Duality - Part Three

October 9, 2024
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Quick Announcements

Homework 2 deadline extended until Monday (Oct 14)
On the week of Oct 21 - Oct 25:

- Class canceled on Monday (Oct 21)
- Midterm exam on Wednesday (Oct 23)
- Regular lecture on Friday (Oct 25)

Some of you asked about homework : weight is 40% (as posted)

| am posting slightly incomplete slides on purpose (complete after class)
My office hours today: 5-6pm

My office hours starting next week: Wed, 3-4pm
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Recap From Last Time & Today’s Plan

Last time...

® Separating Hyperplane Thm = Farkas Lemma =- Strong duality
® Implications on primal/dual feasibility

® Two examples (robust optimization, CVaR)

Agenda for today:

® Optimality conditions and primal/dual simplex
® Complementary slackness

® Representation Theorem for all polyhedra

Global sensitivity & Shadow prices as marginal costs

® Two new applications (asset pricing and network revenue management)
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Optimality for Standard-Form LPs

(&) min cTx (2) max pTb
Ax=0b, >0 pTA<cT
® (&) achieves optimality at a basic feasible solution z:

- If BC{l,...,n}is a basis, the b.fs. is: x = [zB,0], zp = Aglb.
— Simplex algorithm: feasibility and optimality for () are given by:

Feasibility-(2) :  ap:=Az'b>0 (1a)
Optimality-(2) : T —cLAZ'A>0 (1b)
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Optimality for Standard-Form LPs

(&) min cTx (2) max pTb
Ax=0b, >0 pTA<cT
® (&) achieves optimality at a basic feasible solution z:

- If BC {1,...,n} is a basis, the b.fs. is: © = [25,0], x5 = AZ'b.
— Simplex algorithm: feasibility and optimality for () are given by:

Feasibility-(2) :  ap:=Az'b>0 (1a)
Optimality-(2) : T —cLAZ'A>0 (1b)
® (2): same basis B can also be used to determine a dual vector p:
pTA;=c¢,Vie B = pl=chLA;', VieB.
— The dual objective value of p is exactly: pTb = c}gA]}lb =c'z
- p is feasible in the dual if and only if:
Feasibility-(2) : T—pTA>0 & T —cLAz'A>0 (2)
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Optimality for Standard-Form LPs

(&) min cTx (2) max pTb
Ax=0b, >0 pTA<cT
® () achieves optimality at a basic feasible solution z:
- If BC {1,...,n} is a basis, the b.fs. is: © = [25,0], x5 = AZ'b.
— Simplex algorithm: feasibility and optimality for () are given by:
Feasibility-(2) :  ap:=Az'b>0 (1a)
Optimality-(2) : T —cLAZ'A>0 (1b)

® (2): same basis B can also be used to determine a dual vector p:
pTA;=c¢,Vie B = pl=chLA;', VieB.
— The dual objective value of p is exactly: pTb = c}gA]}lb =c'z
- p is feasible in the dual if and only if:
Feasibility-(2) : T—pTA>0 & T —cLAz'A>0 (2)
Primal optimality < Dual feasibility

Simplex terminates when finding a dual-feasible solution!
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Solve (&) or (2)?

(&) min cTx (2) max pTb
Ax=0b, >0 pTA<cT
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Solve (&) or (2)?

() min ¢z (2) max pTb
Ax=0b, >0 pTA<cT
Primal simplex Dual simplex
® maintain a basic feasible solution ® maintain a dual feasible solution
® basis B C {1,...,n} ® stopping criterion: primal feasibility
® stopping criterion: dual feasibility o different from primal simplex: works

with an LP with inequalities

® How to choose () or (2)?

® Suppose we have z*, p* and must solve a larger problem. Any ideas?
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Solve (&) or (2)?

() min ¢z (2) max pTb
Ax=0b, >0 pTA<cT
Primal simplex Dual simplex
® maintain a basic feasible solution ® maintain a dual feasible solution
® basis B C {1,...,n} ® stopping criterion: primal feasibility
® stopping criterion: dual feasibility o different from primal simplex: works

with an LP with inequalities

® How to choose () or (2)?
® Suppose we have z*, p* and must solve a larger problem. Any ideas?

- With extra decisions z. = primal simplex initialized with [z*, z. = 0].
- With extra constraints Acx = be = dual simplex initialized with [p*, pe = 0].

® Modern solvers include primal and dual simplex and allow concurrent runs
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Optimality Conditions and Complementary Slackness

min, cTx
alz > b,
alz < b,
T
a; T = bi7
x; free,

1€ My,
i€ Mo,
i€ Ms,
J € N,
J € Na,
J € Njs.

max,

pTh

pi = 0,

pi <0,

p; free,
pTA; <cj,
pTA; > ¢,
pTA; =cj,

ie M,
1€ My,
i€ Ms,
J € Ny,
J € No,
j € Ns.

Sometimes, we just want to characterize the optimal solutions
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Optimality Conditions and Complementary Slackness

min, cTx
al
a; x > by,
o7
a;x < by,
T
ﬂ: = by,
5 >0,
x; free,

1€ My,
i€ Mo,
i€ Ms,
J € N,
J € Na,
J € Njs.

max,

pTh

pi = 0,

pi <0,

p; free,
pTA; <cj,
pTA; > ¢,
pTA; =cj,

ie M,
1€ My,
i€ Ms,
J € Ny,
J € No,
j € Ns.

Sometimes, we just want to characterize the optimal solutions

Theorem (Complementary Slackness)

Let x and p be feasible solutions for (2?) and (2), respectively. Then x and p

are optimal solutions for (&?) and () if and only if:

pi(a]xz —b;) =0, Vi

(¢

TA)

=0, V.
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Optimality Conditions and Complementary Slackness

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (£?) and (), respectively. Then x and p
are optimal solutions for (%?) and () if and only if:

pi(a]z —b;) =0, Vi
(Cj —pTAj)LEj = 07 VJ
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Optimality Conditions and Complementary Slackness

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (£?) and (), respectively. Then x and p
are optimal solutions for (%?) and () if and only if:

pi(a]z —b;) =0, Vi
(Cj —pTAj)LEj = 07 VJ

Theorem (Strict C.S. Standard-Form LPs)

Consider the following primal-dual pair of LPs:

() min cTx (2) max pTb
Az =b,z >0 pTA<cT

If (2?) and (2) are feasible, they admit optimal solutions x* and p* satisfying
strict complementarity: 27 >0 < pT4; =c;.
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra
Definition

Consider a nonempty polyhedron P = {z € R"™ : Az > b}. Then:

as

ai

az
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Representation of Polyhedra
Important consequence of duality: alternative representation of all polyhedra
Definition

Consider a nonempty polyhedron P = {z € R"™ : Az > b}. Then:
1. C:={d € R" : Ad > 0} is called the recession cone of P.
2. Any d € C with d # 0 is called a ray of P.
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ai
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra
Definition

Consider a nonempty polyhedron P = {z € R"™ : Az > b}. Then:

1. C:={d € R" : Ad > 0} is called the recession cone of P.

2. Any d € C with d # 0 is called a ray of P.

3. Any ray d that satisfies a]d = 0 for n — 1 linearly independent a; is called an
extreme ray of P.

as

ay
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra
Definition

Consider a nonempty polyhedron P = {z € R"™ : Az > b}. Then:
1. C:={d € R" : Ad > 0} is called the recession cone of P.
2. Any d € C with d # 0 is called a ray of P.

3. Any ray d that satisfies a]d = 0 for n — 1 linearly independent a; is called an
extreme ray of P.
wy

as

ay wa

az

8/30



Representation of Polyhedra

Theorem (Resolution Theorem)

Let P = {x € R™ : Ax > b} be a non-empty polyhedron, z*,z2, ..., x% be its
extreme points, and w',w?,...,w" be its extreme rays. Then P = (Q, where

k 7
Q:{Z)\ixiJrZijj :A>0,0>0, eT)\l}.
i=1 j=1
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Representation of Polyhedra

Theorem (Resolution Theorem)

Let P = {x € R™ : Ax > b} be a non-empty polyhedron, z*,z2, ..., x% be its
extreme points, and w',w?,...,w" be its extreme rays. Then P = (Q, where

k 7
Q:{Z)\ixiJrZijj :A>0,0>0, eT)\l}.
i=1 j=1

Proof. Proving Q C P is immediate. To prove P C @, assume 3z € P with z ¢ Q.
Consider the following primal-dual pair:
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Representation of Polyhedra
Theorem (Resolution Theorem)

Let P = {x € R™ : Ax > b} be a non-empty polyhedron, z*,z2, ..., x% be its
extreme points, and w',w?,...,w" be its extreme rays. Then P = (Q, where

k 7
{Z)\ixiJrZijj S A>0, 60>0, eT)\l}.
i=1 j=1

Proof. Proving Q C P is immediate. To prove P C @, assume 3z € P with z ¢ Q.
Consider the foIIowing primal-dual pair:

0\ 00, 9 in p’
(#)  max Z +Z (2) minpTz+gq

2>0,0>0
plxi+q>0, i=1,...,k,

YIEVERD SO Plw; >0, j=1,..m,

k:
=1
1=1

Is () feasible? Is () feasible? What are the optimal values?
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Representation of Polyhedra - cntd

P:={zeR": Az > b} = Q::{Zle Nzt + D 0w X >0,0 > 0,eTA = 1}

Proof - cont’d. Assume 3z € P with z ¢ Q). Consider the following primal-dual pair:

i T
(2 A>moagx>o ZO)\ +ZO€ (2) min p z+q
plxi+q>0, i=1,...,k,
Z)\ixz—‘,—zgjwjzz pTw]—ZO, j=1...,m
i=1 =1

k
dai=1
=1

® () is infeasible because z ¢ Q

® (9) is feasible with p = ¢ = 0, so its optimal value is —oco = 3(p,q) : pTz2+ ¢ <0
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Representation of Polyhedra - cntd

P:={zeR": Az > b} = Q::{Zle Nzt + D 0w X >0,0 > 0,eTA = 1}

Proof - cont’d. Assume 3z € P with z ¢ Q). Consider the following primal-dual pair:

O\ 00, in p’
(2 max Z +Z (2) n;’l;ip z+q

2>0,0>0
plxi+q>0, i=1,...,k,
Z)\ixz—‘,—zgjwjzz pTw]—ZO, j=1...,m
i=1 =1

k
dai=1
=1

(2?) is infeasible because z ¢ Q
® (9) is feasible with p = ¢ = 0, so its optimal value is —oco = 3(p,q) : pTz2+ ¢ <0

(p,q) feasible = pTz < —q < pTx; forany i =1,...,k and pTw; >0
® With p as above, consider the LP min,{pTx : Az > b}
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Representation of Polyhedra - cntd

P:={zeR": Az > b} = Q::{Zle Nzt + D 0w X >0,0 > 0,eTA = 1}

Proof - cont’d. Assume 3z € P with z ¢ Q). Consider the following primal-dual pair:

O\ 00, in p’
(2 max Z +Z (2) n;’l;ip z+q

2>0,0>0
plxi+q>0, i=1,...,k,
Z)\ix’-s-Zejw”:z pTw]—ZO, j=1...,m
i=1 =1

k
dai=1
=1

(2?) is infeasible because z ¢ Q
® (9) is feasible with p = ¢ = 0, so its optimal value is —oco = 3(p,q) : pTz2+ ¢ <0

(p,q) feasible = pTz < —q < pTx; forany i =1,...,k and pTw; >0
® With p as above, consider the LP min,{pTx : Az > b}

If optimal cost finite, 3z optimal. But z € P and pTz < pTz; lead to 4
e If cost is —oo, Jw’ : pTw! < 0, which is also a 4
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Dual Variables As Marginal Costs

(#) min cTx (2) max pTb
Az =0b, >0 pTA <cT
® Solved the LP and obtained z* and p*

® Want to show that p* is gradient of the optimal cost with respect to b
(“almost everywhere")

® Related to sensitivity analysis
How do the optimal value and solution depend on problem data A,b,c?
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Sensitivity: A Simple Example

- Y
Maximize Y L,
Subject to: y <oy Y <2X /(S X+1
Y <X+1
X>20,Y>0
P2
7 | T X




Sensitivity: A Simple Example

Maximize Y >

Subject to: vy <oy

Y <X+1
X>20,Y>0

X<a

For the last constraint X <a,
what is the shadow price

i.e., rate of change in the 7
optimal value when we change 0
the constraint r.h.s. a?



Sensitivity: A Simple Example

- Y
Maximize Y L,
Subject to: vy <oy Y <2X /(sxu
Y <X+1
X>0,Y>0
X<a
Ifa<0: e
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Sensitivity: A Simple Example

- Y
Maximize Y L,
Subject to: y <oy Y <2X /(S X+1
Y <X+1
X>20,Y>0
X<a
Ifa<0: e
¢ Infeasible!
7 | T X




Sensitivity: A Simple Example

- Y
Maximize Y .
Subject to: vy <oy Y <2X /(s X+1
Y<X+1
X>0,Y>0
X<a
Ifa<O: 7
* Infeasible!
* Shadow price = +00 !
7 | X




Sensitivity: A Simple Example

- Y
Maximize Y L,
Subject to: y <oy Y <2X /(S X+1
Y <X+1
X>20,Y>0
X<a /
Ifo<a<1: e
easible|
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Maximize Y -,
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Y<X+1
X>0,Y>0
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Sensitivity: A Simple Example

- Y
Maximize Y L,
Subject to: y <oy Y <2X /(< X+1
Y <X+1
X>20,Y>0
X<a
Ifl<a<2: e
Feasible
Region T
7 | X

0 1 a 2



Sensitivity: A Simple Example

.. Y
Maximize Y —
Subject to: vy <oy Y <2X /(s X+1
Y <X+1
X>0,Y>0
X<a
Ifl<a<2: e
* Shadow price =1 Feasible
Region T
7 T X

0 1 a 2



Sensitivity: A Simple Example

Maximize Y >
Subject to: vy <oy

Y <X+1

X>0,Y>0

X<a
Ifa>2: e

Y <2X

Feasible
Region

Y <X+1

\
1



Global Dependency On b

() min cTx (2) max pTb
Ar=0b, >0 pTA < (T
® let P(b) :={x: Az =b,x > 0} and F'(b) denote the optimal cost
e Assume that dual is feasible: {p: pTA <cT} # 0, so F(b) > —c0

® Want to show that F'(b) is piecewise linear and convex
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Convex and Concave Functions

Definition
f: X CR"™ — R is convex if X is a convex set and

fAz+ (1 =Ny) <Af(@)+(1-N)f(y), Yo,y e X and A€ [0,1]. (3)

A function is concave if —f is convex.

13/30



Convex and Concave Functions

Definition
f: X CR"™ — R is convex if X is a convex set and

fAz+ (1 =Ny) <Af(@)+(1-N)f(y), Yo,y e X and A€ [0,1]. (3)

A function is concave if —f is convex.

Equivalent definition in terms of epigraph:
epi(f) ={(z,1) e X xR : t > f(x)} (4)

/ is convex if and only if epi(f) is a convex set.
13/30



Global Dependency On b

F(b) :=min{c"z: Az =b, >0} = max{p™h : pTA< T}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # 0}.
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Global Dependency On b

F(b) :=min{c"z: Az =b, >0} = max{p™h : pTA< T}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # 0}.

Proof. Claim: S is convex. Why?
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Global Dependency On b

F(b) :=min{c"z: Az =b, >0} = max{p™h : pTA< T}

Theorem

F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # 0}.

Proof. Claim: S is convex. Why?

It is the cone spanned by the columns of A

S = cone({Al, A2, ) An})

Recall that we dealt with this same cone in the proof of the Farkas Lemmal
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Global Dependency On b

F(b) := min{cTz cAr=0b, v > 0} = max{pr cpTA < CT}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.

15/30



Global Dependency On b

F(b) := min{cTz cAr=0b, v > 0} = max{pr cpTA < CT}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.

o If pt,p?,....p" are the extreme points of the dual
feasible set, then: F(b) = max;—1,. ,.b"p",VbeE S

v=1,...,
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F(b) := min{cTz cAr=0b, v > 0} = max{pr cpTA < CT}

Theorem
F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.

o If pt,p?,....p" are the extreme points of the dual
feasible set, then: F(b) = max;—1,. ,.b"p",VbeE S

v=1,...,

,bTP4 How to complete proof that
F(b) is convex?

15/30



Global Dependency On b

F(b) := min{cTz cAr=0b, v > 0} = max{pr cpTA < CT}

Theorem

F(b) is a convex and piece-wise linear function of b on S := {b: P(b) # (0}.

Proof. Because (2) feasible = F(b) > —cc.

o If pt,p?,....p" are the extreme points of the dual
feasible set, then: F(b) = max;—1,. ,.b"p",VbeE S

How to complete proof that
F(b) is convex?

epi(F) = mi:l,m,repi(pri)

is the intersection of convex
sets, so it is convex.
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Global Dependency On b - Implications

F(b) := IniIl{CTIL‘ cAz=0b, z > O} = max{pr cpTA < CT}

® At any b where F(b) is differentiable, p* is the gradient of F(b)
® p’ acts as a marginal cost or shadow price for the i-th constraint r.h.s. b;

e p; allows estimating exact change in F(b) in a range around b
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Global Dependency On b - Implications

F(b) := min{ch cAz=0b, z > O} = max{pr cpTA < CT}

At any b where F'(b) is differentiable, p* is the gradient of F'(b)
p; acts as a marginal cost or shadow price for the i-th constraint r.h.s. b;
p; allows estimating exact change in F(b) in a range around b

Modern solvers give direct access to p; and the range
Gurobipy: for constraint ¢, the attribute c.Pi is p] and the range is from c.SARHSLow to c.SARHSUp
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Global Dependency On b - Implications
F(b) :=min{c"z: Az =b, >0} = max{pTb : pTA < T}

® At b where F(b) is not differentiable, several p’ are optimal
e All such p’ are valid subgradients of F'(b)
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Global Dependency On b - Implications
F(b) :=min{c"z: Az =b, >0} = max{pTb : pTA < T}

® At b where F(b) is not differentiable, several p’ are optimal
e All such p’ are valid subgradients of F'(b)

Definition (Subgradient.)

F convex, defined on (convex) set S. A vector p is a subgradient of F at b € S if

FO®)+p'(b—Db) < F(b), VbeS.
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.

® Suppose that p is optimal for the dual
® Strong duality implies p™b = F'(b)
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Optimal Duals As Subgradients

Theorem
Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.

Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.

Suppose that p is optimal for the dual

Strong duality implies pTb = F(b)

Consider arbitrary b € .S

For any feasible solution = € P(b), weak duality yields pTb < cTx
This implies pTb < F(b)

18/30



Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cT;v Az =0, v > 0} = max{pr : pTA < cT} > —00.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. First show that any dual optimal p is a valid subgradient.

® Suppose that p is optimal for the dual

® Strong duality implies p™b = F'(b)

® Consider arbitrary b € S

® For any feasible solution z € P(b), weak duality yields pTb < cTx
® This implies pTb < F(b)

® But then, pTb — pTb < F(b) — F(b)

We conclude that p is a subgradient of F at b
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F' at b, that is,

F)+pT(b—b) < F(b), VbeS. (5)
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F at b, that is,
F(b)+p"(b—b) < F(b), VbeS. (5)

® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F at b, that is,
F(b) +p"(b—b) < F(b), VbeS. (5)

® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
® By (5), we have: pTAz = p™b < F(b) — F(b) +p"b < cTx — F(b) + pTb.

® Because this is true for any x > 0, we must have pTA < cT. Why?
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F at b, that is,
F(b) +p"(b—b) < F(b), VbeS. (5)

® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
By (5), we have: pTAzx = pTb < F(b) — F(b) +pTb < Tz — F(b) + pTb.

® Because this is true for any x > 0, we must have pTA < cT. Why?
® This implies that p is dual-feasible
With o = 0, we obtain F(b) < pTb
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Optimal Duals As Subgradients

Theorem

Suppose F(b) := min{cTz : Az =b, x>0} = max{pTh : pTA < T} > —o0.
Then p is optimal for the dual if and only if it is a subgradient of F at b.

Proof. For the reverse direction, let p be a subgradient of F at b, that is,
F(b) +p"(b—b) < F(b), VbeS. (5)

® Pick some z > 0 and let b = Az, which implies € P(b) and F(b) < cTx.
By (5), we have: pTAzx = pTb < F(b) — F(b) +pTb < Tz — F(b) + pTb.

® Because this is true for any x > 0, we must have pTA < cT. Why?
® This implies that p is dual-feasible
With o = 0, we obtain F(b) < pTb

® Using weak duality, every dual-feasible ¢ satisfies ¢Tb < F(b) < pTb

We conclude that p is optimal.

19/30



Global Dependency On ¢

Let G(c) :== min{cTa: cAx =0, x> 0} = max{pr :pTA < cT}

Theorem

For an LP in standard form,

1. Theset T :={c: G(c) > —o0} is convex.

2. G(c) is a concave function of ¢ on the set T.

3. If for some ¢ the LP has a unique optimal solution x*, then G is linear in the

vicinity of ¢ and its gradient is x*.
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Let G(c) :== min{cTa: cAx =0, x> 0} = max{pr :pTA < cT}

Theorem

For an LP in standard form,
1. Theset T :={c: G(c) > —o0} is convex.
2. G(c) is a concave function of ¢ on the set T.

3. If for some ¢ the LP has a unique optimal solution x*, then G is linear in the
vicinity of ¢ and its gradient is x*.

Proof. Analogous ideas applied to the dual - omitted.

® The optimal primal solution =* is a shadow price for the dual constraints
® z* remains optimal for a range of change in each objective coefficient c;

® Modern solvers also allow obtaining the range directly
Gurobipy: attributes SAObjLow and SAODbjUp for each decision variable
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Signs of Dual Variables Revisited

These ideas carry over directly to primal-dual pairs in general form:

F(b,c) :=min, Tz
alz > b;,
Tm S biv
a; x = by,
x; free,

a

-0

T

it e My,
i € Mo,
i € Ms,
J € Ny,
J €N,
je Ns.

max,

pTh

pi >0,

Di S 07

p; free,
pTA; < ¢y,
pTA; > ¢y,
pTA; =¢j,

1€ My,
1€ ]\/[2,
1€ Ms,
J €Ny,
J €N,
j € Ns.
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Signs of Dual Variables Revisited

These ideas carry over directly to primal-dual pairs in general form:

F(b,c) :=min, Tz max, pTb
QIIZZ)“ it e My, p; >0, 1€ My,
agm < b;, i € Mo, p; <0, 1€ ]\/[2,
alr =b;, i€ Ms, p; free, 1€ Ms,
z; >0, J € Ny, pTA; <c¢j,  j€ DNy,
T <0, jENQ, pTAjZCj, jENz,
X, free, ] S Ng. pTAj = ¢y, ] € Ng.

® F'(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in ¢
® p* is subgradient for F'(b, ¢) with respect to b

® 1" is subgradient for —F'(b, ¢) with respect to ¢
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Signs of Dual Variables Revisited

These ideas carry over directly to primal-dual pairs in general form:

F(b,c) :=min, Tz

QIIZZ)“ iEMl,
agm <b;, 1€ My,
alr =b;, i€ Ms,
€5 >0, ] € N17
T < O, j S N27

x; free, j € Ns.

There is a direct connection between:

- the optimization problem (max/min)

- the constraint type (<, >)
- the signs of the shadow prices

max,

p* is subgradient for F'(b, ¢) with respect to b

x* is subgradient for —F'(b, ¢) with respect to ¢

pTo

pi > 0,
Pi S 07
p; free,
pTA;
pTA;
pTA; = ¢j,

Cj,

IV IA

Cj,

1€ Ml,
1€ ]\/[2,
1€ Ms,
J €Ny,
J € Na,
j e Ns.

F(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in ¢
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Signs of Dual Variables Revisited

There is a direct connection between:
- the optimization problem (max/min)
- the constraint type (<, >)
- the signs of the shadow prices

Given two of these, can figure out the third one!

What is the sign of the shadow price for a ...

IN

constraint in a minimization problem ?
constraint in a minimization problem 7
constraint in a maximization problem 7

ININ IV

constraint in a maximization problem ?
What is the dependency of the optimal objective on the r.h.s. of a ...

constraint in a minimization problem ?
constraint in a minimization problem ?
constraint in a maximization problem ?

ININ IV IA

constraint in a maximization problem 7
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Signs of Dual Variables Revisited

® There is a direct connection between:
- the optimization problem (max/min)
- the constraint type (<, >)
= the signs of the shadow prices

® Given two of these, can figure out the third one!

min, > b min, < b max, < b max, > b
dual >0 dual <0 dual >0 dual <0
F(b) convex F(b) convex F(b) concave F(b) concave
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Real-World Hub and Spoke Airline Network

/)] drLantic
ocEAN Train Routes
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Airline Revenue Management (RM)

* Strategic RM
* Determine several price points for various itineraries
* “Product” or “itinerary”: origin, destination, day, time, various restrictions, ...
¢ E.g., JFK—ORD —SFO, 10:30am on Oct 12, 2024, Economy class Y fare
* Typically done by (or in conjunction with) marketing department
* Market segmentation; competition

* Tactical RM (“yield management”) decides booking limits
* A booking limit determines how many seats to reserve for each “product”
* RM not based on setting prices, but rather changing availability of fare classes
* Legacy due to original IT systems used (e.g., SABRE)
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Two planes -6( 'é(
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Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

« Aircraft 2: -((

* JFK-ORD in the morning
* ORD-LAX in the afternoon

Itineraries

Origin- Q_Fare Y_Fare
Destination

BOS_ORD $200 $220
BOS_SFO $320 $420
BOS_LAX $400 $490
JFK_ORD $250 $290
JFK_SFO $410 $540
JFK_LAX $450 $550
ORD_SFO $210 $230

ORD_LAX $260 $300

SFO

Aircraft 1 Aircraft 1

\\ﬁ ORD 'k(

Aircraft 2 Aircraft 2




Ai rI i n e R M SFO Aircraft 1 Aircraft 1

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

« Aircraft 2: -((

* JFK-ORD in the morning

* ORD-LAX in the afternoon Aircraft 2 Aircraft 2

K

Itineraries

Origin- Q_Fare Y_Fare Q_Demand Y_Demand
Destination

BOS_ORD $200 $220 25 20
BOS_SFO $320 $420 55 40
BOS_LAX $400 $490 65 25
JFK_ORD $250 $290 24 16
JFK_SFO $410 $540 65 50
JFK_LAX $450 $550 40 35
ORD_SFO $210 $230 21 50
ORD_LAX $260 $300 25 14




Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

* Aircraft 2: -((

* JFK-ORD in the morning
* ORD-LAX in the afternoon

SFO

Aircraft 1 Aircraft 1

| \‘ﬁr _ &L

Resources needed

K %

BOS_ORD BOS_SFO

Flight leg

BOS_ORD_Leg 1 1
JFK_ORD_Leg 0 0
ORD_SFO_Leg 0 1

ORD_LAX leg 0 0

BOS_LAX JFK_ORD  JFK_SFO  JFK_LAX

1 0 0 0
0 1 1 1
0 0 1 0
1 0 0 1

ORD_SFO

ORD_LAX




Network Revenue Management

® Airline revenue management ( “yield management”): setting booking limits to
control how many tickets of each type are sold
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control how many tickets of each type are sold
Airline is planning operations for a specific day in the future
Airline operates a set F' of direct flights in its (hub-and-spoke) network
For each flight leg f € F', we know the capacity of the aircraft ¢
The airline can offer a large number of “products” (i.e., itineraries) I:
- each itinerary refers to an origin-destination-fare class combination
— each itinerary ¢ has a price r; that is fixed
- for each itinerary, the airline estimates the demand d;
— each itinerary requires a seat on several flight legs operated by the airline
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Airline revenue management ( “yield management”): setting booking limits to
control how many tickets of each type are sold
Airline is planning operations for a specific day in the future
Airline operates a set F' of direct flights in its (hub-and-spoke) network
For each flight leg f € F', we know the capacity of the aircraft ¢
The airline can offer a large number of “products” (i.e., itineraries) I:
- each itinerary refers to an origin-destination-fare class combination
— each itinerary ¢ has a price r; that is fixed
- for each itinerary, the airline estimates the demand d;
— each itinerary requires a seat on several flight legs operated by the airline
Requirements: A € {0,1}""7 with A;; = 1 & itinerary i needs seat on flight leg f

Itinerary 1 Itinerary 2 ... ltinerary ||
Flight leg 1 1 0 c 1
Resource matrix A : Flight leg 2 0 1 . 0
Flight leg |F| 1 1 . 0
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Network Revenue Management

Airline revenue management ( “yield management”): setting booking limits to
control how many tickets of each type are sold
Airline is planning operations for a specific day in the future
Airline operates a set F' of direct flights in its (hub-and-spoke) network
For each flight leg f € F', we know the capacity of the aircraft ¢
The airline can offer a large number of “products” (i.e., itineraries) I:
- each itinerary refers to an origin-destination-fare class combination
— each itinerary ¢ has a price r; that is fixed
- for each itinerary, the airline estimates the demand d;
— each itinerary requires a seat on several flight legs operated by the airline
Requirements: A € {0,1}""7 with A;; = 1 & itinerary i needs seat on flight leg f

Itinerary 1 Itinerary 2 ... ltinerary ||
Flight leg 1 1 0 c 1
Resource matrix A : Flight leg 2 0 1 . 0
Flight leg |F| 1 1 . 0

Goal: decide how many itineraries of each type to sell to maximize revenue
24 /30



Network Revenue Management

® |et x; denote the number of itineraries of type i that the airline plans to sell, and
let « be the vector with components z;

25 /30



Network Revenue Management

® |et x; denote the number of itineraries of type i that the airline plans to sell, and
let « be the vector with components z;

® The problem can be formulated as follows:
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Network Revenue Management

Let x; denote the number of itineraries of type ¢ that the airline plans to sell, and
let « be the vector with components z;

The problem can be formulated as follows:

max {rTx Ax <ec, z < d}
zeRI

Az < c capture the constraints on plane capacity
x < d states that the planned sales cannot exceed the demand

In practice, an approach that includes all possible itineraries encounters challenges
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Az < c capture the constraints on plane capacity

x < d states that the planned sales cannot exceed the demand
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= For an “exotic” itinerary that requires seats on several flights f € F, the
minimum price to charge is given by the sum of the shadow prices, ZfEEpf
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Network Revenue Management

Let x; denote the number of itineraries of type ¢ that the airline plans to sell, and
let « be the vector with components z;

The problem can be formulated as follows:

gﬁ{)} {rTx Ax <ec, z < d}
Az < c capture the constraints on plane capacity
x < d states that the planned sales cannot exceed the demand
In practice, an approach that includes all possible itineraries encounters challenges
- gargantuan LP
— poor demand estimates for some itineraries
To sell “exotic itineraries”, use the shadow prices for the capacity constraints
- p € RF : dual variables for capacity constraints Az < ¢
— At optimality, py is marginal revenue lost if airline loses one seat on flight f
= For an “exotic” itinerary that requires seats on several flights f € F, the
minimum price to charge is given by the sum of the shadow prices, ZfEEpf
Bid-price heuristic in network revenue management

Broader principle of how to price “products” through resource usage/cost
25 /30



Asset Pricing and No-Arbitrage

® |nvestment world with n + 1 securities indexed by i =0,...,n
® | =0 denotes cash; the other securities can be anything (stocks, derivatives, ...)

® \We have two periods: current period c, future period f
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i = 0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
We have two periods: current period c, future period f

Current period: prices of securities are S§ for i =1,...,n; cash: S§ =1

Future period: prices are uncertain; there are m possible states of the world
Q = {w1,w2,...,wn}, each occurring with positive probability, and prices are:

~ cash is riskless: S{ = R =1+ r, where r is the risk-free rate of return
~ security 4 > 1 will have price S/ (w;) in state of world w,
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Asset Pricing and No-Arbitrage

Investment world with n 4 1 securities indexed by i =0,...,n

i = 0 denotes cash; the other securities can be anything (stocks, derivatives, ...

We have two periods: current period c, future period f
Current period: prices of securities are S§ for i =1,...,n; cash: S§ =1

Future period: prices are uncertain; there are m possible states of the world
Q = {w1,w2,...,wn}, each occurring with positive probability, and prices are:

~ cash is riskless: S{ = R =1+ r, where r is the risk-free rate of return
~ security 4 > 1 will have price S/ (w;) in state of world w,

If we purchase x; of each security :

- we incur immediate cost " | Sfw;
- we have future cashflow > SY(w) - a; if state of world is w € Q

)
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Asset Pricing and No-Arbitrage
Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no
risk of a loss later (type A) or that requires no initial cash input, has no risk of loss,
and has a positive probability of making profits in the future (type B).
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An arbitrage is a trading strategy that either has a positive initial cashflow and has no
risk of a loss later (type A) or that requires no initial cash input, has no risk of loss,
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® 3 type-A arbitrage means Jx such that:

Z S§xi <0 (positive initial cashflow)
i=0

n (6)
ZS{(&)) sz >0, Vw € Q (no risk of loss)
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Asset Pricing and No-Arbitrage
Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no
risk of a loss later (type A) or that requires no initial cash input, has no risk of loss,
and has a positive probability of making profits in the future (type B).

® 3 type-A arbitrage means Jx such that:

Z S§xi <0 (positive initial cashflow)
i=0
n (6)
ZS{(&)) sz >0, Vw € Q (no risk of loss)
i=0
® a type-B arbitrage means Jx such that:
ZSf sz =0 (no initial cash input)
i=0
Z S (w) -z >0,YVwe (no risk of loss) (7)
1=0
Jw e : Z SH(w) - i >0, (positive probability of profit).

i=0 27/30



Asset Pricing and No-Arbitrage

Definition (R.N.P.M.)

A risk-neutral probability measure on the set Q = {wi,wa,...,wn} is a vector
€ R™ so that p > 0 and >."" . p;, = 1 and for every security S;,7=0,...,n,
p p j=1Pi

e_ 1 (N, of _ 1 f
Si = R <jz;pjsi ("%’)) = EEP[SJ-

® Above, E,[S] is the expected value of the random variable S under the probability
distribution p := (p1,p2, ..., Pm)

® The definition states that the current price/value of every asset, S, exactly equals
the discounted expected price/value in the future

® The expectation is taken with respect to the R.N.P.M.

® Discounting is done at the risk-free interest rate R
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Asset Pricing and No-Arbitrage

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables z;, for i = 0,... n:
min ZSf ST
v 1=0
" (8)
st S/(w) @i >0,j=1,...,m
1=0
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Asset Pricing and No-Arbitrage
Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.
Proof. Consider the following linear program with variables z;, for i = 0,... n:
n
rrgn Z S5 -xy
1=0

=0

(8)

Type-A arbitrage: 3z : 3 Sa; < 0
® Constraints are homogeneous, so if 3z : 3 SYz; < 0, the objective is —oco

® 1 =0 is feasible, so the optimal objective value is <0

No type-A arbitrage if and only if the optimal objective value of this LP is 0
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Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.
Proof. Consider the following linear program with variables z;, for i = 0,... n:
n
rrgn Z S5 -xy
1=0

=0

(8)

Type-A arbitrage: 3z : 3 Sa; < 0
® Constraints are homogeneous, so if 3z : 3 SYz; < 0, the objective is —oco

® 1 =0 is feasible, so the optimal objective value is <0

No type-A arbitrage if and only if the optimal objective value of this LP is 0

® Suppose no type-A arbitrage. Then, no type-B arbitrage if and only if all constraints
are tight for all optimal solutions of (8): 3.7 S/ (w;) -2} =0, for j=1,...,m
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Asset Pricing and No-Arbitrage
Theorem (Asset Pricing Theorem)
A risk-neutral probability measure exists if and only if there is no arbitrage.
Proof. Consider the dual of this LP.

max 0
p

s.t. ZpJ =S5 1=0,.

ijO.

® |f no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a
feasible solution p* (that is also optimal)
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Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

max 0
p

s.t. ZpJ =S5 1=0,.

ijOA

® |f no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a
feasible solution p* (that is also optimal)

® No type-B arbitrage means -7 | Sif(wj) -x; =0, for j =1,...,m. Because dual
is standard-form LP, Theorem 3 (strict complem. slack.) implies Jp* : p* > 0.
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Asset Pricing and No-Arbitrage

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

max 0
p

s.t. ZpJ =S5 1=0,.

Pj Z 0.
® |f no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a
feasible solution p* (that is also optimal)

® No type-B arbitrage means -7 | Sif(wj) -x; =0, for j =1,...,m. Because dual
is standard-form LP, Theorem 3 (strict complem. slack.) implies Jp* : p* > 0.

® Dual constraint for i = 0 implies } ", pj = %, so taking p* - R yields a RNPM.

The converse direction is proved in an identical manner. |
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