Duality - Continued

October 7, 2024
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Recap From Last Time

We obtained the following primal-dual pair of problems:

Primal (£?)
minimize, cTx
(pi =) alz >0,
(pi =) ajz < b,
(pi =) alz=b;,

1€ My,
i€M27
1 € Ms,
J € Ny,
J €Ny,
j € Na.

maximize,,

Simple rules to help you derive duals quickly:
® 3 dual decision variable for every primal constraint (except variables signs)
- if "=" constraint, dual variable is free
- if (">", minimize) or (" <", maximize), dual variable > 0
- if (">", maximize) or (" <", minimize), dual variable <0
® for every decision variable in the primal, there is a constraint in the dual
- signs for the constraint derived by reversing the above

Dual (2)
pTh

pi > 0,

pi <0,

p; free,
pTA; < ¢y,
pTA; > ¢y,
pTA; = ¢,

1€ My,
1€ M,
1 € Ms,
J € Ny,
J € Na,
J € Njs.
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Separating Hyperplane Theorem
Theorem (Separating Hyperplane Theorem for Convex Sets)
Let S and U be two nonempty, closed, convex subsets of R™ such that

SNU =0 and S is bounded. Then, there exists a vector c € R™ and d € R
such that S C {zx e R" : cTx < d} and U C {x € R" : cTz > d}.

{z : Tz =d}

@ :
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Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one bounded

4/46



Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one bounded

e Left: two convex sets that are not closed but are both bounded:
S=[-1,1x[-1,00U{(z,y) : z € [-1,0,y =0}, U=[-11]*\S
® Right: two convex sets that are both closed but are unbounded

S={(z,y): 2 <0}, U={(z,y):2>0,y>1/z}
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Needed For Our Purposes
We proved the first fundamental result in optimization!

Corollary (Needed for our purposes...)

If P is a polyhedron and x* satisfies x ¢ P, there exists a hyperplane that
strictly separates x from P, i.e., ¢ # 0 such that cTx* < cTaxVx € P.
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Farkas Lemma

Time for the second fundamental result in optimization!
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Farkas Lemma

Theorem (Farkas’ Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
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Az Az
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Farkas Lemma

Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.

(b) There exists some vector p such that p” A > 0 and p™'b < 0.

Proof. “(a) = not (b).”
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Farkas Lemma

Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector p such that p” A > 0 and p™'b < 0.

Proof. “(a) = not (b).”

(a) implies 3z > 0: Az =b.

(b) implies 3p : pT A > 0.

But then p’b = pT Az > 0, so (b) cannot hold.
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Farkas Lemma

Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector p such that p” A > 0 and p™'b < 0.

“not (a) = (b).” Want to use the separating hyperplane theorem.
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Farkas Lemma

Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.

ere exists some vector p such that p >0andp' b<0.
b) Th 1 h that pT A > 0 and pTb < 0

“not (a) = (b).” Want to use the separating hyperplane theorem.
® Assume flz > 0: Az = b. This implies that b ¢ S where:

S:={Ax : x >0} ={y : Jo > Osuch thaty = Ax}.

b
Ay Ay
Ay Az
Az » Az
0 0 b
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Farkas Lemma

Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:

(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector p such that pT A > 0 and pTb < 0.

“not (a) = (b).” Want to use the separating hyperplane theorem.
e Assume Az > 0: Az = b. This implies that b ¢ S where:
S:={Ax : x >0} = {y : x> Osuch thaty = Az}.

® S is convex.

® To apply separating hyperplane theorem, need S closed!
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“not (a) = (b).” Want to use the separating hyperplane theorem.
e Assume Az > 0: Az = b. This implies that b ¢ S where:
S:={Ax : x >0} = {y : x> Osuch thaty = Az}.

® S is convex.

® To apply separating hyperplane theorem, need S closed!
- S is the projection of S := {(x,y) : 2 >0, y = Az} on the y variables.
— The projection of a polyhedron is another polyhedron.

— Every polyhedron is closed.

= S is closed.
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Farkas Lemma

Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector p such that p” A > 0 and p™'b < 0.

“not (a) = (b).” (cont’d)

e S:={Az : x>0} ={y : 3z > Osuch thaty = Az} is convex and closed.

® Sep. Hyp. Thm. implies Jp : pTb < pTy,Vy € S.
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Every column A; of A satisfies AA; € S for every A > 0, so
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pr < pTA;, YA >0
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e S:={Az : x>0} ={y : 3z > Osuch thaty = Az} is convex and closed.

Sep. Hyp. Thm. implies Jp : pTb < pTy,Vy € S.
®* 0cS=pb<0.

Every column A; of A satisfies AA; € S for every A > 0, so

.
pr < pTA;, YA >0

® Limit A — oo implies pTA; > 0. |
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Farkas Lemma Implications
Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Az = b.
(b) There exists some vector p such that p” A > 0 and p™'b < 0.

We proved the second fundamental result in optimization!
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Farkas Lemma Implications

Theorem (Farkas' Lemma)

For A € R™*™ b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Az = b.
(b) There exists some vector p such that p” A > 0 and p™'b < 0.

We proved the second fundamental result in optimization!

This has some important implications:
® Suppose your primal problem (&) was the standard-form LP:

() minimize cTx
subject to Ax =10
x>0

® Farkas Lemma states that either () is feasible or ...
... there exists p (satisfying pTA < ¢T) that is a certificate of infeasibility!
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Strong Duality

(W.L.O.G.) Consider the following primal-dual pair:

(<) minimize cTx (Z) maximize pTb

subject to Az > b subject to pTA=¢T, p>o0.
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Strong Duality

(W.L.O.G.) Consider the following primal-dual pair:

(<) minimize cTx (Z) maximize pTb

subject to Az > b subject to pTA=¢T, p>o0.

Theorem (Strong Duality)

If () has an optimal solution, so does (Z), and their optimal values are equal.
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Strong Duality

(<) minimize cTx (2) maximize pTb

subject to Az > b subject to pTA=¢", p>0.

Proof.

® Assume () has optimal solution x*

e Will prove that (2) admits feasible solution p such that pTb = ¢Ta*
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® Let F = {i | a]z* = b;} be indices of active constraints at z*
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Show that ¢ can be written as conic combination of constraints {a; : i € F}
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Strong Duality

() minimize cTx (2) maximize pTb

subject to Az > b subject to pTA =¢I, p>0.

Proof.

® First, we show that for any vector d, the following implication holds:

ald>0,Vie F = c'd>0.
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- al(z" +ed) > b;,Vi ¢ F holds because alz* > b; Vi ¢ F
¢Td > 0 because otherwise ¢T(z* + ed) < ¢Tz* would contradict 2* optimal
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Hpitier :pi 20, c= Zpiai
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® First, we show that for any vector d, the following implication holds:
ald>0,Vie F = c'd>0.
® For any such d, we claim that z* + ed € P for small ¢
-al(x" +ed) > b;,VieF
- al(z" +ed) > b;,Vi ¢ F holds because alz* > b; Vi ¢ F
¢Td > 0 because otherwise ¢T(z* + ed) < ¢Tz* would contradict 2* optimal
Sofd:ald>0,VieF,cTd<0
Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:
Hpitier :pi 20, c= Zpiai
i€F
Let p, =0 fori ¢ F = dp feasible for (2)
pTb =3 i rpibi = 3 crpia]a* = cTa* u
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Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

Dual
Finite Optimum | Unbounded | Infeasible
+ | Finite Optimum ? ? ?
£ [ Unbounded ? ? ?
o Infeasible ? ? ?
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Implications

Strong duality leaves only a few possibilities for a primal-dual pair

Dual
Finite Optimum | Unbounded | Infeasible

+ | Finite Optimum ? ? ?

£ [ Unbounded ? ? ?

o Infeasible ? ? ?

Dual
Finite Optimum | Unbounded | Infeasible

+ | Finite Optimum Possible Impossible | Impossible
g Unbounded Impossible Impossible Possible
o Infeasible Impossible Possible ?
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Example

Is this primal feasible? What is its dual?

minimize x1 + 2x9
subject to 1 + 2o =1
2x1 + 229 = 3.
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Example

Is this primal feasible? What is its dual?

minimize x1 + 2x9
subject to 1 + 2o =1
2x1 + 229 = 3.

The dual is...

maximize pi1 + 3po
subject to p1 +2p2 =1
p1+2p2 = 2.

and it is also infeasible!
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Application in Robust Optimization
® \We have LP with constraints Az < b. One of the constraints is:
aTx < b, (1)

where a satisfies a € A and A is polyhedral

® We seek decisions x that are robustly feasible, i.e.,
a"r <bVae A (2)

Infinitely many constraints : “semi-infinite” LP. Any ideas?
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If we could write A = conv({a’,...,a"}) + cone({w?',...,w"}), then:
aTzx <bVae{d,. . . "}

A3)

a’e <0,Vae{w',. . .  w}
would give a finite set of constraints equivalent to (2)!
But...

- it's hard to go from Az < b to conv({a',...,a"}) + cone({w', ..., w"})
- there may be exponentially many constraints in
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Application in Robust Optimization

® We seek decisions = that are robustly feasible when A has inequality description:

a"r <b,Vae A:={aeR" : Ca<d}
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Application in Robust Optimization

We seek decisions = that are robustly feasible when A has inequality description:

a"r <b,Vae A:={aeR" : Ca<d}

The constraint is equivalent (i.e., same feasible set ) to:

max (a'z) <b. (4)

a:Ca<d
By strong duality, this is feasible at x if and only if

min{p'd : p'C =2"T,p >0} <b
P

This is feasible at z if and only 3 p:
p'd<b
PpTC ="
p=>0.

This is a polynomially-sized set of constraints in z, p
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Polynomially-Sized CVaR Representation

® Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
® CVaR was defined as the average over the k-smallest values (for suitable integer k)

® |f payoffs in the scenarios are vy, v2,...,v,, the key constraint is:

va 2 b, (5)

where vj1) < wpg) < -+ < vy, is the sorted vector of payoffs.

19/46



Polynomially-Sized CVaR Representation

Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
CVaR was defined as the average over the k-smallest values (for suitable integer k)

If payoffs in the scenarios are vi,v2, ..., v,, the key constraint is:

va 2 b, (5)

where vj1) < wpg) < -+ < vy, is the sorted vector of payoffs.
Can write one constraint for each vector in {0, 1}" with exactly k values of 1.

How to formulate with a polynomial number of variables and constraints?

19/46



Polynomially-Sized CVaR Representation

Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
CVaR was defined as the average over the k-smallest values (for suitable integer k)

If payoffs in the scenarios are vi,v2, ..., v,, the key constraint is:

va 2 b, (5)

where vj1) < wpg) < -+ < vy, is the sorted vector of payoffs.

Can write one constraint for each vector in {0, 1}" with exactly k values of 1.
How to formulate with a polynomial number of variables and constraints?
Claim:

k n
= i e T
X0 = i oo e =4 ®

19/46



Polynomially-Sized CVaR Representation

Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
CVaR was defined as the average over the k-smallest values (for suitable integer k)

If payoffs in the scenarios are vi,v2, ..., v,, the key constraint is:

va 2 b, (5)

where vj1) < wpg) < -+ < vy, is the sorted vector of payoffs.
Can write one constraint for each vector in {0, 1}" with exactly k values of 1.
How to formulate with a polynomial number of variables and constraints?

Claim:
k n
v = min v-a:-:eTx:k}. 6
> H{z @ (©)

By strong duality, the optimal value of LP (6) is the same as:
max {eTp+k~t cp+t-e<w, pEO}.
bt

So (5) is satisfied if and only: Ip,t : e"p+ k-t >b, p+t-e<wv, p>0.

19/46



Optimality for Standard-Form LPs
() min cTx (2) max pTb
Az =b, >0 pTA<cT
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Optimality for Standard-Form LPs
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- Simplex algorithm: feasibility and optimality for (?) are given by:
Feasibility-(2) :  xp:= Az'b>0 (7a)
Optimality-(2) : T —cRARTA>0 (7b)

® (Z): same basis B can also be used to determine a dual vector p:
pTAi=ci,Vie B = p'=chLA;', VieB.
— The dual objective value of p is exactly:
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(Z) min ¢z (Z) max pTb
Az =0, >0 pTA<cT
® (&) achieves optimality at a basic feasible solution z:
- 1f BC{1,...,n}is a basis, the b.fs. is: x = [¢5,0], 5= Az'D.
- Simplex algorithm: feasibility and optimality for (?) are given by:
Feasibility-(2) :  xp:= Az'b>0 (7a)
Optimality-(2) : T —cRARTA>0 (7b)

® (Z): same basis B can also be used to determine a dual vector p:

pTAi=ci,Vie B = pT=chLA;', VieB.
- The dual objective value of p is exactly: p™b = CIBA;I) =cz
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- p is feasible in the dual if and only if:
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Optimality for Standard-Form LPs
(Z) min ¢z (Z) max pTb
Az =0, >0 pTA<cT
® (&) achieves optimality at a basic feasible solution z:
- 1f BC{1,...,n}is a basis, the b.fs. is: x = [¢5,0], 5= Az'D.
- Simplex algorithm: feasibility and optimality for (?) are given by:
Feasibility-(2) :  xp:= Az'b>0 (7a)
Optimality-(2) : T —cRARTA>0 (7b)

® (Z): same basis B can also be used to determine a dual vector p:
pTAi=ci,Vie B = pT=chLA;', VieB.
- The dual objective value of p is exactly: p™b = CIBA;I) =cz

- p is feasible in the dual if and only if:
Feasibility-(Z2): " —p"A>0 & ' —cLAz'A>0 (8)

Primal optimality < Dual feasibility
Simplex terminates when finding a dual-feasible solution!
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Solve (&) or (2)?

(&) min cTx (2) max pTb
Ax=0b, >0 pTA<cT
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Solve (&) or (2)?

() min ¢z (2) max pTb
Ax=0b, >0 pTA<cT

Primal simplex
® maintain a basic feasible solution
® basis B C {1,...,n}

® stopping criterion: dual feasibility
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® basis B C {1,...,n} ® stopping criterion: primal feasibility
® stopping criterion: dual feasibility o different from primal simplex: works

with an LP with inequalities

® How to choose () or (2)?

® Suppose we have z*, p* and must solve a larger problem. Any ideas?
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Solve (&) or (2)?

() min ¢z (2) max pTb
Ax=0b, >0 pTA<cT
Primal simplex Dual simplex
® maintain a basic feasible solution ® maintain a dual feasible solution
® basis B C {1,...,n} ® stopping criterion: primal feasibility
® stopping criterion: dual feasibility o different from primal simplex: works

with an LP with inequalities

® How to choose () or (2)?
® Suppose we have z*, p* and must solve a larger problem. Any ideas?

- With extra decisions z. = primal simplex initialized with [z*, z. = 0].
- With extra constraints Acx = be = dual simplex initialized with [p*, pe = 0].

® Modern solvers include primal and dual simplex and allow concurrent runs
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Dual Variables As Marginal Costs

(#) min cTx (2) max pTb
Az =0b, >0 pTA <cT
® Solved the LP and obtained z* and p*

® Want to show that p* is gradient of the optimal cost with respect to b
(“almost everywhere")

® Related to sensitivity analysis
How do the optimal value and solution depend on problem data A,b,c?
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Global Dependency On b

() min cTx (2) max pTb
Ar=0b, >0 pTA < (T
® let P(b) :={x: Az =b,x > 0} and F'(b) denote the optimal cost
e Assume that dual is feasible: {p: pTA <cT} # 0, so F(b) > —c0

® Want to show that F'(b) is piecewise linear and convex
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Convex and Concave Functions

Definition
f: X CR"™ — R is convex if X is a convex set and

fAz+ (1 =Ny) <Af(@)+ (1 =N f(y), Vo,y e X and A€ [0,1]. (9)

A function is concave if —f is convex.
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Equivalent definition in terms of epigraph:
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Convex and Concave Functions

Definition
f: X CR"™ — R is convex if X is a convex set and

fAz+ (1 =Ny) <Af(@)+ (1 =N f(y), Vo,y e X and A€ [0,1]. (9)

A function is concave if —f is convex.

Equivalent definition in terms of epigraph:
epi(f) ={(z,t) e X xR : t > f(x)} (10)

/ is convex if and only if epi(f) is a convex set.
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Global Dependency On b

F(b) := min{cTz cAr=0b, v > 0} = max{pr pTA < CT}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # 0}.
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F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # 0}.
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Global Dependency On b

F(b) := min{cTz cAr=0b, v > 0} = max{pr pTA < CT}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # 0}.
Proof. Claim: S is convex.

® letby,by €S, A€ [0,1], and b:= Aby + (1 — X\)b2. Must prove that b € S.
® let x; € argmax{cTa:x > 0,Azx =b;} and x) := Azy + (1 — N)xs.
e Note that:

xx > 0and Azy = A(Azy + (1 — Nxg) = Aby + (1 — A\)by := 0,

= zy€P(b) = beS = Sisconvex.
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Global Dependency On b

F(b) := min{cTz cAr=0b, v > 0} = max{pr cpTA < CT}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.
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Global Dependency On b
F(b) := min{cTz cAr=0b, v > 0} = max{pr cpTA < CT}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.

o If pt,p?,....p" are the extreme points of the dual
feasible set, then: F(b) = max;—1,. ,.b"p",VbeE S
bTpt
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Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.

o If pt,p?,....p" are the extreme points of the dual
feasible set, then: F(b) = max;—1,. ,.b"p",VbeE S

v=1,...,

,bTP4 How to complete proof that
F(b) is convex?
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Global Dependency On b

F(b) := min{cTz cAr=0b, v > 0} = max{pr cpTA < CT}

Theorem

F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.

o If pt,p?,....p" are the extreme points of the dual
feasible set, then: F(b) = max;—1,. ,.b"p",VbeE S

How to complete proof that
F(b) is convex?

epi(F) = mi:l,m,repi(pri)

is the intersection of convex
sets, so it is convex.
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Global Dependency On b - Implications

F(b) := min{ch cAz=0b, z > O} = max{pr cpTA < CT}

At any b = b where F(b) is differentiable, p* is the gradient of F(b)
p; acts as a marginal cost or shadow price for the i-th constraint r.h.s. b;
p; allows estimating exact change in F(b) in a range around b

Modern solvers give direct access to p} and the range
Gurobipy: for constraint ¢, the attribute c.Pi is p] and the range is from c.SARHSLow to c.SARHSUp
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Global Dependency On b - Implications
F(b) :=min{c"z: Az =b, >0} = max{pTb : pTA < T}

® At b where F(b) is not differentiable, several p’ are optimal
e All such p’ are valid subgradients of F'(b)
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Global Dependency On b - Implications
F(b) :=min{c"z: Az =b, >0} = max{pTb : pTA < T}

® At b where F(b) is not differentiable, several p’ are optimal
e All such p’ are valid subgradients of F'(b)

Definition (Subgradient.)

F convex, defined on (convex) set S. A vector p is a subgradient of F at b € S if

FO®)+p'(b—Db) < F(b), VbeS.
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.
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Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.

® Suppose that p is optimal for the dual
® Strong duality implies p™b = F'(b)
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Optimal Duals As Subgradients

Theorem
Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.

Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.

Suppose that p is optimal for the dual

Strong duality implies pTb = F(b)

Consider arbitrary b € .S

For any feasible solution = € P(b), weak duality yields pTb < cTx
This implies pTb < F(b)
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.

® Suppose that p is optimal for the dual

® Strong duality implies p™b = F'(b)

® Consider arbitrary b € S

® For any feasible solution z € P(b), weak duality yields pTb < cTx
® This implies pTb < F(b)

® But then, pTb — pTb < F(b) — F(b)

We conclude that p is a subgradient of F at b
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F' at b, that is,

F)+pT(b—b) < F(b), VbeS. (11)
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F' at b, that is,
F)+pT(b—b) < F(b), VbeS. (11)

® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F' at b, that is,
F)+p"(b—b) < F(b), VbeS. (11)

® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
® By (11), we have: pTAz = pTb < F(b) — F(b) + p'b < Tz — F(b) + pTb.

® Because this is true for any x > 0, we must have pTA < cT. Why?
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® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
By (11), we have: pTAz = pTb < F(b) — F(b) + p'b < Tz — F(b) + pTb.

® Because this is true for any x > 0, we must have pTA < cT. Why?
® This implies that p is dual-feasible
With o = 0, we obtain F(b) < pTb
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F' at b, that is,
F)+p"(b—b) < F(b), VbeS. (11)

® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
By (11), we have: pTAz = pTb < F(b) — F(b) + p'b < Tz — F(b) + pTb.

® Because this is true for any x > 0, we must have pTA < cT. Why?
® This implies that p is dual-feasible
With o = 0, we obtain F(b) < pTb

® Using weak duality, every dual-feasible ¢ satisfies ¢Tb < F(b) < pTb

We conclude that p is optimal.
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Global Dependency On ¢

Let G(c) :== min{cTa: cAx =0, x> 0} = max{pr :pTA < cT}

Theorem

For an LP in standard form,

1. Theset T :={c: G(c) > —o0} is convex.

2. G(c) is a concave function of ¢ on the set T.

3. If for some ¢ the LP has a unique optimal solution x*, then G is linear in the

vicinity of ¢ and its gradient is x*.
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2. G(c) is a concave function of ¢ on the set T.

3. If for some ¢ the LP has a unique optimal solution x*, then G is linear in the

vicinity of ¢ and its gradient is x*.

Proof. Analogous ideas applied to the dual - omitted.
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Global Dependency On ¢

Let G(c) :== min{cTa: cAx =0, x> 0} = max{pr :pTA < cT}

Theorem

For an LP in standard form,
1. Theset T :={c: G(c) > —o0} is convex.
2. G(c) is a concave function of ¢ on the set T.

3. If for some ¢ the LP has a unique optimal solution x*, then G is linear in the
vicinity of ¢ and its gradient is x*.

Proof. Analogous ideas applied to the dual - omitted.

® The optimal primal solution z* is a shadow price for the dual constraints
® z* remains optimal for a range of change in each objective coefficient c;

® Modern solvers also allow obtaining the range directly
Gurobipy: attributes SAObjLow and SAODbjUp for each decision variable
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Signs of Dual Variables Revisited

These ideas carry over directly to primals in general form:

F(b,c) :=min, Tz
alz > b;,
Tm S biv
a; x = by,
x; free,

a

-0

T

e My,
i € Mo,
i € Ms,
J € Ny,
J €N,
je Ns.

max,

pTh

pi >0,

Di S 07

pi free,
pTA; < ¢y,
pTA; > ¢y,
pTA; =¢j,

1€ My,
1€ ]\/[2,
1€ Ms,
Je€ Ny,
J € No,
Jj € Ns.
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Signs of Dual Variables Revisited

These ideas carry over directly to primals in general form:

F(b,c) :=min, Tz max, pTb
QIIZZ)“ e My, p; >0, 1€ My,
agm < b, i € Mo, p; <0, 1€ ]\/[2,
alr =b;, i€ Ms, p; free, 1€ Ms,
z; >0, J € Ny, pTA; <cj,  j€ DNy,
T <0, jENQ, pTAjZCj, jENz,
X, free, ] S Ng. pTAj = ¢y, ] € Ng.

® F'(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in ¢
® p* are subgradients for F'(b,c) with respect to b

® 1* are subgradients for —F'(b, ¢) with respect to ¢

32/46



Signs of Dual Variables Revisited

These ideas carry over directly to primals in general form:

F(b,c) :=min, Tz

QIIZZ)“ iEMl,
agm <b;, 1€ My,
alr =b;, i€ Ms,
€T >0, ] € N17
T < O, j S N27

x; free, j € Ns.

There is a direct connection between:

- the optimization problem (max/min)

- the constraint type (<, >)
= the signs of the shadow prices

max,

p* are subgradients for F'(b,c) with respect to b

pTo

pi > 0,
Pi S 07
pi free,
pTA;
pTA;
pTA; = ¢j,

Cj,

IV IA

Cj,

a* are subgradients for —F'(b, ¢) with respect to ¢

1€ Ml,
1€ ]\/[2,
1€ Ms,
Je€ Ny,
J € Na,
j e Ns.

F(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in ¢
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Signs of Dual Variables Revisited

There is a direct connection between:
- the optimization problem (max/min)
- the constraint type (<, >)
- the signs of the shadow prices

Given two of these, can figure out the third one!

What is the sign of the shadow price for a ...

IN

constraint in a minimization problem ?
constraint in a minimization problem 7
constraint in a maximization problem 7

ININ IV

constraint in a maximization problem ?
What is the dependency of the optimal objective on the r.h.s. of a ...

constraint in a minimization problem ?
constraint in a minimization problem ?
constraint in a maximization problem ?

ININ IV IA

constraint in a maximization problem 7
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Signs of Dual Variables Revisited

® There is a direct connection between:
- the optimization problem (max/min)
- the constraint type (<, >)
= the signs of the shadow prices

® Given two of these, can figure out the third one!

min, > b min, < b max, < b max, > b
dual >0 dual <0 dual >0 dual <0
F(b) convex F(b) convex F(b) concave F(b) concave
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Optimality Conditions and Complementary Slackness

min, cTx
alz > b,
alz < b,
T
a; T = bi7
x; free,

1€ My,
i€ Mo,
i€ Ms,
J € N,
J € Na,
J € Njs.

max,

pTh

pi = 0,

pi <0,

p; free,
pTA; <cj,
pTA; > ¢,
pTA; =cj,

ie M,
1€ My,
i€ Ms,
J € Ny,
J € No,
j € Ns.

Sometimes, we just want to characterize the optimal solutions
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Optimality Conditions and Complementary Slackness

min, cTx
al
a; x > by,
o7
a;x < by,
T
ﬂ: = by,
5 >0,
x; free,

1€ My,
i€ Mo,
i€ Ms,
J € N,
J € Na,
J € Njs.

max,

pTh

pi = 0,

pi <0,

p; free,
pTA; <cj,
pTA; > ¢,
pTA; =cj,

ie M,
1€ My,
i€ Ms,
J € Ny,
J € No,
j € Ns.

Sometimes, we just want to characterize the optimal solutions

Theorem (Complementary Slackness)

Let x and p be feasible solutions for (2?) and (2), respectively. Then x and p
are optimal solutions for (&?) and () if and only if:

pi(a]xz —b;) =0, Vi

(¢

TA)

=0, V.
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Optimality Conditions and Complementary Slackness

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (£?) and (), respectively. Then x and p
are optimal solutions for (%?) and () if and only if:

pi(a]z —b;) =0, Vi
(Cj —pTAj)LEj = 07 VJ

36 /46



Optimality Conditions and Complementary Slackness

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (£?) and (), respectively. Then x and p
are optimal solutions for (%?) and () if and only if:

pi(a]z —b;) =0, Vi
(Cj —pTAj)LEj = 07 VJ

Theorem (Strict C.S. Standard-Form LPs)

Consider the following primal-dual pair of LPs:

() min cTx (2) max pTb
Az =b,z >0 pTA<cT

If (2?) and (2) are feasible, they admit optimal solutions x* and p* satisfying
strict complementarity: 27 >0 < pT4; =c;.
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra

Definition (Extreme rays of a polyhedron)

Consider a nonempty polyhedron P = {z € R"™ : Az > b}. Then:
1. C:={d € R" : Ad > 0} is called the recession cone of P.
2. Any d € C with d # 0 is called a ray of P.

3. Any ray d that satisfies a]d = 0 for n — 1 linearly independent a; is called an
extreme ray of P.

wy

as

ay wa
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Representation of Polyhedra
Theorem (Resolution Theorem)

Let P = {x € R™ : Ax > b} be a non-empty polyhedron, z*,z2, ..., x% be its
extreme points, and w',w?,...,w" be its extreme rays. Then P = (Q, where

k 7
{Z)\ixiJrZijj S A>0, 60>0, eT)\l}.
i=1 j=1

Proof. Proving Q C P is immediate. To prove P C @, assume 3z € P with z ¢ Q.
Consider the foIIowing primal-dual pair:

0\ 00, 9 in p’
(#)  max Z +Z (2) minpTz+gq

2>0,0>0
plxi+q>0, i=1,...,k,

YIEVERD SR Plw; 20, j=1,..m,

k:
=1
=1

Is () feasible? Is () feasible? What are the optimal values?
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Representation of Polyhedra - cntd

P:={zeR": Az > b} = Q::{Zle Nzt + D 0w X >0,0 > 0,eTA = 1}

Proof - cont’d. Assume 3z € P with z ¢ Q). Consider the following primal-dual pair:

i T
(2 A>moagx>o ZO)\ +ZO€ (2) min p z+q
plxi+q>0, i=1,...,k,
Z)\ixz—‘,—zgjwjzz pTw]—ZO, j=1...,m
i=1 =1

k
dai=1
=1

® () is infeasible because z ¢ Q

® (9) is feasible with p = ¢ = 0, so its optimal value is —oco = 3(p,q) : pTz2+ ¢ <0
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(2?) is infeasible because z ¢ Q
® (9) is feasible with p = ¢ = 0, so its optimal value is —oco = 3(p,q) : pTz2+ ¢ <0
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P:={zeR": Az > b} = Q::{Zle Nzt + D 0w X >0,0 > 0,eTA = 1}

Proof - cont’d. Assume 3z € P with z ¢ Q). Consider the following primal-dual pair:

O\ 00, in p’
(2 max Z +Z (2) n;’l;ip z+q

2>0,0>0
plxi+q>0, i=1,...,k,
Z)\ix’-s-Zejw”:z pTw]—ZO, j=1...,m
i=1 =1

k
dai=1
=1

(2?) is infeasible because z ¢ Q
® (9) is feasible with p = ¢ = 0, so its optimal value is —oco = 3(p,q) : pTz2+ ¢ <0

(p,q) feasible = pTz < —q < pTx; forany i =1,...,k and pTw; >0
® With p as above, consider the LP min,{pTx : Az > b}

If optimal cost finite, 3z optimal. But z € P and pTz < pTz; lead to 4
e If cost is —oo, Jw’ : pTw! < 0, which is also a 4
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Asset Pricing and No-Arbitrage

® |nvestment world with n + 1 securities indexed by i =0,...,n
® | =0 denotes cash; the other securities can be anything (stocks, derivatives, ...)

® \We have two periods: current period c, future period f
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Future period: prices are uncertain; there are m possible states of the world
Q = {w1,w2,...,wn}, each occurring with positive probability, and prices are:

~ cash is riskless: S{ = R =1+ r, where r is the risk-free rate of return
~ security 4 > 1 will have price S/ (w;) in state of world w,
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Investment world with n 4 1 securities indexed by i =0,...,n

i = 0 denotes cash; the other securities can be anything (stocks, derivatives, ...

We have two periods: current period c, future period f
Current period: prices of securities are S§ for i =1,...,n; cash: S§ =1

Future period: prices are uncertain; there are m possible states of the world
Q = {w1,w2,...,wn}, each occurring with positive probability, and prices are:

~ cash is riskless: S{ = R =1+ r, where r is the risk-free rate of return
~ security 4 > 1 will have price S/ (w;) in state of world w,

If we purchase x; of each security :

- we incur immediate cost " | Sfw;
- we have future cashflow > SY(w) - a; if state of world is w € Q

)
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Asset Pricing and No-Arbitrage
Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no
risk of a loss later (type A) or that requires no initial cash input, has no risk of loss,
and has a positive probability of making profits in the future (type B).
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Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no
risk of a loss later (type A) or that requires no initial cash input, has no risk of loss,
and has a positive probability of making profits in the future (type B).

® 3 type-A arbitrage means Jx such that:
:E:: f;f sz <0
i=0
n .
> SHw) x>0, VweQ
i=0
® a type-B arbitrage means Jx such that:

:éi: f;f s Ty = 0
=0

> SlHw) 2 >0, VweQ
=0

Jw e ZS{(w)-xi>0,

=0

(positive initial cashflow)

(12)
(no risk of loss)
(no initial cash input)
(no risk of loss) (13)
(positive probability of profit).
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Asset Pricing and No-Arbitrage

Definition (R.N.P.M.)

A risk-neutral probability measure on the set Q = {wi,wa,...,wn} is a vector
€ R™ so that p > 0 and >."" . p;, = 1 and for every security S;,7=0,...,n,
p p j=1Pi

e_ 1 (N, of _ 1 f
Si = R <jz;pjsi ("%’)) = EEP[SJ-

® Above, E,[S] is the expected value of the random variable S under the probability
distribution p := (p1,p2, ..., Pm)

® The definition states that the current price/value of every asset, S, exactly equals
the discounted expected price/value in the future

® The expectation is taken with respect to the R.N.P.M.

® Discounting is done at the risk-free interest rate R
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Asset Pricing and No-Arbitrage

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables z;, for i = 0,... n:
min ZSf ST
st S/(w) @i >0,j=1,...,m
1=0
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Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.
Proof. Consider the following linear program with variables z;, for i = 0,... n:
n
rrgn Z S5 -xy
1=0

=0

(14)

Type-A arbitrage: 3z : 3 Sa; < 0
® Constraints are homogeneous, so if 3z : 3 SYz; < 0, the objective is —oco

® 1 =0 is feasible, so the optimal objective value is <0

No type-A arbitrage if and only if the optimal objective value of this LP is 0
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Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.
Proof. Consider the following linear program with variables z;, for i = 0,... n:
n
rrgn Z S5 -xy
1=0

=0

(14)

Type-A arbitrage: 3z : 3 Sa; < 0
® Constraints are homogeneous, so if 3z : 3 SYz; < 0, the objective is —oco

® 1 =0 is feasible, so the optimal objective value is <0

No type-A arbitrage if and only if the optimal objective value of this LP is 0

® Suppose no type-A arbitrage. Then, no type-B arbitrage if and only if all constraints
are tight for all optimal solutions of (14): > 7" SH(wj) - af=0,forj=1,...,m
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Asset Pricing and No-Arbitrage
Theorem (Asset Pricing Theorem)
A risk-neutral probability measure exists if and only if there is no arbitrage.
Proof. Consider the dual of this LP.

max 0
p

s.t. ZpJ =S5 1=0,.

ijO.

® |f no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a
feasible solution p* (that is also optimal)
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Proof. Consider the dual of this LP.

max 0
p

s.t. ZpJ =S5 1=0,.

ijOA

® |f no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a
feasible solution p* (that is also optimal)

® No type-B arbitrage means -7 | (wj) x; =0, for j =1,...,m. Because dual
is standard-form LP, Theorem 19 (strlct complem. slack.) implies 3p* : p* > 0.
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Asset Pricing and No-Arbitrage

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

max 0
p

s.t. ZpJ =S5 1=0,.

Pj Z 0.
® |f no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a
feasible solution p* (that is also optimal)

® No type-B arbitrage means -7 | (wj) x; =0, for j =1,...,m. Because dual
is standard-form LP, Theorem 19 (strlct complem. slack.) implies 3p* : p* > 0.

® Dual constraint for i = 0 implies } ", pj = %, so taking p* - R yields a RNPM.

The converse direction is proved in an identical manner. |
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Network Revenue Management

® Airline revenue management ( “yield management”): setting booking limits to
control how many tickets of each type are sold
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— each itinerary ¢ has a price r; that is fixed
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For each flight leg f € F', we know the capacity of the aircraft ¢
The airline can offer a large number of “products” (i.e., itineraries) I:
- each itinerary refers to an origin-destination-fare class combination
— each itinerary ¢ has a price r; that is fixed
- for each itinerary, the airline estimates the demand d;
— each itinerary requires a seat on several flight legs operated by the airline
Requirements: A € {0,1}""7 with A;; = 1 & itinerary i needs seat on flight leg f

Itinerary 1 Itinerary 2 ... ltinerary ||
Flight leg 1 1 0 c 1
Resource matrix A : Flight leg 2 0 1 . 0
Flight leg |F| 1 1 . 0
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Network Revenue Management

Airline revenue management ( “yield management”): setting booking limits to
control how many tickets of each type are sold
Airline is planning operations for a specific day in the future
Airline operates a set F' of direct flights in its (hub-and-spoke) network
For each flight leg f € F', we know the capacity of the aircraft ¢
The airline can offer a large number of “products” (i.e., itineraries) I:
- each itinerary refers to an origin-destination-fare class combination
— each itinerary ¢ has a price r; that is fixed
- for each itinerary, the airline estimates the demand d;
— each itinerary requires a seat on several flight legs operated by the airline
Requirements: A € {0,1}""7 with A;; = 1 & itinerary i needs seat on flight leg f

Itinerary 1 Itinerary 2 ... ltinerary ||
Flight leg 1 1 0 c 1
Resource matrix A : Flight leg 2 0 1 . 0
Flight leg |F| 1 1 . 0

Goal: decide how many itineraries of each type to sell to maximize revenue
45 /46



Network Revenue Management

® |et x; denote the number of itineraries of type i that the airline plans to sell, and
let « be the vector with components z;
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Az < c capture the constraints on plane capacity
x < d states that the planned sales cannot exceed the demand

In practice, an approach that includes all possible itineraries encounters challenges
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Network Revenue Management

Let x; denote the number of itineraries of type ¢ that the airline plans to sell, and
let « be the vector with components z;

The problem can be formulated as follows:

gﬁ{)} {rTx Ax <ec, z < d}
Az < c capture the constraints on plane capacity
x < d states that the planned sales cannot exceed the demand
In practice, an approach that includes all possible itineraries encounters challenges
- gargantuan LP
— poor demand estimates for some itineraries
To sell “exotic itineraries”, use the shadow prices for the capacity constraints
- p € RF : dual variables for capacity constraints Az < ¢
— At optimality, py is marginal revenue lost if airline loses one seat on flight f
= For an “exotic” itinerary that requires seats on several flights f € F, the
minimum price to charge is given by the sum of the shadow prices, ZfEEpf
Bid-price heuristic in network revenue management

Broader principle of how to price “products” through resource usage/cost
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