} & p^\intercal b \\ \text{subject to} & p_i \geq 0, & i \in M_1, \\ & p_i \leq 0, & i \in M_2, \\ & p_i \text{ free}, & i \in M_3, \\ & p^\intercal A_j \leq c_j, & j \in N_1, \\ & p^\intercal A_j \geq c_j, & j \in N_2, \\ & p^\intercal A_j = c_j, & j \in N_3. \end{array} \tag{5}$$

The **best lower bound** on the optimal value of (\mathcal{P}) is given by:

$$\begin{array}{lll} \text{maximize} & p^\intercal b \\ \text{subject to} & p_i \geq 0, & i \in M_1, \\ & p_i \leq 0, & i \in M_2, \\ & p_i \text{ free}, & i \in M_3, \\ & p^\intercal A_j \leq c_j, & j \in N_1, \\ & p^\intercal A_j \geq c_j, & j \in N_2, \\ & p^\intercal A_j = c_j, & j \in N_3. \end{array} \tag{5}$$

This is the **dual** of (\mathscr{P}) , which we will also refer to as (\mathscr{D}) .

Summarizing

We obtained the following primal-dual pair of problems:

$Primal\;(\mathscr{P})$			$Dual\ (\mathscr{D})$		
$minimize_{x}$	$c^\intercal x$		$maximize_p$	$oldsymbol{p}^\intercal b$	
$(p_i \to)$	$a_i^{T} x \geq b_i,$	$i \in M_1$,		$p_i \ge 0,$	$i \in M_1$,
$(p_i \to)$	$a_i^T x \leq b_i,$	$i \in M_2$,		$p_i \leq 0,$	$i \in M_2$,
$(p_i \to)$	$a_i^{T} x = b_i,$	$i \in M_3$,		p_i free,	$i \in M_3$,
	$x_j \ge 0$,	$j \in N_1$,	$(x_j ightarrow)$	$p^{\intercal}A_j \le c_j,$	$j \in N_1$,
	$x_j \leq 0,$	$j \in N_2$,	$(x_j ightarrow)$	$p^{\intercal}A_j \ge c_j,$	$j \in N_2$,
	x_j free,	$j \in N_3$.	$(x_j \rightarrow)$	$p^{\intercal}A_j = c_j,$	$j \in N_3$.

Summarizing

We obtained the following primal-dual pair of problems:

Primal (\mathscr{P})			$Dual\ (\mathscr{D})$		
$minimize_x$	$c^\intercal x$		$maximize_p$	$oldsymbol{p}^\intercal b$	
$(p_i \to)$	$a_i^{T} x \ge b_i,$	$i \in M_1$,		$p_i \ge 0,$	$i \in M_1$,
$(p_i \to)$	$a_i^{T} x \leq b_i,$	$i \in M_2$,		$p_i \leq 0,$	$i \in M_2$,
$(p_i \to)$	$a_i^{T} x = b_i,$	$i \in M_3$,		$p_{\pmb{i}}$ free,	$i \in M_3$,
	$x_j \geq 0,$	$j \in N_1$,	$(x_j ightarrow)$	$p^{\intercal}A_j \leq c_j,$	$j \in N_1$,
	$x_j \leq 0,$	$j \in N_2$,	$(x_j ightarrow)$	$p^{\intercal}A_j \ge c_j,$	$j \in N_2$,
	x_j free,	$j \in N_3$.	$(x_j ightarrow)$	$p^{T}A_j = c_j,$	$j \in N_3$.

Simple rules to help you derive duals quickly:

- a dual decision variable for every primal constraint (except variables signs)
 - if "=" constraint, dual variable is free
 - if (" \geq ", minimize) or (" \leq ", maximize), dual variable ≥ 0
 - if (" \geq ", maximize) or (" \leq ", minimize), dual variable ≤ 0
- for every decision variable in the primal, there is a constraint in the dual
 - signs for the constraint derived by reversing the above

Example 1

min
$$x_1 + 2x_2 + 3x_4$$

 $-x_1 + 3x_2 = 5$
 $2x_1 - x_2 + 3x_3 \ge 6$
 $x_3 \le 4$
 $x_1 \ge 0$
 $x_2 \le 0$
 x_3 free

Some Quick Results

Theorem ("Duals of equivalent primals")

If we transform a primal P_1 into an equivalent formulation P_2 by:

- replacing a free variable x_i with $x_i = x_i^+ x_i^-$,
- replacing an inequality with an equality by introducing a slack variable,
- removing linearly dependent rows a_i^{T} for a **feasible** LP in standard form, then the duals of (P_1) and (P_2) are **equivalent**, i.e., they are either both infeasible or they have the same optimal objective.

Some Quick Results

Theorem ("Duals of equivalent primals")

If we transform a primal P_1 into an equivalent formulation P_2 by:

- replacing a free variable x_i with $x_i = x_i^+ x_i^-$,
- replacing an inequality with an equality by introducing a slack variable,
- removing linearly dependent rows a_i^T for a **feasible** LP in standard form, then the duals of (P_1) and (P_2) are **equivalent**, i.e., they are either both infeasible or they have the same optimal objective.

Theorem (The dual of the dual is the primal)

If we transform the dual into an equivalent minimization problem and then form its dual, we obtain a problem equivalent to the original primal problem.

Weak duality

Weak duality

Theorem (Weak duality)

If x is feasible for (\mathscr{P}) and p is feasible for (\mathscr{D}) , then $p^{\mathsf{T}}b \leq c^{\mathsf{T}}x$.

Weak duality

Theorem (Weak duality)

If x is feasible for (\mathscr{P}) and p is feasible for (\mathscr{D}) , then $p^{\mathsf{T}}b \leq c^{\mathsf{T}}x$.

Proof.

By construction, the (optimal) dual objective provides a lower bound on the (optimal) primal objective...

Corollary	
he following results hold:	

Corollary

The following results hold:

(a) If the optimal cost in (\mathscr{P}) is $-\infty$, then (\mathscr{D}) must be infeasible.

Corollary

The following results hold:

- (a) If the optimal cost in (\mathscr{P}) is $-\infty$, then (\mathscr{D}) must be infeasible.
- (b) If the optimal cost in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.

Corollary

The following results hold:

- (a) If the optimal cost in (\mathscr{P}) is $-\infty$, then (\mathscr{D}) must be infeasible.
- (b) If the optimal cost in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.
- (c) If x feasible for (\mathscr{P}) and p feasible for (\mathscr{D}) , then:

$$c^{\mathsf{T}}x - c^{\mathsf{T}}x^* \le c^{\mathsf{T}}x - p^{\mathsf{T}}b$$
 and $(p^*)^{\mathsf{T}}b - p^{\mathsf{T}}b \le c^{\mathsf{T}}x - p^{\mathsf{T}}b$.

Corollary

The following results hold:

- (a) If the optimal cost in (\mathscr{P}) is $-\infty$, then (\mathscr{D}) must be infeasible.
- (b) If the optimal cost in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.
- (c) If x feasible for (\mathscr{P}) and p feasible for (\mathscr{D}) , then:

$$c^{\mathsf{T}}x - c^{\mathsf{T}}x^* \le c^{\mathsf{T}}x - p^{\mathsf{T}}b$$
 and $(p^*)^{\mathsf{T}}b - p^{\mathsf{T}}b \le c^{\mathsf{T}}x - p^{\mathsf{T}}b$.

- (d) Under the premises in (c), if $p^{\mathsf{T}}b = c^{\mathsf{T}}x$ holds, then x and p are **optimal** solutions to (\mathscr{P}) and (\mathscr{D}) , respectively.
 - (c) and (d) provide (sub)optimality certificates, but...

Corollary

The following results hold:

- (a) If the optimal cost in (\mathscr{P}) is $-\infty$, then (\mathscr{D}) must be infeasible.
- (b) If the optimal cost in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.
- (c) If x feasible for (\mathscr{P}) and p feasible for (\mathscr{D}) , then:

$$c^{\mathsf{T}}x - c^{\mathsf{T}}x^* \le c^{\mathsf{T}}x - p^{\mathsf{T}}b$$
 and $(p^*)^{\mathsf{T}}b - p^{\mathsf{T}}b \le c^{\mathsf{T}}x - p^{\mathsf{T}}b$.

(d) Under the premises in (c), if $p^{\mathsf{T}}b = c^{\mathsf{T}}x$ holds, then x and p are **optimal** solutions to (\mathscr{P}) and (\mathscr{D}) , respectively.

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and p satisfying (d) even exist?

Strong duality

Theorem (Strong duality)

If (\mathscr{P}) has an optimal solution, so does (\mathscr{D}) , and their optimal values are equal.

Strong duality

Theorem (Strong duality)

If (\mathscr{P}) has an optimal solution, so does (\mathscr{D}) , and their optimal values are equal.

Proof. Many proofs possible...

- See Bertsimas & Tsitsiklis for a proof involving the simplex algorithm
- We provide a more general proof (some ideas work for convex optimization)

Need a tiny bit of real analysis background...

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

- Consider $P = \{x \in \mathbb{R}^n \mid Ax \ge b\}$ (representation is w.l.o.g.)
- Suppose that $\{x_n\}_{n\geq 1}$ is a sequence with $x_n\in S$ for every n, and $x_n\to x^*$.
- For each k, we have $x_k \in P$, and therefore, $Ax_k \geq b$.
- Then, $Ax^* = A(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} Ax_k \ge b$, so x^* belongs to P.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Is every **convex set** *closed?*

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Theorem (Weierstrass' Theorem)

If $f: \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and if S is a nonempty, closed, and bounded subset of \mathbb{R}^n , then there exists some $\underline{x} \in S$ such that $f(\underline{x}) \leq f(x)$ for all $x \in S$ and there exists some $\bar{x} \in S$ such that $f(\bar{x}) \geq f(x)$ for all $x \in S$.

i.e., a continuous function achieves its minimum and maximum

The first fundamental result in optimization

Theorem (Simple Separating Hyperplane Theorem)

Consider a point x^* and a polyhedron P. If $x^* \notin P$, the there exists a vector $c \in \mathbb{R}^n$ such that $c \neq 0$ and $c^\intercal x^* < c^\intercal y$ holds for all $y \in P$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that S is bounded. Then, there exists a vector $c \in \mathbb{R}^n$ such that $c \neq 0$ and $c^\intercal x < c^\intercal y$ holds for all $x \in S$ and $y \in U$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists a vector $c \in \mathbb{R}^n$ such that $c^\intercal x < c^\intercal y$ holds for all $x \in S$ and $y \in U$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists a vector $c \in \mathbb{R}^n$ such that $c^\intercal x < c^\intercal y$ holds for all $x \in S$ and $y \in U$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists a vector $c \in \mathbb{R}^n$ such that $c^\intercal x < c^\intercal y$ holds for all $x \in S$ and $y \in U$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists a vector $c \in \mathbb{R}^n$ such that $c^\intercal x < c^\intercal y$ holds for all $x \in S$ and $y \in U$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists a vector $c \in \mathbb{R}^n$ such that $c^\intercal x < c^\intercal y$ holds for all $x \in S$ and $y \in U$.

Separating Hyperplane Theorem - Done!

We proved the first **fundamental result in optimization**! The Separating Hyperplane Theorem for **convex sets** will be very useful later!

Separating Hyperplane Theorem - Done!

We proved the first **fundamental result in optimization**! The Separating Hyperplane Theorem for **convex sets** will be very useful later!

Corollary (Needed for our purposes...)

If P is a polyhedron and x^* satisfies $x \notin P$, there exists a hyperplane that strictly separates x from P, i.e., $\exists c \neq 0$ such that $c^{\intercal}x^* < c^{\intercal}x \, \forall x \in P$.

