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Real-World Hub and Spoke Airline Network

Source: www.united.com 



Airline Revenue Management (RM)

• Strategic RM
• Determine several price points for various itineraries
• “Product” or “itinerary”: origin, destination, day, time, various restrictions, …

• E.g., JFK – ORD – SFO, 10:30am on Oct 12, 2024, Economy class Y fare
• Typically done by (or in conjunction with) marketing department

• Market segmentation; competition

• Tactical RM (“yield management”) decides booking limits
• A booking limit determines how many seats to reserve for each “product”
• RM not based on setting prices, but rather changing availability of fare classes
• Legacy due to original IT systems used (e.g., SABRE)
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Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon
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Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Origin-
Destination

Q_Fare Y_Fare Q_Demand Y_Demand

BOS_ORD $200 $220 25 20
BOS_SFO $320 $420 55 40
BOS_LAX $400 $490 65 25
JFK_ORD $250 $290 24 16
JFK_SFO $410 $540 65 50
JFK_LAX $450 $550 40 35
ORD_SFO $210 $230 21 50
ORD_LAX $260 $300 25 14

Itineraries

Aircraft 1Aircraft 1

Aircraft 2Aircraft 2

Flight segments (legs)



Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Resources needed

Aircraft 1Aircraft 1

Aircraft 2Aircraft 2

Flight segments (legs)

Flight leg

BOS_ORD BOS_SFO BOS_LAX JFK_ORD JFK_SFO JFK_LAX ORD_SFO ORD_LAX

BOS_ORD_Leg 1 1 1 0 0 0 0 0

JFK_ORD_Leg 0 0 0 1 1 1 0 0

ORD_SFO_Leg 0 1 0 0 1 0 1 0

ORD_LAX_Leg 0 0 1 0 0 1 0 1



Network Revenue Management
• Airline is planning operations for a specific day in the future

• Airline operates a set F of direct flights in its (hub-and-spoke) network

• For each flight leg f ∈ F , we know the capacity of the aircraft cf

• The airline can offer a large number of “products” (i.e., itineraries) I :

– each itinerary refers to an origin-destination-fare class combination
– each itinerary i has a price ri that is fixed
– for each itinerary, the airline estimates the demand di
– each itinerary requires a seat on several flight legs operated by the airline

• Requirements: A ∈ {0, 1}F ·I with Af ,i = 1 ⇔ itinerary i needs seat on flight leg f

Resource matrix A :

Itinerary 1 Itinerary 2 . . . Itinerary |I |
Flight leg 1 1 0 . . . 1

Flight leg 2 0 1 . . . 0
...

...
...

...
...

Flight leg |F | 1 1 . . . 0

• Goal: decide how many itineraries of each type to sell to maximize revenue
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Network Revenue Management
• xi : number of itineraries of type i that the airline plans to sell

• Airline Network RM problem:

max
x∈RI

{
r⊺x : Ax ≤ c, x ≤ d

}
• Ax ≤ c : constraints on plane capacity

• x ≤ d : planned sales cannot exceed the demand

• In practice, would not include all possible itineraries

– gargantuan LP
– poor demand estimates for some itineraries

• To sell “exotic itineraries”, use the shadow prices for the capacity constraints

– p ∈ RF : dual variables for capacity constraints Ax ≤ c
– At optimality, pf is marginal revenue lost if airline loses one seat on flight f
– For an “exotic” itinerary that requires seats on several flights f ∈ E , the minimum

price to charge is given by the sum of the shadow prices,
∑

f∈E pf

• Bid-price heuristic in network revenue management

• Broader principle of how to price “products” through resource usage/cost
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Discrete Optimization

Today, we consider optimization problems with discrete variables:

min cT x + dT y

Ax + By = b

x , y ≥ 0

x integer

This is called a mixed integer programming (MIP) problem

Without continuous variables y , it is called an integer program (IP)

If instead of x ∈ Zn we have x ∈ {0, 1}n : binary optimization problem

Very powerful modeling paradigm

4 / 22



Example: Knapsack

• n items

• Item j has weight wj and reward rj

• Have a bound K on the weight that can be carried in the knapsack

• Want to select items to maximize the total value

maximize
n∑

j=1

rjxj

subject to
n∑

j=1

wjxj ≤ K

xj ∈ {0, 1}, j = 1, . . . , n.
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Example: Facility Location
• n potential locations to open facilities

• Cost cj for opening a facility at location j

• m clients who need service

• Cost dij for serving client i from facility j

• Smallest cost for opening facilities while serving all clients
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Example: Facility Location

• n potential locations to open facilities

• Cost cj for opening a facility at location j

• m clients who need service

• Cost dij for serving client i from facility j

• Smallest cost for opening facilities while serving all clients

min
n∑

j=1

cjyj +
m∑
i=1

n∑
j=1

dijxij

n∑
j=1

xij = 1, ∀ i

xij ≤ yj , ∀i , ∀j
xij , yj ∈ {0, 1}

min
n∑

j=1

cjyj +
m∑
i=1

n∑
j=1

dijxij

n∑
j=1

xij = 1, ∀ i

m∑
i=1

xij ≤ myj , ∀j

xij , yj ∈ {0, 1}.

Which formulation is “better”?
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Example: Piecewise Linear Cost

• Idea: x =
∑k

i=1 λiai

• Cost:
∑k

i=1 λi f (ai )

• How to impose adjacency?

x = λiai + λi+1ai+1

• New binary variables yi to impose:

yj = 1 ⇒ λi = 0 for i /∈ {j , j+1}

∑k
i=1 λi = 1,

λ1 ≤ y1,

λi ≤ yi−1 + yi , i = 2, . . . , k − 1,

λk ≤ yk−1,∑k−1
i=1 yi = 1,

λi ≥ 0,

yi ∈ {0, 1}, ∀i .
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Example: Matching Problems

• Set U of jobs/tasks to complete; set V of persons available to work

• Each task assigned to at most one person; a person can only complete some tasks

• Reward wij if task i ∈ U completed by person j ∈ V

• Graph representation G = (N , E)

• e ≡ {i , j} ∈ E indicates j ∈ V can complete task i ∈ U

xe ∈ {0, 1} : whether edge selected

maximize
∑
e∈E

wexe∑
e∈δ(i)

xe ≤ 1, ∀ i ∈ N,

xe ∈ {0, 1},

δ(i) := {j : {i , j} ∈ E} : all neighbors of i

Many variations: minimize cost, require jobs completed, perfect matching, ...
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Example: Minimum Spanning Tree

• Given an undirected graph G = (N , E); |N | = n, |E| = m

• Edge e ∈ E has associated cost ce

• Find minimum spanning tree (MST)

(subset of edges that connect all nodes in N at minimum cost)
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Example: Minimum Spanning Tree

• Given an undirected graph G = (N , E); |N | = n, |E| = m

• Edge e ∈ E has associated cost ce

• Find minimum spanning tree (MST)

(subset of edges that connect all nodes in N at minimum cost)

min
∑
e∈E

cexe

xe ∈ {0, 1}

(Connectivity)
∑
e∈E

xe = n − 1

(Cutset)
∑

e∈δ(S)

xe ≥ 1, S ⊂ N ,S ̸= ∅

... or ...

(Subtour-elimination)
∑

e∈E(S)

xe ≤ |S | − 1, S ⊂ N ,S ̸= ∅

Again exponentially-sized formulations! Any preference between them?
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Example: Traveling Salesperson Problem (TSP)

• Given an undirected graph G = (N , E); |N | = n, |E| = m

• Edge e ∈ E has associated cost ce

• Find a tour (cycle that visits each node exactly once) with minimum cost
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xe ≥ 2,∀S ⊂ N,S ̸= ∅

... or ...

(Subtour-elimination)
∑

e∈E(S)

xe ≤ |S | − 1,∀S ⊂ N,S ̸= ∅

Again exponentially-sized formulations! Any preference between them?
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Bad News First

Example. The optimal solution is the following IP does not exist:

sup
x,y

x +
√
2y

x +
√
2y ≤ 1

2

x , y ∈ Z.

Example. Consider the following pair of optimization programs:

(P) min
x≥0

x

2x = 1

(D) max
p

p

2p ≤ 1

• x , p ∈ R ⇒ this is a primal-dual pair; optimal value 1
2 by strong duality

• x , p ∈ Z ⇒ (P) infeasible, (D) has optimal value 0.

Strong duality does not hold in IPs
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Bad News First

Unfortunately, (M)IPs are significantly harder than LPs

Theorem

Given a matrix A ∈ Qm×n and a vector b ∈ Qm, the problem: “does Ax ≤ b have an

integral solution x” is NP-complete.

• IP “feasibility problem” is already in the hardest class of problems in NP

• Despite this, substantial body of theory and scalable algorithms exist for IPs

• We will focus on optimization problems with rational entries:

A ∈ Qm×n, b ∈ Qm, c ∈ Qn (in fact, often integer)

• We assume that the feasible set is bounded
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Lower Bounds Again

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The linear programming relaxation for the integer program

min c⊺x + d⊺y

Ax + By = b

x , y ≥ 0

x ∈ {0, 1}n1 , y ∈ Zn2 ,

is obtained by replacing x ∈ {0, 1}n1 with x ∈ [0, 1]n1 and y ∈ Zn2 with y ∈ Rn2 .

Observation

1) The LP relaxation’s optimal value is a lower bound on the IP’s optimal value.

2) If the LP relaxation’s optimal solution is feasible for the IP, it is optimal for the IP.
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LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL)
n∑

j=1

xij = 1, i = 1, . . . ,m

xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n

xij , yj ∈ {0, 1}

(AFL)
n∑

j=1

xij = 1, i = 1, . . . ,m

m∑
i=1

xij ≤ myj , j = 1, . . . , n

xij , yj ∈ {0, 1}.

• PFL,PAFL : feasible sets for LP relaxations

• PFL ⊆ PAFL and can have strict inclusion

• (FL) provides better lower bound than (AFL)

• Same IP feasible set, different LP feasible set!
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LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

∑
e∈E

xe = n − 1,∑
e∈δ(S)

xe ≥ 1, S ⊂ N ,S ̸= ∅

xe ∈ {0, 1}

(Subtour-elimination MST)

∑
e∈E

xe = n − 1,∑
e∈E(S)

xe ≤ |S | − 1, S ⊂ N ,S ̸= ∅,

xe ∈ {0, 1}.

• Pcut,Psub : feasible sets for LP relaxations

• Psub ⊆ Pcut and can have strict inclusion

(Proof in the notes)

• (SUB) provides better lower bound than (CUT)

• Same IP feasible set, different LP feasible set!
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LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP) (Subtour-elimination TSP)∑
e∈δ({i})

xe = 2,∀i ∈ N∑
e∈δ(S)

xe ≥ 2,∀S ⊂ N,S ̸= ∅

∑
e∈δ({i})

xe = 2,∀i ∈ N∑
e∈E(S)

xe ≤ |S | − 1,∀S ⊂ N,S ̸= ∅.

• Pcut,Psub : feasible sets for LP relaxations

• Psub=Pcut
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Strength of IP Formulation

• Different formulations of the same IP can result in different LP relaxations

• What is an “ideal” formulation?
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Strength of IP Formulation

• T : all feasible points to an IP and conv (T ) is their convex hull
– T finite because we assumed bounded feasible set
– conv (T ) is a polyhedron

• If P is the feasible region of an LP relaxation to our IP, then

T ⊆ conv (T ) ⊆ P.

• Ideal LP relaxation would have P = conv (T )
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– T finite because we assumed bounded feasible set
– conv (T ) is a polyhedron

• If P is the feasible region of an LP relaxation to our IP, then

T ⊆ conv (T ) ⊆ P.

• Ideal LP relaxation would have P = conv (T )

Key take-aways:

• Quality of IP formulation : how closely its LP relaxation approximates conv (T )

• Formulation A is better than formulation B for some IP if PA ⊂ PB

• Constraints play a more subtle role in IPs than in LPs
– Adding valid constraints for T that cut off fractional points from P is very useful!
– More constraints not necessarily worse in IP!
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