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Quick Announcements

• Homework 2 deadline extended until Monday (Oct 14)

• On the week of Oct 21 - Oct 25:
– Class canceled on Monday (Oct 21)
– Midterm exam on Wednesday (Oct 23)
– Regular lecture on Friday (Oct 25)

• Some of you asked about homework : weight is 40% (as posted)

• I am posting slightly incomplete slides on purpose (complete after class)

• My office hours today: 5-6pm

• My office hours starting next week: Wed, 3-4pm
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Recap From Last Time & Today’s Plan

Last time...

• Separating Hyperplane Thm ⇒ Farkas Lemma ⇒ Strong duality

• Implications on primal/dual feasibility

• Two examples (robust optimization, CVaR)

Agenda for today:

• Optimality conditions and primal/dual simplex

• Complementary slackness

• Representation Theorem for all polyhedra

• Global sensitivity & Shadow prices as marginal costs

• Two new applications (asset pricing and network revenue management)
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Optimality for Standard-Form LPs

(P) min c⊺x

Ax = b, x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺

• (P) achieves optimality at a basic feasible solution x:
– If B ⊆ {1, . . . , n} is a basis, the b.f.s. is: x = [xB , 0], xB = A−1

B b.
– Simplex algorithm: feasibility and optimality for (P) are given by:

Feasibility-(P) : xB := A−1
B b ≥ 0 (1a)

Optimality-(P) : c⊺ − c⊺BA
−1
B A ≥ 0 (1b)

• (D): same basis B can also be used to determine a dual vector p:

p⊺Ai = ci, ∀ i ∈ B ⇒ p⊺ = c⊺BA
−1
B , ∀ i ∈ B.

– The dual objective value of p is exactly: p⊺b = c⊺BA
−1
B b = c⊺x

– p is feasible in the dual if and only if:

Feasibility-(D) : c⊺ − p⊺A ≥ 0 ⇔ c⊺ − c⊺BA
−1
B A ≥ 0 (2)

Primal optimality ⇔ Dual feasibility

Simplex terminates when finding a dual-feasible solution!
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Solve (P) or (D)?

(P) min c⊺x

Ax = b, x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺

Primal simplex

• maintain a basic feasible solution

• basis B ⊂ {1, . . . , n}
• stopping criterion: dual feasibility

Dual simplex

• maintain a dual feasible solution

• stopping criterion: primal feasibility

• different from primal simplex: works

with an LP with inequalities

• How to choose (P) or (D)?

• Suppose we have x∗, p∗ and must solve a larger problem. Any ideas?
– With extra decisions xe ⇒ primal simplex initialized with [x∗, xe = 0].
– With extra constraints Aex = be ⇒ dual simplex initialized with [p∗, pe = 0].

• Modern solvers include primal and dual simplex and allow concurrent runs
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Optimality Conditions and Complementary Slackness

minx c⊺x

a⊺i x ≥ bi, i ∈ M1,

a⊺i x ≤ bi, i ∈ M2,

a⊺i x = bi, i ∈ M3,

xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3.

maxp p⊺b

pi ≥ 0, i ∈ M1,

pi ≤ 0, i ∈ M2,

pi free, i ∈ M3,

p⊺Aj ≤ cj , j ∈ N1,

p⊺Aj ≥ cj , j ∈ N2,

p⊺Aj = cj , j ∈ N3.

Sometimes, we just want to characterize the optimal solutions

Theorem (Complementary Slackness)

Let x and p be feasible solutions for (P) and (D), respectively. Then x and p

are optimal solutions for (P) and (D) if and only if:

pi(a
⊺
i x− bi) = 0, ∀i

(cj − p⊺Aj)xj = 0, ∀j.
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Optimality Conditions and Complementary Slackness

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (P) and (D), respectively. Then x and p

are optimal solutions for (P) and (D) if and only if:

pi(a
⊺
i x− bi) = 0, ∀i

(cj − p⊺Aj)xj = 0, ∀j.

Theorem (Strict C.S. Standard-Form LPs)

Consider the following primal-dual pair of LPs:

(P) min c⊺x

Ax = b, x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺

If (P) and (D) are feasible, they admit optimal solutions x∗ and p∗ satisfying

strict complementarity: x∗
j > 0 ⇔ p⊺Aj = cj .
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra

Definition

Consider a nonempty polyhedron P = {x ∈ Rn : Ax ≥ b}. Then:

1. C := {d ∈ Rn : Ad ≥ 0} is called the recession cone of P .

2. Any d ∈ C with d ̸= 0 is called a ray of P .

3. Any ray d that satisfies a⊺i d = 0 for n− 1 linearly independent ai is called an

extreme ray of P .
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Representation of Polyhedra

Theorem (Resolution Theorem)

Let P = {x ∈ Rn : Ax ≥ b} be a non-empty polyhedron, x1, x2, . . . , xk be its

extreme points, and w1, w2, . . . , wr be its extreme rays. Then P = Q, where

Q :=

{ k∑
i=1

λix
i +

r∑
j=1

θjw
j : λ ≥ 0, θ ≥ 0, e⊺λ = 1

}
.

Proof. Proving Q ⊆ P is immediate. To prove P ⊆ Q, assume ∃z ∈ P with z /∈ Q.

Consider the following primal-dual pair:

(P) max
λ≥0,θ≥0

k∑
i=1

0λi +

r∑
j=1

0θj

k∑
i=1

λix
i +

r∑
j=1

θjw
j = z

k∑
i=1

λi = 1

(D) min
p,q

p⊺z + q

p⊺xi + q ≥ 0, i = 1, . . . , k,

p⊺wj ≥ 0, j = 1, . . . , r,

Is (P) feasible? Is (D) feasible? What are the optimal values?
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Representation of Polyhedra - cntd

P := {x ∈ Rn : Ax ≥ b} = Q :=

{∑k
i=1 λix

i +
∑r

j=1 θjw
j :λ ≥ 0,θ ≥ 0,e⊺λ = 1

}
.

Proof - cont’d. Assume ∃z ∈ P with z /∈ Q. Consider the following primal-dual pair:

(P) max
λ≥0,θ≥0

k∑
i=1

0λi +
r∑

j=1

0θj

k∑
i=1

λix
i +

r∑
j=1

θjw
j = z

k∑
i=1

λi = 1

(D) min
p,q

p⊺z + q

p⊺xi + q ≥ 0, i = 1, . . . , k,

p⊺wj ≥ 0, j = 1, . . . , r,

• (P) is infeasible because z /∈ Q

• (D) is feasible with p = q = 0, so its optimal value is −∞ ⇒ ∃(p, q) : p⊺z + q < 0

• (p, q) feasible ⇒ p⊺z < −q ≤ p⊺xi for any i = 1, . . . , k and p⊺wi ≥ 0

• With p as above, consider the LP minx{p⊺x : Ax ≥ b}
• If optimal cost finite, ∃xi optimal. But z ∈ P and p⊺z < p⊺xi lead to  
• If cost is −∞, ∃wj : p⊺wj < 0, which is also a  
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Dual Variables As Marginal Costs

(P) min c⊺x

Ax = b, x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺

• Solved the LP and obtained x∗ and p∗

• Want to show that p∗ is gradient of the optimal cost with respect to b

(“almost everywhere”)

• Related to sensitivity analysis

How do the optimal value and solution depend on problem data A, b, c?
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X
0

Y

Subject to: 

Maximize     Y

Sensitivity: A Simple Example

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2

Y £ X+1  Y £ 2X

1

1 2
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For the last constraint X £ a, 
what is the shadow price
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optimal value when we change 
the constraint r.h.s. a?
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Global Dependency On b

(P) min c⊺x

Ax = b, x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺

• Let P (b) := {x : Ax = b, x ≥ 0} and F (b) denote the optimal cost

• Assume that dual is feasible: {p : p⊺A ≤ c⊺} ≠ ∅, so F (b) > −∞

• Want to show that F (b) is piecewise linear and convex
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Convex and Concave Functions

Definition
f : X ⊆ Rn → R is convex if X is a convex set and

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y), ∀x, y ∈ X and λ ∈ [0, 1]. (3)

A function is concave if −f is convex.

Equivalent definition in terms of epigraph:

epi(f) = {(x, t) ∈ X × R : t ≥ f(x)} (4)

f is convex if and only if epi(f) is a convex set.
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Global Dependency On b

F (b) := min
{
c⊺x : Ax = b, x ≥ 0

}
≡ max

{
p⊺b : p⊺A ≤ c⊺

}
Theorem

F (b) is a convex and piece-wise linear function of b on S := {b : P (b) ̸= ∅}.

Proof. Claim: S is convex. Why?

It is the cone spanned by the columns of A

S := cone({A1, A2, . . . , An})

Recall that we dealt with this same cone in the proof of the Farkas Lemma!
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feasible set, then: F (b) = maxi=1,...,r b
⊺pi, ∀ b ∈ S

How to complete proof that

F (b) is convex?

epi(F ) = ∩i=1,...,repi(b
⊺pi)
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Global Dependency On b - Implications

F (b) := min
{
c⊺x : Ax = b, x ≥ 0

}
≡ max

{
p⊺b : p⊺A ≤ c⊺

}

• At any b where F (b) is differentiable, p∗ is the gradient of F (b)

• p∗i acts as a marginal cost or shadow price for the i-th constraint r.h.s. bi

• pi allows estimating exact change in F (b) in a range around b̄

• Modern solvers give direct access to p∗i and the range

Gurobipy: for constraint c, the attribute c.Pi is p∗
i and the range is from c.SARHSLow to c.SARHSUp
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F (b) := min

{
c⊺x : Ax = b, x ≥ 0

}
≡ max

{
p⊺b : p⊺A ≤ c⊺

}

• At b where F (b) is not differentiable, several pi are optimal

• All such pi are valid subgradients of F (b)

Definition (Subgradient.)

F convex, defined on (convex) set S. A vector p is a subgradient of F at b̄ ∈ S if

F (b̄) + p⊺(b− b̄) ≤ F (b), ∀b ∈ S.
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Optimal Duals As Subgradients

Theorem

Suppose F (b) := min
{
c⊺x : Ax = b, x ≥ 0

}
≡ max

{
p⊺b : p⊺A ≤ c⊺

}
> −∞.

Then p is optimal for the dual if and only if it is a subgradient of F at b̄.

Proof. First show that any dual optimal p is a valid subgradient.

• Suppose that p is optimal for the dual

• Strong duality implies p⊺b̄ = F (b̄)

• Consider arbitrary b ∈ S

• For any feasible solution x ∈ P (b), weak duality yields p⊺b ≤ c⊺x

• This implies p⊺b ≤ F (b)

• But then, p⊺b− p⊺b̄ ≤ F (b)− F (b̄)

We conclude that p is a subgradient of F at b̄
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{
p⊺b : p⊺A ≤ c⊺

}
> −∞.

Then p is optimal for the dual if and only if it is a subgradient of F at b̄.

Proof. For the reverse direction, let p be a subgradient of F at b̄, that is,

F (b̄) + p⊺(b− b̄) ≤ F (b), ∀b ∈ S. (5)

• Pick some x ≥ 0 and let b = Ax, which implies x ∈ P (b) and F (b) ≤ c⊺x.

• By (5), we have: p⊺Ax = p⊺b ≤ F (b)− F (b̄) + p⊺b̄ ≤ c⊺x− F (b̄) + p⊺b̄.

• Because this is true for any x ≥ 0, we must have p⊺A ≤ c⊺. Why?

• This implies that p is dual-feasible

• With x = 0, we obtain F (b̄) ≤ p⊺b̄

• Using weak duality, every dual-feasible q satisfies q⊺b̄ ≤ F (b̄) ≤ p⊺b̄

We conclude that p is optimal.
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Global Dependency On c

Let G(c) := min
{
c⊺x : Ax = b, x ≥ 0

}
≡ max

{
p⊺b : p⊺A ≤ c⊺

}
Theorem

For an LP in standard form,

1. The set T := {c : G(c) > −∞} is convex.

2. G(c) is a concave function of c on the set T .

3. If for some c the LP has a unique optimal solution x∗, then G is linear in the

vicinity of c and its gradient is x∗.

Proof. Analogous ideas applied to the dual - omitted.

• The optimal primal solution x∗ is a shadow price for the dual constraints

• x∗ remains optimal for a range of change in each objective coefficient cj

• Modern solvers also allow obtaining the range directly

Gurobipy: attributes SAObjLow and SAObjUp for each decision variable
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Signs of Dual Variables Revisited
These ideas carry over directly to primal-dual pairs in general form:

F (b, c) := minx c⊺x

a⊺i x ≥ bi, i ∈ M1,

a⊺i x ≤ bi, i ∈ M2,

a⊺i x = bi, i ∈ M3,

xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3.

maxp p⊺b

pi ≥ 0, i ∈ M1,

pi ≤ 0, i ∈ M2,

pi free, i ∈ M3,

p⊺Aj ≤ cj , j ∈ N1,

p⊺Aj ≥ cj , j ∈ N2,

p⊺Aj = cj , j ∈ N3.

• F (b, c) is piece-wise linear, convex in b and piece-wise linear, concave in c

• p∗ is subgradient for F (b, c) with respect to b

• x∗ is subgradient for −F (b, c) with respect to c

• There is a direct connection between:
– the optimization problem (max/min)
– the constraint type (≤, ≥)
– the signs of the shadow prices

21 / 30



Signs of Dual Variables Revisited
These ideas carry over directly to primal-dual pairs in general form:

F (b, c) := minx c⊺x

a⊺i x ≥ bi, i ∈ M1,

a⊺i x ≤ bi, i ∈ M2,

a⊺i x = bi, i ∈ M3,

xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3.

maxp p⊺b

pi ≥ 0, i ∈ M1,

pi ≤ 0, i ∈ M2,

pi free, i ∈ M3,

p⊺Aj ≤ cj , j ∈ N1,

p⊺Aj ≥ cj , j ∈ N2,

p⊺Aj = cj , j ∈ N3.

• F (b, c) is piece-wise linear, convex in b and piece-wise linear, concave in c

• p∗ is subgradient for F (b, c) with respect to b

• x∗ is subgradient for −F (b, c) with respect to c

• There is a direct connection between:
– the optimization problem (max/min)
– the constraint type (≤, ≥)
– the signs of the shadow prices

21 / 30



Signs of Dual Variables Revisited
These ideas carry over directly to primal-dual pairs in general form:

F (b, c) := minx c⊺x

a⊺i x ≥ bi, i ∈ M1,

a⊺i x ≤ bi, i ∈ M2,

a⊺i x = bi, i ∈ M3,

xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3.

maxp p⊺b

pi ≥ 0, i ∈ M1,

pi ≤ 0, i ∈ M2,

pi free, i ∈ M3,

p⊺Aj ≤ cj , j ∈ N1,

p⊺Aj ≥ cj , j ∈ N2,

p⊺Aj = cj , j ∈ N3.

• F (b, c) is piece-wise linear, convex in b and piece-wise linear, concave in c

• p∗ is subgradient for F (b, c) with respect to b

• x∗ is subgradient for −F (b, c) with respect to c

• There is a direct connection between:
– the optimization problem (max/min)
– the constraint type (≤, ≥)
– the signs of the shadow prices

21 / 30



Signs of Dual Variables Revisited

• There is a direct connection between:
– the optimization problem (max/min)
– the constraint type (≤, ≥)
– the signs of the shadow prices

• Given two of these, can figure out the third one!

• What is the sign of the shadow price for a ...

≤ constraint in a minimization problem ?

≥ constraint in a minimization problem ?

≤ constraint in a maximization problem ?

≤ constraint in a maximization problem ?

• What is the dependency of the optimal objective on the r.h.s. of a ...

≤ constraint in a minimization problem ?

≥ constraint in a minimization problem ?

≤ constraint in a maximization problem ?

≤ constraint in a maximization problem ?
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• There is a direct connection between:
– the optimization problem (max/min)
– the constraint type (≤, ≥)
– the signs of the shadow prices

• Given two of these, can figure out the third one!
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Real-World Hub and Spoke Airline Network

Source: www.united.com 



Airline Revenue Management (RM)

• Strategic RM
• Determine several price points for various itineraries
• “Product” or “itinerary”: origin, destination, day, time, various restrictions, …

• E.g., JFK – ORD – SFO, 10:30am on Oct 12, 2024, Economy class Y fare
• Typically done by (or in conjunction with) marketing department

• Market segmentation; competition

• Tactical RM (“yield management”) decides booking limits
• A booking limit determines how many seats to reserve for each “product”
• RM not based on setting prices, but rather changing availability of fare classes
• Legacy due to original IT systems used (e.g., SABRE)
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some day in the future



Airline RM SFO

ORD

BOS

JFKLAX

Flight segments (legs)



Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon
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Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO
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BOS

JFKLAX

Origin-
Destination

Q_Fare Y_Fare

BOS_ORD $200 $220 
BOS_SFO $320 $420 
BOS_LAX $400 $490 
JFK_ORD $250 $290 
JFK_SFO $410 $540 
JFK_LAX $450 $550 
ORD_SFO $210 $230 
ORD_LAX $260 $300 
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Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Origin-
Destination

Q_Fare Y_Fare Q_Demand Y_Demand

BOS_ORD $200 $220 25 20
BOS_SFO $320 $420 55 40
BOS_LAX $400 $490 65 25
JFK_ORD $250 $290 24 16
JFK_SFO $410 $540 65 50
JFK_LAX $450 $550 40 35
ORD_SFO $210 $230 21 50
ORD_LAX $260 $300 25 14

Itineraries

Aircraft 1Aircraft 1

Aircraft 2Aircraft 2

Flight segments (legs)



Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Resources needed

Aircraft 1Aircraft 1

Aircraft 2Aircraft 2

Flight segments (legs)

Flight leg

BOS_ORD BOS_SFO BOS_LAX JFK_ORD JFK_SFO JFK_LAX ORD_SFO ORD_LAX

BOS_ORD_Leg 1 1 1 0 0 0 0 0

JFK_ORD_Leg 0 0 0 1 1 1 0 0

ORD_SFO_Leg 0 1 0 0 1 0 1 0

ORD_LAX_Leg 0 0 1 0 0 1 0 1



Network Revenue Management
• Airline revenue management (“yield management”): setting booking limits to

control how many tickets of each type are sold

• Airline is planning operations for a specific day in the future

• Airline operates a set F of direct flights in its (hub-and-spoke) network

• For each flight leg f ∈ F , we know the capacity of the aircraft cf

• The airline can offer a large number of “products” (i.e., itineraries) I:

– each itinerary refers to an origin-destination-fare class combination
– each itinerary i has a price ri that is fixed
– for each itinerary, the airline estimates the demand di
– each itinerary requires a seat on several flight legs operated by the airline

• Requirements: A ∈ {0, 1}F ·I with Af,i = 1 ⇔ itinerary i needs seat on flight leg f

Resource matrix A :

Itinerary 1 Itinerary 2 . . . Itinerary |I|
Flight leg 1 1 0 . . . 1

Flight leg 2 0 1 . . . 0
...

...
...

...
...

Flight leg |F | 1 1 . . . 0

• Goal: decide how many itineraries of each type to sell to maximize revenue
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Network Revenue Management

• Let xi denote the number of itineraries of type i that the airline plans to sell, and

let x be the vector with components xi

• The problem can be formulated as follows:

max
x∈RI

{
r⊺x : Ax ≤ c, x ≤ d

}
• Ax ≤ c capture the constraints on plane capacity

• x ≤ d states that the planned sales cannot exceed the demand

• In practice, an approach that includes all possible itineraries encounters challenges

– gargantuan LP
– poor demand estimates for some itineraries

• To sell “exotic itineraries”, use the shadow prices for the capacity constraints

– p ∈ RF : dual variables for capacity constraints Ax ≤ c
– At optimality, pf is marginal revenue lost if airline loses one seat on flight f
– For an “exotic” itinerary that requires seats on several flights f ∈ E, the

minimum price to charge is given by the sum of the shadow prices,
∑

f∈E pf
• Bid-price heuristic in network revenue management

• Broader principle of how to price “products” through resource usage/cost
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Asset Pricing and No-Arbitrage

• Investment world with n+ 1 securities indexed by i = 0, . . . , n

• i = 0 denotes cash; the other securities can be anything (stocks, derivatives, ...)

• We have two periods: current period c, future period f

• Current period: prices of securities are Sc
i for i = 1, . . . , n; cash: Sc

0 = 1

• Future period: prices are uncertain; there are m possible states of the world

Ω = {ω1, ω2, . . . , ωm}, each occurring with positive probability, and prices are:

– cash is riskless: Sf
0 = R = 1 + r, where r is the risk-free rate of return

– security i > 1 will have price Sf
i (ωj) in state of world ωj

• If we purchase xi of each security i:

– we incur immediate cost
∑n

i=0 S
c
i xi

– we have future cashflow
∑n

i=0 S
f
i (ω) · xi if state of world is ω ∈ Ω
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Asset Pricing and No-Arbitrage

Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no

risk of a loss later (type A) or that requires no initial cash input, has no risk of loss,

and has a positive probability of making profits in the future (type B).

• a type-A arbitrage means ∃x such that:
n∑

i=0

Sc
i · xi < 0 (positive initial cashflow)

n∑
i=0

Sf
i (ω) · xi ≥ 0, ∀ω ∈ Ω (no risk of loss)

(6)

• a type-B arbitrage means ∃x such that:
n∑

i=0

Sc
i · xi = 0 (no initial cash input)

n∑
i=0

Sf
i (ω) · xi ≥ 0, ∀ω ∈ Ω (no risk of loss)

∃ω ∈ Ω :

n∑
i=0

Sf
i (ω) · xi > 0, (positive probability of profit).

(7)
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Asset Pricing and No-Arbitrage

Definition (R.N.P.M.)

A risk-neutral probability measure on the set Ω = {ω1, ω2, . . . , ωm} is a vector

p ∈ Rm so that p > 0 and
∑m

j=1 pj = 1 and for every security Si, i = 0, . . . , n,

Sc
i =

1

R

(
m∑

j=1

pjS
f
i (ωj)

)
=

1

R
Ep[S

f
i ].

• Above, Ep[S] is the expected value of the random variable S under the probability

distribution p := (p1, p2, . . . , pm)

• The definition states that the current price/value of every asset, Sc
i , exactly equals

the discounted expected price/value in the future

• The expectation is taken with respect to the R.N.P.M.

• Discounting is done at the risk-free interest rate R
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Asset Pricing and No-Arbitrage

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables xi, for i = 0, . . . , n:

min
x

n∑
i=0

Sc
i · xi

s.t.
n∑

i=0

Sf
i (ωj) · xi ≥ 0, j = 1, . . . ,m.

(8)

• Type-A arbitrage: ∃x :
∑

S0
i xi < 0

• Constraints are homogeneous, so if ∃x :
∑

S0
i xi < 0, the objective is −∞

• x = 0 is feasible, so the optimal objective value is ≤ 0

• No type-A arbitrage if and only if the optimal objective value of this LP is 0

• Suppose no type-A arbitrage. Then, no type-B arbitrage if and only if all constraints

are tight for all optimal solutions of (8):
∑n

i=0 S
f
i (ωj) · x∗

i = 0, for j = 1, . . . ,m
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Asset Pricing and No-Arbitrage

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

max
p

0

s.t.
m∑

j=1

pj · Sf
i (ωj) = Sc

i , i = 0, . . . , n,

pj ≥ 0.

• If no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a

feasible solution p∗ (that is also optimal)

• No type-B arbitrage means
∑n

i=0 S
f
i (ωj) · x∗

i = 0, for j = 1, . . . ,m. Because dual

is standard-form LP, Theorem 3 (strict complem. slack.) implies ∃p∗ : p∗ > 0.

• Dual constraint for i = 0 implies
∑m

j=1 p
∗
j = 1

R
, so taking p∗ ·R yields a RNPM.

The converse direction is proved in an identical manner. ■
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• No type-B arbitrage means
∑n

i=0 S
f
i (ωj) · x∗

i = 0, for j = 1, . . . ,m. Because dual

is standard-form LP, Theorem 3 (strict complem. slack.) implies ∃p∗ : p∗ > 0.

• Dual constraint for i = 0 implies
∑m

j=1 p
∗
j = 1

R
, so taking p∗ ·R yields a RNPM.

The converse direction is proved in an identical manner. ■
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