Duality - Part Three

October 9, 2024

Quick Announcements

- Homework 2 deadline extended until Monday (Oct 14)
- On the week of Oct 21 Oct 25:
 - Class canceled on Monday (Oct 21)
 - Midterm exam on Wednesday (Oct 23)
 - Regular lecture on Friday (Oct 25)
- Some of you asked about homework : weight is 40% (as posted)
- I am posting slightly incomplete slides on purpose (complete after class)
- My office hours today: 5-6pm
- My office hours starting next week: Wed, 3-4pm

Recap From Last Time & Today's Plan

Last time...

- Separating Hyperplane Thm \Rightarrow Farkas Lemma \Rightarrow Strong duality
- Implications on primal/dual feasibility
- Two examples (robust optimization, CVaR)

Agenda for today:

- Optimality conditions and primal/dual simplex
- Complementary slackness
- Representation Theorem for all polyhedra
- Global sensitivity & Shadow prices as marginal costs
- Two new applications (asset pricing and network revenue management)

Optimality for Standard-Form LPs

$$(\mathscr{P}) \min c^{\intercal} x$$
 $(\mathscr{D}) \max p^{\intercal} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\intercal} A \le c^{\intercal}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B\subseteq\{1,\ldots,n\}$ is a basis, the b.f.s. is: $x=[x_B,0],\ x_B=A_B^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P}): x_B := A_B^{-1}b \ge 0$$
 (1a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (1b)

Optimality for Standard-Form LPs

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B\subseteq\{1,\ldots,n\}$ is a basis, the b.f.s. is: $x=[x_B,0],\ x_B=A_R^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P}): x_B := A_B^{-1}b \ge 0$$
 (1a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (1b)

- (\mathscr{D}): same basis B can also be used to determine a dual vector p: $p^{\mathsf{T}}A_i = c_i, \ \forall \ i \in B \ \Rightarrow \ p^{\mathsf{T}} = c_B^{\mathsf{T}}A_B^{-1}, \ \forall \ i \in B.$
 - The dual objective value of p is exactly: $p^{\mathsf{T}}b=c_B^{\mathsf{T}}A_B^{-1}b=c^{\mathsf{T}}x$
 - p is feasible in the dual if and only if:

Feasibility-
$$(\mathcal{D})$$
: $c^{\mathsf{T}} - p^{\mathsf{T}} A \ge 0 \Leftrightarrow c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (2)

Optimality for Standard-Form LPs

$$(\mathcal{P}) \min c^\intercal x$$

$$(\mathcal{P}) \max p^\intercal b$$

$$Ax = b, \quad x \geq 0 \qquad \qquad p^\intercal A \leq c^\intercal$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B\subseteq\{1,\ldots,n\}$ is a basis, the b.f.s. is: $x=[x_B,0],\ x_B=A_R^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P}): x_B := A_B^{-1}b \ge 0$$
 (1a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (1b)

- (\mathscr{D}): same basis B can also be used to determine a **dual vector** p: $p^{\mathsf{T}}A_i = c_i, \ \forall i \in B \ \Rightarrow \ p^{\mathsf{T}} = c_B^{\mathsf{T}}A_B^{-1}, \ \forall i \in B.$
 - The dual objective value of p is exactly: $p^{\mathsf{T}}b=c_B^{\mathsf{T}}A_B^{-1}b=c^{\mathsf{T}}x$
 - -p is feasible in the dual if and only if:

Feasibility-
$$(\mathcal{D})$$
: $c^{\mathsf{T}} - p^{\mathsf{T}} A \ge 0 \Leftrightarrow c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (2)

Primal optimality \Leftrightarrow Dual feasibility

Simplex terminates when finding a dual-feasible solution!

Solve (\mathscr{P}) or (\mathscr{D}) ?

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

Solve (\mathscr{P}) or (\mathscr{D}) ?

$$(\mathscr{P}) \mbox{ min } c^\intercal x \qquad \qquad (\mathscr{D}) \mbox{ max } p^\intercal b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad p^\intercal A \leq c^\intercal$$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \dots, n\}$
- stopping criterion: dual feasibility

Dual simplex

- maintain a dual feasible solution
- stopping criterion: primal feasibility
- different from primal simplex: works with an LP with inequalities

- How to choose (\mathscr{P}) or (\mathscr{D}) ?
- Suppose we have x^* , p^* and must solve a **larger** problem. *Any ideas?*

Solve (\mathscr{P}) or (\mathscr{D}) ?

$$(\mathscr{P}) \ \min \ c^\intercal x$$

$$(\mathscr{D}) \ \max \ p^\intercal b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad p^\intercal A \leq c^\intercal$$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \dots, n\}$
- stopping criterion: dual feasibility

Dual simplex

- maintain a dual feasible solution
- stopping criterion: primal feasibility
- different from primal simplex: works with an LP with inequalities

- How to choose (\mathscr{P}) or (\mathscr{D}) ?
- Suppose we have x^* , p^* and must solve a larger problem. Any ideas?
 - With extra decisions $x_e \Rightarrow \mathbf{primal\ simplex\ }$ initialized with $[x^*, x_e = 0]$.
 - With extra constraints $A_e x = b_e \Rightarrow$ dual simplex initialized with $[p^*, p_e = 0]$.
- Modern solvers include primal and dual simplex and allow concurrent runs

Sometimes, we just want to characterize the optimal solutions

Sometimes, we just want to characterize the optimal solutions

Theorem (Complementary Slackness)

Let x and p be feasible solutions for (\mathscr{P}) and (\mathscr{D}) , respectively. Then x and p are optimal solutions for (\mathscr{P}) and (\mathscr{D}) if and only if:

$$p_i(a_i^{\mathsf{T}} x - b_i) = 0, \, \forall i$$
$$(c_j - p^{\mathsf{T}} A_j) x_j = 0, \, \forall j.$$

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (\mathscr{P}) and (\mathscr{D}) , respectively. Then x and p are optimal solutions for (\mathscr{P}) and (\mathscr{D}) if and only if:

$$p_i(a_i^{\mathsf{T}} x - b_i) = 0, \ \forall i$$
$$(c_j - p^{\mathsf{T}} A_j) x_j = 0, \ \forall j.$$

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (\mathscr{P}) and (\mathscr{D}) , respectively. Then x and p are optimal solutions for (\mathscr{P}) and (\mathscr{D}) if and only if:

$$p_i(a_i^{\mathsf{T}} x - b_i) = 0, \, \forall i$$
$$(c_j - p^{\mathsf{T}} A_j) x_j = 0, \, \forall j.$$

Theorem (Strict C.S. Standard-Form LPs)

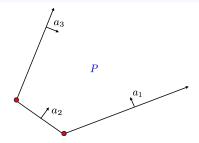
Consider the following primal-dual pair of LPs:

$$(\mathscr{P}) \min c^\intercal x$$
 $(\mathscr{D}) \max p^\intercal b$
$$Ax = b, x \ge 0 \qquad p^\intercal A \le c^\intercal$$

If (\mathscr{P}) and (\mathscr{D}) are feasible, they admit optimal solutions x^* and p^* satisfying strict complementarity: $x_j^* > 0 \Leftrightarrow p^\intercal A_j = c_j$.

Important consequence of duality: alternative representation of all polyhedra

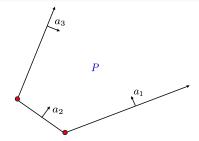
Definition



Important consequence of duality: alternative representation of all polyhedra

Definition

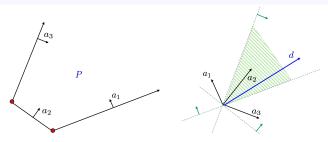
- 1. $\mathcal{C} := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.



Important consequence of duality: alternative representation of all polyhedra

Definition

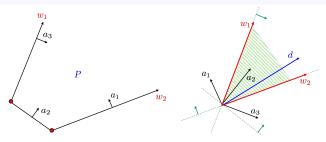
- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.
- 3. Any ray d that satisfies $a_i^{\mathsf{T}}d=0$ for n-1 linearly independent a_i is called an extreme ray of P.



Important consequence of duality: alternative representation of all polyhedra

Definition

- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.
- 3. Any ray d that satisfies $a_i^{\mathsf{T}} d = 0$ for n-1 linearly independent a_i is called an extreme ray of P.



Theorem (Resolution Theorem)

Let $P=\{x\in\mathbb{R}^n: Ax\geq b\}$ be a non-empty polyhedron, x^1,x^2,\ldots,x^k be its extreme points, and w^1,w^2,\ldots,w^r be its extreme rays. Then P=Q, where

$$Q := \left\{ \sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j : \lambda \ge 0, \ \theta \ge 0, \ e^{\mathsf{T}} \lambda = 1 \right\}.$$

Theorem (Resolution Theorem)

Let $P=\{x\in\mathbb{R}^n: Ax\geq b\}$ be a non-empty polyhedron, x^1,x^2,\ldots,x^k be its extreme points, and w^1,w^2,\ldots,w^r be its extreme rays. Then P=Q, where

$$Q := \bigg\{ \sum_{i=1}^k \lambda_i x^i + \sum_{j=1}^r \theta_j w^j \ : \ \lambda \ge 0, \ \theta \ge 0, \ e^{\mathsf{T}} \lambda = 1 \bigg\}.$$

Proof. Proving $Q\subseteq P$ is immediate. To prove $P\subseteq Q$, assume $\exists z\in P$ with $z\notin Q$. Consider the following primal-dual pair:

Theorem (Resolution Theorem)

Let $P=\{x\in\mathbb{R}^n: Ax\geq b\}$ be a non-empty polyhedron, x^1,x^2,\ldots,x^k be its extreme points, and w^1,w^2,\ldots,w^r be its extreme rays. Then P=Q, where

$$Q := \left\{ \sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j : \lambda \ge 0, \ \theta \ge 0, \ e^{\mathsf{T}} \lambda = 1 \right\}.$$

Proof. Proving $Q \subseteq P$ is immediate. To prove $P \subseteq Q$, assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

Is (\mathscr{P}) feasible? Is (\mathscr{D}) feasible? What are the optimal values?

Representation of Polyhedra - cntd

$$P := \{ x \in \mathbb{R}^n : Ax \ge b \} = Q := \left\{ \sum_{i=1}^k \lambda_i x^i + \sum_{j=1}^r \theta_j w^j : \lambda \ge 0, \theta \ge 0, e^{\mathsf{T}} \lambda = 1 \right\}.$$

Proof - cont'd. Assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

$$\sum_{i=1}^{k} \lambda_i = 1$$

- (\mathscr{P}) is infeasible because $z \notin Q$
- (\mathcal{D}) is feasible with p=q=0, so its optimal value is $-\infty \Rightarrow \exists (p,q): p^{\mathsf{T}}z+q<0$

Representation of Polyhedra - cntd

$$P := \{ x \in \mathbb{R}^n : Ax \ge b \} = Q := \left\{ \sum_{i=1}^k \lambda_i x^i + \sum_{j=1}^r \theta_j w^j : \lambda \ge 0, \theta \ge 0, e^{\mathsf{T}} \lambda = 1 \right\}.$$

Proof - cont'd. Assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

$$\sum_{i=1}^{k} \lambda_i = 1$$

- (\mathcal{P}) is infeasible because $z \notin Q$
- (\mathscr{D}) is feasible with p=q=0, so its optimal value is $-\infty \Rightarrow \exists (p,q): p^{\mathsf{T}}z+q<0$
- (p,q) feasible $\Rightarrow p^{\mathsf{T}}z < -q \leq p^{\mathsf{T}}x_i$ for any $i=1,\ldots,k$ and $p^{\mathsf{T}}w_i \geq 0$
- With p as above, consider the LP $\min_x \{p^{\mathsf{T}}x : Ax \geq b\}$

Representation of Polyhedra - cntd

$$P := \{ x \in \mathbb{R}^n : Ax \ge b \} = Q := \left\{ \sum_{i=1}^k \lambda_i x^i + \sum_{j=1}^r \theta_j w^j : \lambda \ge 0, \theta \ge 0, e^{\mathsf{T}} \lambda = 1 \right\}.$$

Proof - cont'd. Assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

$$\sum_{i=1}^{k} \lambda_i = 1$$

- (\mathscr{P}) is infeasible because $z \notin Q$
- (\mathscr{D}) is feasible with p=q=0, so its optimal value is $-\infty \Rightarrow \exists (p,q): p^{\mathsf{T}}z+q<0$
- (p,q) feasible $\Rightarrow p^{\mathsf{T}}z < -q \leq p^{\mathsf{T}}x_i$ for any $i=1,\ldots,k$ and $p^{\mathsf{T}}w_i \geq 0$
- With p as above, consider the LP $\min_x \{p^{\mathsf{T}}x : Ax \geq b\}$
- If optimal cost finite, $\exists x^i$ optimal. But $z \in P$ and $p^\intercal z < p^\intercal x_i$ lead to \not
- If cost is $-\infty$, $\exists w^j: p^{\mathsf{T}}w^j < 0$, which is also a $\mbox{\it \ensuremath{\sharp}}$

Dual Variables As Marginal Costs

$$(\mathscr{P}) \ \min \ c^\intercal x$$

$$(\mathscr{D}) \ \max \ p^\intercal b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad p^\intercal A \leq c^\intercal$$

- Solved the LP and obtained x^* and p^*
- Want to show that p^* is gradient of the optimal cost with respect to b ("almost everywhere")
- Related to **sensitivity analysis**How do the optimal value and solution depend on problem data A, b, c?

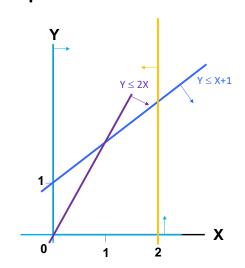
Maximize Y

Subject to: $y \le 2X$

Y ≤ X+1

 $X \ge 0, Y \ge 0$

X ≤ 2



Maximize Y

Subject to: $y \le 2X$

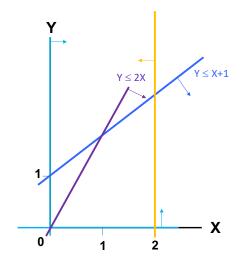
Y ≤ X+1

 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

For the last constraint X ≤ a, what is the shadow price i.e., rate of change in the optimal value when we change the constraint r.h.s. a?



Maximize Y

Subject to: $y \le 2X$

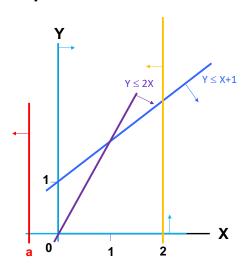
Y ≤ X+1

 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If a < 0:



Maximize Y

Subject to: $y \le 2X$

Y ≤ X+1

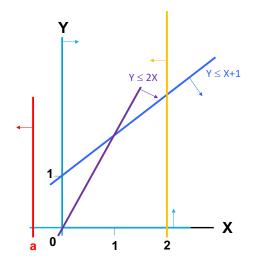
 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If a < 0:

Infeasible!



Maximize Y

Subject to: $y \le 2X$

Y ≤ X+1

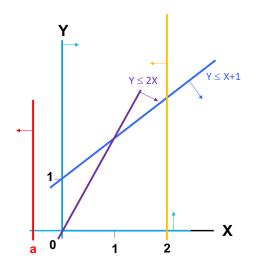
 $X \ge 0, Y \ge 0$

 $X \leq 2$

X≤a

If a < 0:

- Infeasible!
- Shadow price = $+\infty$



Maximize Y

Subject to: $y \le 2X$

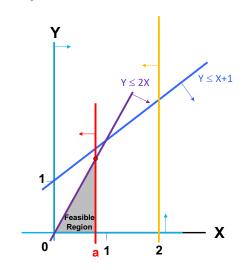
 $Y \leq X+1$

 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If 0 < a < 1:



Maximize Y

Subject to: $y \le 2X$

Y ≤ X+1

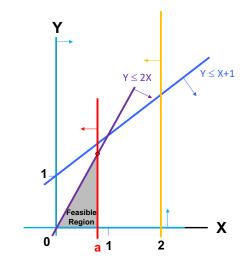
 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If 0 < a < 1:

Shadow price = 2



Maximize Y

Subject to: $y \le 2X$

Y ≤ X+1

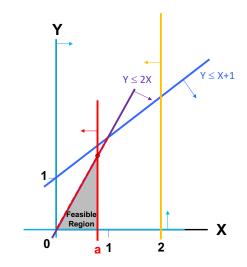
 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If 0 < a < 1:

Shadow price = 2



Maximize Y

Subject to: $y \le 2X$

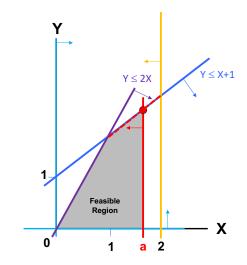
Y ≤ X+1

 $X \ge 0, Y \ge 0$

 $X \leq 2$

X≤a

If 1 < a < 2:



Maximize Y

Subject to: $y \le 2X$

 $Y \leq X+1$

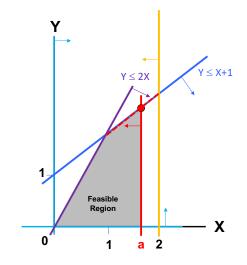
 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If 1 < a < 2:

• Shadow price = 1



Maximize Y

Subject to: $y \le 2X$

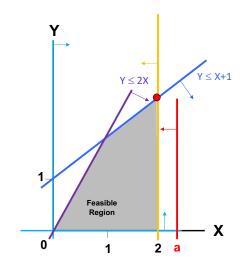
 $Y \leq X+1$

 $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If a > 2:



Global Dependency On $\it b$

$$(\mathscr{P}) \min c^{\intercal} x$$
 $(\mathscr{D}) \max p^{\intercal} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\intercal} A \le c^{\intercal}$$

- Let $P(b) := \{x : Ax = b, x \ge 0\}$ and F(b) denote the optimal cost
- Assume that dual is feasible: $\{p:p^{\mathsf{T}}A\leq c^{\mathsf{T}}\}\neq\emptyset$, so $F(b)>-\infty$
- ullet Want to show that F(b) is **piecewise linear and convex**

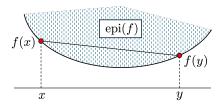
Convex and Concave Functions

Definition

 $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ is **convex** if X is a convex set and

$$f\left(\lambda x + (1-\lambda)y\right) \le \lambda f(x) + (1-\lambda)f(y), \quad \forall x,y \in X \text{ and } \lambda \in [0,1]. \tag{3}$$

A function is **concave** if -f is convex.



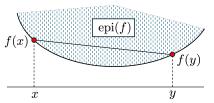
Convex and Concave Functions

Definition

 $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ is **convex** if X is a convex set and

$$f\big(\lambda x + (1-\lambda)y\big) \leq \lambda f(x) + (1-\lambda)f(y), \quad \forall x,y \in X \quad \text{and} \ \lambda \in [0,1]. \tag{3}$$

A function is **concave** if -f is convex.



Equivalent definition in terms of epigraph:

$$epi(f) = \{(x,t) \in X \times \mathbb{R} : t \ge f(x)\}$$
(4)

f is convex if and only if epi(f) is a convex set.

$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \geq 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \big\}$$

Theorem

 $F(b) \text{ is a convex and piece-wise linear function of } b \text{ on } S := \{b: P(b) \neq \emptyset\}.$

$$F(b) := \min \left\{ c^{\mathsf{T}} x : Ax = b, \ x \ge 0 \right\} \equiv \max \left\{ p^{\mathsf{T}} b \, : \, p^{\mathsf{T}} A \le c^{\mathsf{T}} \right\}$$

Theorem

 $F(b) \text{ is a convex and piece-wise linear function of } b \text{ on } S := \{b: P(b) \neq \emptyset\}.$

Proof. Claim: S is convex. Why?

Global Dependency On \boldsymbol{b}

$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \ge 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \le c^\intercal \big\}$$

Theorem

 $F(b) \text{ is a convex and piece-wise linear function of } b \text{ on } S := \{b: P(b) \neq \emptyset\}.$

Proof. Claim: S is convex. Why?

It is the cone spanned by the columns of A

$$S := \mathsf{cone}(\{A_1, A_2, \dots, A_n\})$$

Recall that we dealt with this same cone in the proof of the Farkas Lemma!

$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \geq 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \right\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S := \{b : P(b) \neq \emptyset\}$.

Proof. Because (\mathcal{D}) feasible $\Rightarrow F(b) > -\infty$.

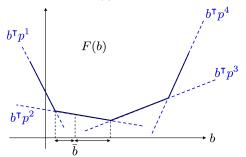
$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \geq 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \big\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b:P(b)\neq\emptyset\}.$

Proof. Because (\mathscr{D}) feasible $\Rightarrow F(b) > -\infty$.

• If p^1, p^2, \dots, p^r are the extreme points of the dual feasible set, then: $F(b) = \max_{i=1,\dots,r} b^{\mathsf{T}} p^i, \forall b \in S$



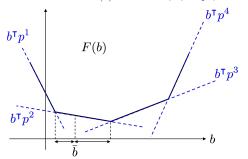
$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \geq 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \right\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b:P(b)\neq\emptyset\}.$

Proof. Because (\mathscr{D}) feasible $\Rightarrow F(b) > -\infty$.

• If p^1, p^2, \dots, p^r are the extreme points of the dual feasible set, then: $F(b) = \max_{i=1,\dots,r} b^{\mathsf{T}} p^i, \, \forall \, b \in S$



How to complete proof that F(b) is convex?

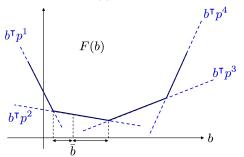
$$F(b) := \min \bigl\{ c^\intercal x : Ax = b, \ x \geq 0 \bigr\} \equiv \max \bigl\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \bigr\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S := \{b : P(b) \neq \emptyset\}$.

Proof. Because (\mathcal{D}) feasible $\Rightarrow F(b) > -\infty$.

• If p^1, p^2, \dots, p^r are the extreme points of the dual feasible set, then: $F(b) = \max_{i=1,\dots,r} b^{\mathsf{T}} p^i, \forall b \in S$



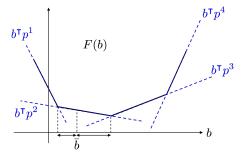
How to complete proof that F(b) is convex?

$$\operatorname{epi}(F) = \bigcap_{i=1,\dots,r} \operatorname{epi}(b^{\mathsf{T}} p^i)$$

is the intersection of convex sets, so it is convex.

Global Dependency On b - Implications

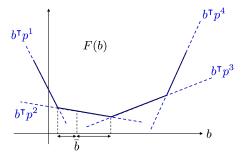
$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \geq 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \big\}$$



- At any b where F(b) is differentiable, p^* is the gradient of F(b)
- p_i^* acts as a marginal cost or shadow price for the *i*-th constraint r.h.s. b_i
- p_i allows estimating exact change in F(b) in a range around \bar{b}

Global Dependency On b - Implications

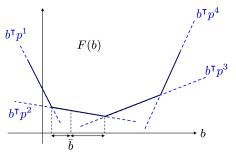
$$F(b) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$



- At any b where F(b) is differentiable, p^* is the gradient of F(b)
- p_i^* acts as a marginal cost or shadow price for the *i*-th constraint r.h.s. b_i
- p_i allows estimating exact change in F(b) in a range around \bar{b}
- Modern solvers give direct access to p_i^* and the range Gurobipy: for constraint c, the attribute c.Pi is p_i^* and the range is from c.SARHSLow to c.SARHSUp

Global Dependency On \boldsymbol{b} - Implications

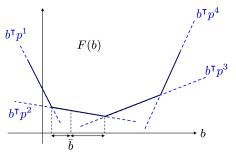
$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \geq 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \right\}$$



- At b where F(b) is **not** differentiable, several p^i are optimal
- ullet All such p^i are valid **subgradients** of F(b)

Global Dependency On \boldsymbol{b} - Implications

$$F(b) := \min \left\{ c^{\mathsf{T}} x : Ax = b, \ x \ge 0 \right\} \equiv \max \left\{ p^{\mathsf{T}} b \, : \, p^{\mathsf{T}} A \le c^{\mathsf{T}} \right\}$$



- At b where F(b) is **not** differentiable, several p^i are optimal
- ullet All such p^i are valid **subgradients** of F(b)

Definition (Subgradient.)

F convex, defined on (convex) set S. A vector p is a **subgradient** of F at $\bar{b} \in S$ if

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$

Theorem

Suppose $F(b):=\min\{c^\intercal x:Ax=b,\ x\geq 0\}\equiv\max\{p^\intercal b:p^\intercal A\leq c^\intercal\}>-\infty.$ Then p is optimal for the dual **if and only if** it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

Theorem

Suppose $F(b) := \min \{ c^\intercal x : Ax = b, \ x \geq 0 \} \equiv \max \{ p^\intercal b : p^\intercal A \leq c^\intercal \} > -\infty.$ Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

- ullet Suppose that p is optimal for the dual
- Strong duality implies $p^{\mathsf{T}}\bar{b} = F(\bar{b})$

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

- ullet Suppose that p is optimal for the dual
- Strong duality implies $p^{\mathsf{T}}\bar{b} = F(\bar{b})$
- Consider arbitrary $b \in S$
- For any feasible solution $x \in P(b)$, weak duality yields $p^{\mathsf{T}}b \leq c^{\mathsf{T}}x$
- This implies $p^{\mathsf{T}}b \leq F(b)$

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

- ullet Suppose that p is optimal for the dual
- Strong duality implies $p^{\mathsf{T}}\bar{b} = F(\bar{b})$
- Consider arbitrary $b \in S$
- For any feasible solution $x \in P(b)$, weak duality yields $p^{\mathsf{T}}b \leq c^{\mathsf{T}}x$
- This implies $p^{\mathsf{T}}b \leq F(b)$
- $\bullet \ \ \text{But then, } p^{\mathsf{T}}b p^{\mathsf{T}}\bar{b} \leq F(b) F(\bar{b})$

We conclude that p is a subgradient of F at \bar{b}

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
 (5)

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
 (5)

• Pick some $x \ge 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \le c^{\mathsf{T}}x$.

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
 (5)

- Pick some $x \ge 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \le c^{\mathsf{T}}x$.
- By (5), we have: $p^{\mathsf{T}}Ax = p^{\mathsf{T}}b \le F(b) F(\bar{b}) + p^{\mathsf{T}}\bar{b} \le c^{\mathsf{T}}x F(\bar{b}) + p^{\mathsf{T}}\bar{b}$.
- Because this is true for any $x \ge 0$, we must have $p^{\mathsf{T}}A \le c^{\mathsf{T}}$. Why?

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
 (5)

- Pick some $x \geq 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \leq c^{\mathsf{T}}x$.
- By (5), we have: $p^{\mathsf{T}}Ax = p^{\mathsf{T}}b \le F(b) F(\bar{b}) + p^{\mathsf{T}}\bar{b} \le c^{\mathsf{T}}x F(\bar{b}) + p^{\mathsf{T}}\bar{b}$.
- Because this is true for any $x \ge 0$, we must have $p^{\mathsf{T}}A \le c^{\mathsf{T}}$. Why?
- ullet This implies that p is dual-feasible
- With x=0, we obtain $F(\bar{b}) \leq p^{\mathsf{T}}\bar{b}$

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
 (5)

- Pick some $x \ge 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \le c^{\mathsf{T}}x$.
- By (5), we have: $p^{\mathsf{T}}Ax = p^{\mathsf{T}}b \le F(b) F(\bar{b}) + p^{\mathsf{T}}\bar{b} \le c^{\mathsf{T}}x F(\bar{b}) + p^{\mathsf{T}}\bar{b}$.
- Because this is true for any $x \ge 0$, we must have $p^{\mathsf{T}}A \le c^{\mathsf{T}}$. Why?
- ullet This implies that p is dual-feasible
- With x=0, we obtain $F(\bar{b}) \leq p^{\mathsf{T}}\bar{b}$
- Using weak duality, every dual-feasible q satisfies $q^{\rm T}\bar{b} \leq F(\bar{b}) \leq p^{\rm T}\bar{b}$

We conclude that p is optimal.

Let
$$G(c) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

Theorem

For an LP in standard form,

- 1. The set $T := \{c : G(c) > -\infty\}$ is convex.
- 2. G(c) is a **concave** function of c on the set T.
- 3. If for some c the LP has a **unique** optimal solution x^* , then G is linear in the vicinity of c and its gradient is x^* .

Global Dependency On $\it c$

Let
$$G(c) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

Theorem

For an LP in standard form,

- 1. The set $T := \{c : G(c) > -\infty\}$ is convex.
- 2. G(c) is a **concave** function of c on the set T.
- 3. If for some c the LP has a **unique** optimal solution x^* , then G is linear in the vicinity of c and its gradient is x^* .

Proof. Analogous ideas applied to the dual - omitted.

Global Dependency On $\it c$

Let
$$G(c) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

Theorem

For an LP in standard form,

- 1. The set $T := \{c : G(c) > -\infty\}$ is convex.
- 2. G(c) is a **concave** function of c on the set T.
- 3. If for some c the LP has a **unique** optimal solution x^* , then G is linear in the vicinity of c and its gradient is x^* .

Proof. Analogous ideas applied to the dual - omitted.

- ullet The optimal primal solution x^* is a shadow price for the dual constraints
- ullet x^* remains optimal for a range of change in each objective coefficient c_j
- Modern solvers also allow obtaining the range directly Gurobipy: attributes SAObjLow and SAObjUp for each decision variable

These ideas carry over directly to primal-dual pairs in general form:

$$\begin{split} F(b,c) := \min_{\pmb{x}} & c^{\mathsf{T}} \pmb{x} & \max_{\pmb{p}} & \pmb{p}^{\mathsf{T}} b \\ & a_i^{\mathsf{T}} \pmb{x} \geq b_i, \quad i \in M_1, \\ & a_i^{\mathsf{T}} \pmb{x} \leq b_i, \quad i \in M_2, \\ & a_i^{\mathsf{T}} \pmb{x} = b_i, \quad i \in M_2, \\ & a_i^{\mathsf{T}} \pmb{x} = b_i, \quad i \in M_3, \\ & \pmb{x_j} \geq 0, \quad j \in N_1, \\ & \pmb{x_j} \leq 0, \quad j \in N_2, \\ & \pmb{x_j} \text{ free}, \quad j \in N_3. \end{split} \qquad \begin{array}{l} \pmb{p}^{\mathsf{T}} b \\ p_i \geq 0, \quad i \in M_1, \\ p_i \text{ free}, \quad i \in M_3, \\ p_i \text{ free}, \quad j \in N_1, \\ p^{\mathsf{T}} A_j \leq c_j, \quad j \in N_1, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j = c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j = c_j, \quad j \in N_3. \\ \end{array}$$

These ideas carry over directly to primal-dual pairs in general form:

$$\begin{split} F(b,c) := \min_{\boldsymbol{x}} & c^{\mathsf{T}}\boldsymbol{x} & \max_{\boldsymbol{p}} & \boldsymbol{p}^{\mathsf{T}}b \\ & a_i^{\mathsf{T}}\boldsymbol{x} \geq b_i, & i \in M_1, \\ & a_i^{\mathsf{T}}\boldsymbol{x} \leq b_i, & i \in M_2, \\ & a_i^{\mathsf{T}}\boldsymbol{x} = b_i, & i \in M_3, \\ & \boldsymbol{x_j} \geq 0, & j \in N_1, \\ & \boldsymbol{x_j} \leq 0, & j \in N_2, \\ & \boldsymbol{x_j} & \text{free}, & j \in N_3. \end{split} \qquad \begin{array}{l} \boldsymbol{p}^{\mathsf{T}}b \\ \boldsymbol{p_i} \geq 0, & i \in M_1, \\ \boldsymbol{p_i} \leq 0, & i \in M_2, \\ \boldsymbol{p_i} & \text{free}, & i \in M_3, \\ \boldsymbol{p}^{\mathsf{T}}A_j \leq c_j, & j \in N_1, \\ \boldsymbol{p}^{\mathsf{T}}A_j \geq c_j, & j \in N_2, \\ \boldsymbol{p}^{\mathsf{T}}A_j = c_j, & j \in N_2, \\ \boldsymbol{p}^{\mathsf{T}}A_j = c_j, & j \in N_3. \end{array}$$

- ullet F(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in c
- ullet p^* is subgradient for F(b,c) with respect to b
- x^* is subgradient for -F(b,c) with respect to c

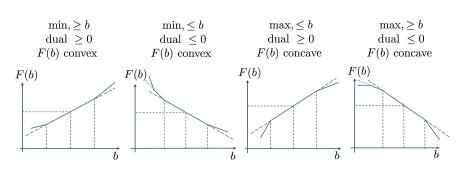
These ideas carry over directly to primal-dual pairs in general form:

$$\begin{split} F(b,c) := \min_{\pmb{x}} & c^{\intercal} \pmb{x} & \max_{\pmb{p}} & \pmb{p}^{\intercal} b \\ & a_i^{\intercal} \pmb{x} \geq b_i, & i \in M_1, \\ & a_i^{\intercal} \pmb{x} \leq b_i, & i \in M_2, \\ & a_i^{\intercal} \pmb{x} = b_i, & i \in M_3, \\ & \pmb{x_j} \geq 0, & j \in N_1, \\ & \pmb{x_j} \leq 0, & j \in N_2, \\ & \pmb{x_j} & \text{free}, & j \in N_3. \end{split} \qquad \begin{array}{l} \pmb{p}^{\intercal} b \\ p_i \geq 0, & i \in M_1, \\ p_i \leq 0, & i \in M_2, \\ p_i & \text{free}, & i \in M_3, \\ p^{\intercal} A_j \leq c_j, & j \in N_1, \\ p^{\intercal} A_j \geq c_j, & j \in N_2, \\ p^{\intercal} A_j = c_j, & j \in N_2, \\ p^{\intercal} A_j = c_j, & j \in N_2, \\ p^{\intercal} A_j = c_j, & j \in N_3. \end{array}$$

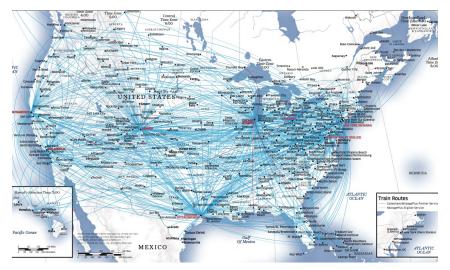
- \bullet F(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in c
- p^* is subgradient for F(b,c) with respect to b
- x^* is subgradient for -F(b,c) with respect to c
- There is a direct connection between:
 - the optimization problem (max/min)
 - the constraint type (\leq , \geq)
 - the signs of the shadow prices

- There is a direct connection between:
 - the optimization problem (max/min)
 - the constraint type (\leq , \geq)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!
- What is the sign of the shadow price for a ...
 - < constraint in a minimization problem ?
 - ≥ constraint in a minimization problem ?
 - < constraint in a maximization problem ?
 - < constraint in a maximization problem ?
- What is the dependency of the optimal objective on the r.h.s. of a ...
 - < constraint in a minimization problem ?</p>
 - > constraint in a minimization problem ?
 - \leq constraint in a **maximization** problem ?
 - \leq constraint in a **maximization** problem ?

- There is a direct connection between:
 - the optimization problem (max/min)
 - the constraint type (<, >)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!



Real-World Hub and Spoke Airline Network



Source: www.united.com

Airline Revenue Management (RM)

Strategic RM

- Determine several price points for various itineraries
- "Product" or "itinerary": origin, destination, day, time, various restrictions, ...
 - E.g., JFK ORD SFO, 10:30am on Oct 12, 2024, Economy class Y fare
- Typically done by (or in conjunction with) marketing department
 - · Market segmentation; competition

Tactical RM ("yield management") decides booking limits

- A booking limit determines how many seats to reserve for each "product"
- RM not based on setting prices, but rather changing availability of fare classes
- Legacy due to original IT systems used (e.g., SABRE)

Hub: Chicago ORD

Westbound flights for some day in the future

ORD

JFK

LAX

Flight segments (legs)

JFK

BOS

Flight segments (legs)

- Aircraft 1:
 - BOS-ORD in the morning
 - · ORD-SFO in the afternoon

Flight segments (legs)

- Aircraft 1: ┽
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Airline RM

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Itineraries

Origin-	Q_Fare	Y_Fare
Destination		
BOS_ORD	\$200	\$220
BOS_SFO	\$320	\$420
BOS_LAX	\$400	\$490
JFK_ORD	\$250	\$290
JFK_SFO	\$410	\$540
JFK_LAX	\$450	\$550
ORD_SFO	\$210	\$230
ORD_LAX	\$260	\$300

Airline RM

Flight segments (legs)

- Aircraft 1: ┽
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Itineraries

Origin-	Q_Fare	Y_Fare	Q_Demand Y_Demand		
Destination					
BOS_ORD	\$200	\$220	25	20	
BOS_SFO	\$320	\$420	55	40	
BOS_LAX	\$400	\$490	65	25	
JFK_ORD	\$250	\$290	24	16	
JFK_SFO	\$410	\$540	65	50	
JFK_LAX	\$450	\$550	40	35	
ORD_SFO	\$210	\$230	21	50	
ORD LAX	\$260	\$300	25	14	

Airline RM

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2: ┽
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Resources needed

	BOS_O	RD BOS_SFO	BOS_LAX	JFK_ORD	JFK_SFO	JFK_LAX	ORD_SFO	ORD_LAX
Flight leg								
BOS_ORD_Leg	1	1	1	0	0	0	0	0
JFK_ORD_Leg	0	0	0	1	1	1	0	0
ORD_SFO_Leg	0	1	0	0	1	0	1	0
ORD_LAX_Leg	0	0	1	0	0	1	0	1

 Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- ullet Airline operates a set F of direct flights in its (hub-and-spoke) network

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- ullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- ullet For each flight leg $f\in F$, we know the capacity of the aircraft c_f

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- ullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- ullet For each flight leg $f\in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- · Airline is planning operations for a specific day in the future
- ullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- ullet For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

- (-)	, J, v	· · · · · · · · · · · · · · · · · · ·		0 1 10 7	
		Itinerary 1	Itinerary 2		Itinerary $\left I\right $
	Flight leg 1	1	0		1
Resource matrix A :	Flight leg 2	0	1		0
	:	:	:	:	:
	Flight leg $ F $	1	1		0

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- \bullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
- each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $\left I\right $
	Flight leg 1	1	0		1
Resource matrix \boldsymbol{A} :	Flight leg 2	0	1		0
	:	:	:	:	:
	Flight leg $ F $	1	1		0

Goal: decide how many itineraries of each type to sell to maximize revenue

• Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \, \left\{ r^\intercal x : Ax \leq c, \ x \leq d \right\}$$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- \bullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$
- Bid-price heuristic in network revenue management
- Broader principle of how to price "products" through resource usage/cost

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i = 0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i=0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f
- Current period: prices of securities are S_i^c for $i=1,\ldots,n$; cash: $S_0^c=1$

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i=0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f
- Current period: prices of securities are S_i^c for $i=1,\ldots,n$; cash: $S_0^c=1$
- Future period: prices are uncertain; there are m possible states of the world $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$, each occurring with positive probability, and prices are:
 - cash is riskless: $S_0^f = R = 1 + r$, where r is the risk-free rate of return
 - security i>1 will have price $S_i^f(\omega_j)$ in state of world ω_j

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i=0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f
- Current period: prices of securities are S_i^c for $i=1,\ldots,n$; cash: $S_0^c=1$
- Future period: prices are uncertain; there are m possible states of the world $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$, each occurring with positive probability, and prices are:
 - cash is riskless: $S_0^f = R = 1 + r$, where r is the risk-free rate of return
 - security i > 1 will have price $S_i^f(\omega_j)$ in state of world ω_j
- If we purchase x_i of each security i:
 - we incur immediate cost $\sum_{i=0}^{n} S_i^c x_i$
 - we have future cashflow $\sum_{i=0}^{n} S_i^f(\omega) \cdot x_i$ if state of world is $\omega \in \Omega$

Definition (Arbitrage)

An **arbitrage** is a trading strategy that either has a positive initial cashflow and has no risk of a loss later (type A) or that requires no initial cash input, has no risk of loss, and has a positive probability of making profits in the future (type B).

Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no risk of a loss later (type A) or that requires no initial cash input, has no risk of loss, and has a positive probability of making profits in the future (type B).

• a type-A arbitrage means $\exists x$ such that:

$$\sum_{i=0}^{n} S_{i}^{c} \cdot x_{i} < 0 \qquad \qquad \text{(positive initial cashflow)}$$

$$\sum_{i=0}^{n} S_{i}^{f}(\omega) \cdot x_{i} \geq 0, \ \forall \, \omega \in \Omega \qquad \text{(no risk of loss)}$$
 (6)

Definition (Arbitrage)

An **arbitrage** is a trading strategy that either has a positive initial cashflow and has no risk of a loss later (type A) or that requires no initial cash input, has no risk of loss, and has a positive probability of making profits in the future (type B).

• a type-A arbitrage means $\exists x$ such that:

$$\sum_{i=0}^{n} S_{i}^{c} \cdot x_{i} < 0 \qquad \text{(positive initial cashflow)}$$

$$\sum_{i=0}^{n} S_{i}^{f}(\omega) \cdot x_{i} \geq 0, \ \forall \omega \in \Omega \qquad \text{(no risk of loss)}$$
(6)

a type-B arbitrage means $\exists x$ such that:

$$\sum_{i=0}^{n} S_{i}^{c} \cdot x_{i} = 0 \qquad \text{(no initial cash input)}$$

$$\sum_{i=0}^{n} S_{i}^{f}(\omega) \cdot x_{i} \geq 0, \ \forall \, \omega \in \Omega \qquad \text{(no risk of loss)}$$
 (7)

$$\exists \omega \in \Omega : \sum_{i=1}^{n} S_{i}^{f}(\omega) \cdot x_{i} > 0,$$
 (positive probability of profit).

Definition (R.N.P.M.)

A risk-neutral probability measure on the set $\Omega=\{\omega_1,\omega_2,\ldots,\omega_m\}$ is a vector $p\in\mathbb{R}^m$ so that p>0 and $\sum_{j=1}^m p_j=1$ and for every security $S_i,i=0,\ldots,n$,

$$S_i^c = \frac{1}{R} \left(\sum_{j=1}^m p_j S_i^f(\omega_j) \right) = \frac{1}{R} \mathbb{E}_p[S_i^f].$$

- Above, $\mathbb{E}_p[S]$ is the expected value of the random variable S under the probability distribution $p := (p_1, p_2, \dots, p_m)$
- The definition states that the current price/value of every asset, S_i^c , exactly equals the discounted expected price/value in the future
- The expectation is taken with respect to the R.N.P.M.
- ullet Discounting is done at the risk-free interest rate R

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables x_i , for $i = 0, \ldots, n$:

$$\min_{x} \sum_{i=0}^{n} S_{i}^{c} \cdot x_{i}$$
s.t.
$$\sum_{i=0}^{n} S_{i}^{f}(\omega_{j}) \cdot x_{i} \geq 0, j = 1, \dots, m.$$
(8)

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables x_i , for i = 0, ..., n:

$$\min_{x} \sum_{i=0}^{n} S_{i}^{c} \cdot x_{i}$$
s.t.
$$\sum_{i=0}^{n} S_{i}^{f}(\omega_{j}) \cdot x_{i} \ge 0, j = 1, \dots, m.$$
(8)

- Type-A arbitrage: $\exists x : \sum S_i^0 x_i < 0$
- Constraints are homogeneous, so if $\exists x : \sum S_i^0 x_i < 0$, the objective is $-\infty$
- ullet x=0 is feasible, so the optimal objective value is ≤ 0
- No type-A arbitrage if and only if the optimal objective value of this LP is 0

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables x_i , for i = 0, ..., n:

$$\min_{x} \sum_{i=0}^{n} S_{i}^{c} \cdot x_{i}$$
s.t.
$$\sum_{i=0}^{n} S_{i}^{f}(\omega_{j}) \cdot x_{i} \ge 0, j = 1, \dots, m.$$
(8)

- Type-A arbitrage: $\exists x : \sum S_i^0 x_i < 0$
- Constraints are homogeneous, so if $\exists x : \sum S_i^0 x_i < 0$, the objective is $-\infty$
- x=0 is feasible, so the optimal objective value is ≤ 0
- No type-A arbitrage if and only if the optimal objective value of this LP is 0
- Suppose no type-A arbitrage. Then, no type-B arbitrage if and only if all constraints are tight for all optimal solutions of (8): $\sum_{i=0}^{n} S_{i}^{f}(\omega_{j}) \cdot x_{i}^{*} = 0$, for $j = 1, \ldots, m$

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

$$\max_{p} 0$$
s.t.
$$\sum_{j=1}^{m} p_{j} \cdot S_{i}^{f}(\omega_{j}) = S_{i}^{c}, i = 0, \dots, n,$$

$$p_{j} \geq 0.$$

• If no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a feasible solution p^* (that is also optimal)

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

$$\max_{p} 0$$
s.t.
$$\sum_{j=1}^{m} p_{j} \cdot S_{i}^{f}(\omega_{j}) = S_{i}^{c}, i = 0, \dots, n,$$

$$p_{j} \geq 0.$$

- If no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a feasible solution p^* (that is also optimal)
- No type-B arbitrage means $\sum_{i=0}^n S_i^f(\omega_j) \cdot x_i^* = 0$, for $j=1,\ldots,m$. Because dual is standard-form LP, Theorem 3 (strict complem. slack.) implies $\exists p^*: p^* > 0$.

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

$$\max_{p} 0$$
s.t.
$$\sum_{j=1}^{m} p_{j} \cdot S_{i}^{f}(\omega_{j}) = S_{i}^{c}, i = 0, \dots, n,$$

$$p_{j} \geq 0.$$

- If no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a feasible solution p^* (that is also optimal)
- No type-B arbitrage means $\sum_{i=0}^n S_i^f(\omega_j) \cdot x_i^* = 0$, for $j=1,\ldots,m$. Because dual is standard-form LP, Theorem 3 (strict complem. slack.) implies $\exists p^*: p^* > 0$.
- Dual constraint for i=0 implies $\sum_{j=1}^m p_j^* = \frac{1}{R}$, so taking $p^* \cdot R$ yields a RNPM.

The converse direction is proved in an identical manner.