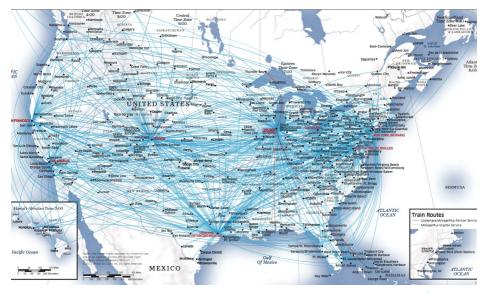
Lecture 7

October 14, 2024

Real-World Hub and Spoke Airline Network



Source: www.united.com

Airline Revenue Management (RM)

Strategic RM

- Determine several price points for various itineraries
- "Product" or "itinerary": origin, destination, day, time, various restrictions, ...
 - E.g., JFK ORD SFO, 10:30am on Oct 12, 2024, Economy class Y fare
- Typically done by (or in conjunction with) marketing department
 - · Market segmentation; competition
- Tactical RM ("yield management") decides booking limits
 - A booking limit determines how many seats to reserve for each "product"
 - RM not based on setting prices, but rather changing availability of fare classes
 - Legacy due to original IT systems used (e.g., SABRE)

Hub: Chicago ORD

Westbound flights for some day in the future

ORD

JFK

LAX

Flight segments (legs)

LAX

JFK

Flight segments (legs)

- Aircraft 1:
 - BOS-ORD in the morning
 - · ORD-SFO in the afternoon

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Itineraries

Origin-	Q_Fare	Y_Fare
Destination		
BOS_ORD	\$200	\$220
BOS_SFO	\$320	\$420
BOS_LAX	\$400	\$490
JFK_ORD	\$250	\$290
JFK_SFO	\$410	\$540
JFK_LAX	\$450	\$550
ORD_SFO	\$210	\$230
ORD_LAX	\$260	\$300

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Itineraries

Origin-	Q_Fare	Y_Fare	Q_Demand Y_Demand		
Destination					
BOS_ORD	\$200	\$220	25	20	
BOS_SFO	\$320	\$420	55	40	
BOS_LAX	\$400	\$490	65	25	
JFK_ORD	\$250	\$290	24	16	
JFK_SFO	\$410	\$540	65	50	
JFK_LAX	\$450	\$550	40	35	
ORD_SFO	\$210	\$230	21	50	
ORD_LAX	\$260	\$300	25	14	

Flight segments (legs)

- Aircraft 1:
 - BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Resources needed

	BOS_C	ORD BOS_SFO	BOS_LAX	JFK_ORD	JFK_SFO	JFK_LAX	ORD_SFO	ORD_LAX
Flight leg								
BOS_ORD_Leg	1	1	1	0	0	0	0	0
JFK_ORD_Leg	0	0	0	1	1	1	0	0
ORD_SFO_Leg	0	1	0	0	1	0	1	0
ORD LAX Leg	0	0	1	0	0	1	0	1

- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline

- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- ullet Requirements: $A \in \left\{0,1\right\}^{F\cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $ I $
Resource matrix A:	Flight leg 1	1	0		1
	Flight leg 2	0	1		0
	:		•	:	:
	Flight leg F	1	1		0

- · Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $ I $
Resource matrix A :	Flight leg 1	1	0		1
	Flight leg 2	0	1		0
	:	•	•	:	:
	Flight leg $ F $	1	1		0

• Goal: decide how many itineraries of each type to sell to maximize revenue

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^{I}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- ullet $x \leq d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^{l}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^{l}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^{l}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^{I}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum** price to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum** price to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$
- Bid-price heuristic in network revenue management
- Broader principle of how to price "products" through resource usage/cost

Discrete Optimization

Today, we consider optimization problems with discrete variables:

min
$$c^T x + d^T y$$

 $Ax + By = b$
 $x, y \ge 0$
 x integer

This is called a mixed integer programming (MIP) problem

Without continuous variables y, it is called an **integer program** (IP)

If instead of $x \in \mathbb{Z}^n$ we have $x \in \{0,1\}^n$: binary optimization problem

Very powerful modeling paradigm

Example: Knapsack

- *n* items
- Item j has weight w_j and reward r_j
- Have a bound K on the weight that can be carried in the knapsack
- Want to select items to maximize the total value

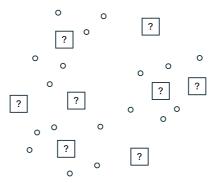
Example: Knapsack

- *n* items
- Item j has weight w_j and reward r_j
- Have a bound K on the weight that can be carried in the knapsack
- Want to select items to maximize the total value

maximize
$$\sum_{j=1}^n r_j x_j$$
 subject to $\sum_{j=1}^n w_j x_j \leq K$ $x_j \in \{0,1\}, \quad j=1,\ldots,n.$

Example: Facility Location

- n potential locations to open facilities
- Cost c_j for opening a facility at location j
- *m* clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients



Example: Facility Location

- n potential locations to open facilities
- Cost c_j for opening a facility at location j
- m clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients

$$\min \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$
$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i$$
$$x_{ij} \leq y_j, \quad \forall i, \ \forall j$$
$$x_{ij}, y_j \in \{0, 1\}$$

Example: Facility Location

- n potential locations to open facilities
- Cost c_i for opening a facility at location j
- *m* clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients

$$\min \ \sum_{j=1}^{n} c_{j} y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

$$\min \ \sum_{j=1}^{n} c_{j} y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

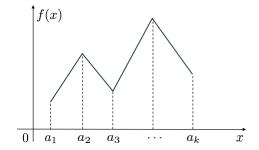
$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i$$

$$\sum_{j=1}^{m} x_{ij} \leq y_{j}, \quad \forall i, \quad \forall j$$

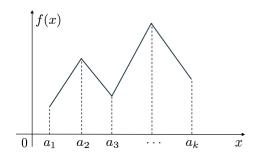
$$\sum_{i=1}^{m} x_{ij} \leq m y_{j}, \quad \forall j$$

$$x_{ij}, y_{j} \in \{0, 1\}.$$



- Idea: $\mathbf{x} = \sum_{i=1}^{k} \lambda_i a_i$
- Cost: $\sum_{i=1}^{k} \frac{\lambda_i}{\lambda_i} f(a_i)$
- How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$



• Idea:
$$\mathbf{x} = \sum_{i=1}^k \lambda_i a_i$$

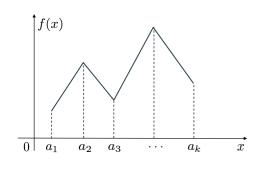
• Cost:
$$\sum_{i=1}^{k} \lambda_i f(a_i)$$

• How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

• New binary variables y_i to impose:

$$\mathbf{y_j} = 1 \ \Rightarrow \ \mathbf{\lambda_i} = 0 \ \text{for} \ i \notin \{j, j+1\}$$



• Idea:
$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i a_i$$

• Cost:
$$\sum_{i=1}^{k} \lambda_i f(a_i)$$

• How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

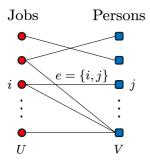
• New binary variables y_i to impose:

$$y_j = 1 \implies \lambda_i = 0 \text{ for } i \notin \{j, j+1\}$$

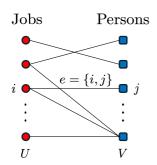
$$\sum_{i=1}^{k} \lambda_{i} = 1,
\lambda_{1} \leq y_{1},
\lambda_{i} \leq y_{i-1} + y_{i}, i = 2, \dots, k-1,
\lambda_{k} \leq y_{k-1},
\sum_{i=1}^{k-1} y_{i} = 1,
\lambda_{i} \geq 0,
y_{i} \in \{0, 1\}, \forall i.$$

- ullet Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- ullet Reward w_{ij} if task $i \in U$ completed by person $j \in V$

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$



- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$



$$x_{\mathsf{e}} \in \{0,1\}$$
 : whether edge selected

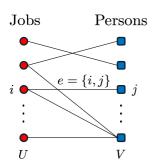
maximize
$$\sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(i)} x_e \leq 1, \quad \forall \, i \in N,$$

$$x_e \in \{0,1\},$$

$$\delta(i) := \{j : \{i, j\} \in \mathcal{E}\}$$
: all neighbors of i

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$



$$\sum_{e \in \delta(i)} x_e \le 1, \quad \forall i \in N,$$

$$x_e \in \{0,1\},$$

$$\delta(i) := \{j : \{i,j\} \in \mathcal{E}\}$$
 : all neighbors of i

Many variations: minimize cost, require jobs completed, perfect matching, ...

Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost c_e
- Find minimum spanning tree (MST)
 (subset of edges that connect all nodes in N at minimum cost)

Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find minimum spanning tree (MST)
 (subset of edges that connect all nodes in N at minimum cost)



Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find minimum spanning tree (MST) (subset of edges that connect all nodes in $\mathcal N$ at minimum cost)

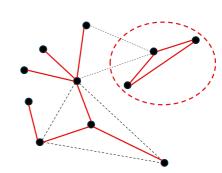
$$\min \ \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 1, \ S \subset \mathcal{N}, S \neq \emptyset$$

Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find minimum spanning tree (MST)
 (subset of edges that connect all nodes in N at minimum cost)

$$\begin{aligned} &\min \ \sum_{e \in \mathcal{E}} c_e x_e \\ &x_e \in \{0,1\} \end{aligned}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(\mathcal{S})} x_e \geq 1, \ S \subset \mathcal{N}, S \neq \emptyset$$

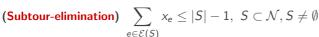


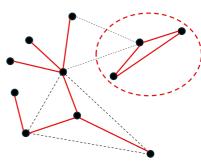
Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_{e}
- Find minimum spanning tree (MST) (subset of edges that connect all nodes in $\mathcal N$ at minimum cost)

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 1, \ S \subset \mathcal{N}, S \neq \emptyset$$
 ... or ...





Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find minimum spanning tree (MST) (subset of edges that connect all nodes in $\mathcal N$ at minimum cost)

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

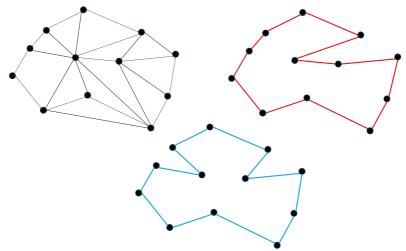
$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 1, \ S \subset \mathcal{N}, S \neq \emptyset$$
 ... or ...

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \le |S| - 1, \ S \subset \mathcal{N}, S \ne \emptyset$

Again exponentially-sized formulations! Any preference between them?

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (cycle that visits each node exactly once) with minimum cost

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find a **tour** (cycle that visits each node exactly once) with minimum cost

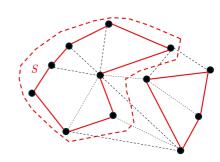


- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a tour (cycle that visits each node exactly once) with minimum cost

$$\begin{aligned} & \min \ \sum_{e \in \mathcal{E}} c_e x_e \\ & x_e \in \{0,1\} \\ & \textbf{(Connectivity)} \ \sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N} \\ & \textbf{(Cutset)} \ \sum_{e \in \delta(\mathcal{S})} x_e \geq 2, \forall \mathcal{S} \subset \mathcal{N}, \mathcal{S} \neq \emptyset \end{aligned}$$

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (cycle that visits each node exactly once) with minimum cost

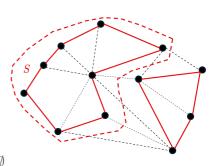
$$\begin{aligned} \min & \sum_{e \in \mathcal{E}} c_e x_e \\ & x_e \in \{0,1\} \end{aligned}$$
 (Connectivity)
$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N}$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset$$



- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find a tour (cycle that visits each node exactly once) with minimum cost

$$\begin{aligned} & \min \ \sum_{e \in \mathcal{E}} c_e x_e \\ & x_e \in \{0,1\} \\ & \textbf{(Connectivity)} \ \sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N} \\ & \textbf{(Cutset)} \ \sum_{e \in \delta(\mathcal{S})} x_e \geq 2, \forall \mathcal{S} \subset \mathcal{N}, \mathcal{S} \neq \emptyset \\ & \dots \ \text{or} \ \dots \end{aligned}$$

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \forall S \subset N, S \neq \emptyset$



- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e

 $e \in \mathcal{E}(S)$

• Find a **tour** (cycle that visits each node exactly once) with minimum cost

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in N$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset N, S \neq \emptyset$$
 ... or ...

(Subtour-elimination) $\sum x_e \leq |S| - 1, \forall S \subset N, S \neq \emptyset$

Again exponentially-sized formulations! Any preference between them?

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$
$$x + \sqrt{2}y \le \frac{1}{2}$$
$$x, y \in \mathbb{Z}.$$

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$
$$x + \sqrt{2}y \le \frac{1}{2}$$
$$x, y \in \mathbb{Z}.$$

Example. Consider the following pair of optimization programs:

$$(\mathscr{P}) \min_{x \ge 0} x \qquad (\mathscr{D}) \max_{p} p$$
$$2x = 1 \qquad 2p \le 1$$

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$

$$x + \sqrt{2}y \le \frac{1}{2}$$

$$x, y \in \mathbb{Z}.$$

Example. Consider the following pair of optimization programs:

$$(\mathscr{P}) \min_{x \ge 0} x \qquad (\mathscr{D}) \max_{p} p$$
$$2x = 1 \qquad 2p \le 1$$

• $x, p \in \mathbb{R} \Rightarrow$ this is a primal-dual pair; optimal value $\frac{1}{2}$ by strong duality

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$

$$x + \sqrt{2}y \le \frac{1}{2}$$

$$x, y \in \mathbb{Z}.$$

Example. Consider the following pair of optimization programs:

$$(\mathscr{P}) \min_{x \ge 0} x \qquad (\mathscr{D}) \max_{p} p$$
$$2x = 1 \qquad 2p \le 1$$

- $x, p \in \mathbb{R} \Rightarrow$ this is a primal-dual pair; optimal value $\frac{1}{2}$ by strong duality
- $x, p \in \mathbb{Z} \Rightarrow (\mathscr{P})$ infeasible, (\mathscr{D}) has optimal value 0.

Strong duality does not hold in IPs

Unfortunately, (M)IPs are significantly harder than LPs

Theorem

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, the problem: "does $Ax \leq b$ have an integral solution x" is **NP-complete**.

• IP "feasibility problem" is already in the hardest class of problems in NP

Unfortunately, (M)IPs are significantly harder than LPs

Theorem

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, the problem: "does $Ax \leq b$ have an integral solution x" is **NP-complete**.

- IP "feasibility problem" is already in the hardest class of problems in NP
- Despite this, substantial body of theory and scalable algorithms exist for IPs
- We will focus on optimization problems with rational entries: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n$ (in fact, often integer)
- We assume that the feasible set is bounded

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The linear programming relaxation for the integer program

$$\begin{aligned} \min \ c^{\mathsf{T}}x + d^{\mathsf{T}}y \\ Ax + By &= b \\ x, y &\geq 0 \\ x &\in \{0, 1\}^{n_1}, y \in \mathbb{Z}^{n_2}, \end{aligned}$$

is obtained by replacing $x \in \{0,1\}^{n_1}$ with $x \in [0,1]^{n_1}$ and $y \in \mathbb{Z}^{n_2}$ with $y \in \mathbb{R}^{n_2}$.

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The linear programming relaxation for the integer program

$$\begin{aligned} \min \ c^{\mathsf{T}}x + d^{\mathsf{T}}y \\ Ax + By &= b \\ x, y &\geq 0 \\ x &\in \{0, 1\}^{n_1}, y \in \mathbb{Z}^{n_2}, \end{aligned}$$

is obtained by replacing $x \in \{0,1\}^{n_1}$ with $x \in [0,1]^{n_1}$ and $y \in \mathbb{Z}^{n_2}$ with $y \in \mathbb{R}^{n_2}$.

Observation

- 1) The LP relaxation's optimal value is a lower bound on the IP's optimal value.
- 2) If the LP relaxation's optimal solution is feasible for the IP, it is optimal for the IP.

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The linear programming relaxation for the integer program

$$\begin{aligned} \min \ c^\intercal x + d^\intercal y \\ Ax + By &= b \\ x, y &\geq 0 \\ x &\in \{0,1\}^{n_1}, y \in \mathbb{Z}^{n_2}, \end{aligned}$$

is obtained by replacing $x \in \{0,1\}^{n_1}$ with $x \in [0,1]^{n_1}$ and $y \in \mathbb{Z}^{n_2}$ with $y \in \mathbb{R}^{n_2}$.

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The linear programming relaxation for the integer program

$$\begin{aligned} \min \ c^\intercal x + d^\intercal y \\ Ax + By &= b \\ x, y &\geq 0 \\ x &\in \{0,1\}^{n_1}, y \in \mathbb{Z}^{n_2}, \end{aligned}$$

is obtained by replacing $x \in \{0,1\}^{n_1}$ with $x \in [0,1]^{n_1}$ and $y \in \mathbb{Z}^{n_2}$ with $y \in \mathbb{R}^{n_2}$.

Observation

- 1) The LP relaxation's optimal value is a lower bound on the IP's optimal value.
- 2) If the LP relaxation's optimal solution is feasible for the IP, it is optimal for the IP.

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The linear programming relaxation for the integer program

$$\begin{aligned} \min \ c^\intercal x + d^\intercal y \\ Ax + By &= b \\ x, y &\geq 0 \\ x &\in \{0,1\}^{n_1}, y \in \mathbb{Z}^{n_2}, \end{aligned}$$

is obtained by replacing $x \in \{0,1\}^{n_1}$ with $x \in [0,1]^{n_1}$ and $y \in \mathbb{Z}^{n_2}$ with $y \in \mathbb{R}^{n_2}$.

Observation

- 1) The LP relaxation's optimal value is a lower bound on the IP's optimal value.
- 2) If the LP relaxation's optimal solution is feasible for the IP, it is optimal for the IP.

Key Q: How good is this bound?

LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL) (AFL)
$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., m \qquad \sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., m \\
x_{ij} \le y_{j}, \quad i = 1, ..., m, \quad j = 1, ..., n \\
x_{ij}, y_{j} \in \{0, 1\} \qquad \sum_{i=1}^{m} x_{ij} \le m y_{j}, \quad j = 1, ..., n \\
x_{ij}, y_{j} \in \{0, 1\}.$$

• $P_{\text{FL}}, P_{\text{AFL}}$: feasible sets for LP relaxations

LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL) (A)
$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., m$$

$$x_{ij} \le y_{j}, \quad i = 1, ..., m, \quad j = 1, ..., n$$

$$\sum_{j=1}^{n} x_{ij} \le y_{j}, \quad i = 1, ..., m, \quad j = 1, ..., n$$

$$\sum_{i=1}^{m} x_{ij}, y_{ij} \in \{0, 1\}$$

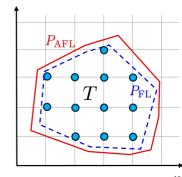
(AFL)

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, \dots, m$$

$$\sum_{j=1}^{m} x_{ij} \le m y_{j}, \quad j = 1, \dots, n$$

$$x_{ij}, y_{i} \in \{0, 1\}.$$

- P_{FI} , P_{AFI} : feasible sets for LP relaxations
- $P_{\mathsf{FL}} \subseteq P_{\mathsf{AFL}}$ and can have **strict** inclusion
- (FL) provides better lower bound than (AFL)
- Same IP feasible set, different LP feasible set!



LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

$$\begin{split} &\sum_{e \in \mathcal{E}} x_e = n - 1, \\ &\sum_{e \in \delta(S)} x_e \ge 1, \quad S \subset \mathcal{N}, S \ne \\ &x_e \in \{0, 1\} \end{split}$$

(Subtour-elimination MST)

$$egin{aligned} \sum_{e \in \mathcal{E}} x_e &= n-1, & \sum_{e \in \mathcal{E}} x_e &= n-1, \ \sum_{e \in \delta(S)} x_e &\geq 1, \quad S \subset \mathcal{N}, S
eq \emptyset & \sum_{e \in \mathcal{E}(S)} x_e &\leq |S|-1, \quad S \subset \mathcal{N}, S
eq \emptyset, \ x_e &\in \{0,1\} & x_e \in \{0,1\}. \end{aligned}$$

• P_{cut} , P_{sub} : feasible sets for LP relaxations

LP Relaxation for Minimum Spanning Tree Problem

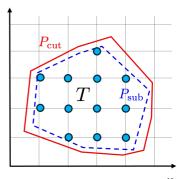
(Cutset MST)

$$\begin{split} &\sum_{e \in \mathcal{E}} x_e = n-1, \\ &\sum_{e \in \delta(S)} x_e \geq 1, \quad S \subset \mathcal{N}, S \neq \\ &x_e \in \{0,1\} \end{split}$$

(Subtour-elimination MST)

$$egin{aligned} \sum_{e \in \mathcal{E}} x_e &= n-1, & \sum_{e \in \mathcal{E}} x_e &= n-1, \ \sum_{e \in \mathcal{E}} x_e &\geq 1, \quad S \subset \mathcal{N}, S
eq \emptyset, & \sum_{e \in \mathcal{E}(S)} x_e &\leq |S|-1, \quad S \subset \mathcal{N}, S
eq \emptyset, \ x_e &\in \{0,1\} & x_e \in \{0,1\}. \end{aligned}$$

- $P_{\text{cut}}, P_{\text{sub}}$: feasible sets for LP relaxations
- $P_{\text{sub}} \subseteq P_{\text{cut}}$ and can have **strict** inclusion (Proof in the notes)
- (SUB) provides better lower bound than (CUT)
- Same IP feasible set, different LP feasible set!



LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP)

(Subtour-elimination TSP)

$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in N$$

$$\sum_{e \in \delta(S)} x_e \ge 2, \forall S \subset N, S \ne \emptyset$$

$$\sum_{\substack{i:\delta(\{i\})\\ e\in\delta(S)}} x_e = 2, \forall i \in \mathbb{N}$$

$$\sum_{\substack{e\in\delta(\{i\})\\ e\in\mathcal{E}(S)}} x_e = 2, \forall i \in \mathbb{N}$$

$$\sum_{\substack{e\in\delta(\{i\})\\ e\in\mathcal{E}(S)}} x_e \leq |S| - 1, \forall S \subset \mathbb{N}, S \neq \emptyset.$$

• P_{cut} , P_{sub} : feasible sets for LP relaxations

LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP)

 $e \in \delta(S)$

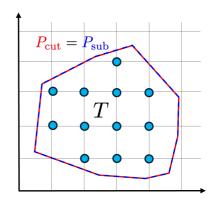
(Subtour-elimination TSP)

$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathbb{N}$$

$$\sum_{e \in \delta(S)} x_e \ge 2, \forall S \subset \mathbb{N}, S \ne \emptyset$$

$$\sum_{e \in \delta(S)} x_e \le |S| - 1, \forall S \subset \mathbb{N}, S \ne \emptyset.$$

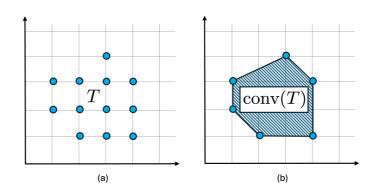
- P_{cut} , P_{sub} : feasible sets for LP relaxations
- $P_{\text{sub}} = P_{\text{cut}}$



• Different formulations of the same IP can result in different LP relaxations

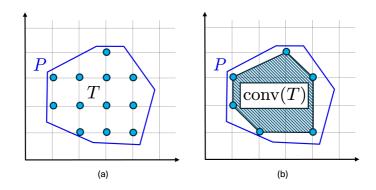
• What is an "ideal" formulation?

- T: all feasible points to an IP and conv(T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron



- T: all feasible points to an IP and conv(T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If P is the feasible region of an LP relaxation to our IP, then

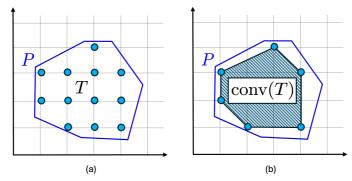
$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.



- T: all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If P is the feasible region of an LP relaxation to our IP, then

$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.

• **Ideal** LP relaxation would have P = conv(T)



- T : all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If P is the feasible region of an LP relaxation to our IP, then

$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.

• **Ideal** LP relaxation would have P = conv(T)

Key take-aways:

- ullet Quality of IP formulation : how closely its LP relaxation approximates $\mathrm{conv}\left(T
 ight)$
- Formulation A is better than formulation B for some IP if $P_A \subset P_B$
- Constraints play a more subtle role in IPs than in LPs
 - Adding valid constraints for T that cut off fractional points from P is very useful!
 - More constraints not necessarily worse in IP!