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Airline Revenue Management (RM)

* Strategic RM
* Determine several price points for various itineraries
* “Product” or “itinerary”: origin, destination, day, time, various restrictions, ...
* E.g., JFK—ORD —SFO, 10:30am on Oct 12, 2024, Economy class Y fare

* Typically done by (or in conjunction with) marketing department
¢ Market segmentation; competition

* Tactical RM (“yield management”) decides booking limits
* A booking limit determines how many seats to reserve for each “product”
* RM not based on setting prices, but rather changing availability of fare classes
* Legacy due to original IT systems used (e.g., SABRE)
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Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

* Aircraft 2: -6(

* JFK-ORD in the morning
* ORD-LAX in the afternoon

Itineraries

Origin- Q_Fare Y_Fare
Destination

BOS_ORD $200 $220
BOS_SFO $320 $420
BOS_LAX $400 $490
JFK_ORD $250 $290
JFK_SFO $410 $540
JFK_LAX $450 $550
ORD_SFO $210 $230

ORD_LAX $260 $300
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Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

* Aircraft 2: -((

* JFK-ORD in the morning
* ORD-LAX in the afternoon

Itineraries

Origin- Q_Fare Y_Fare Q_Demand Y_Demand
Destination

BOS_ORD $200 $220 25 20
BOS_SFO $320 $420 55 40
BOS_LAX $400 $490 65 25
JFK_ORD $250 $290 24 16
JFK_SFO $410 $540 65 50
JFK_LAX $450 $550 40 35
ORD_SFO $210 $230 21 50

ORD_LAX $260 $300 25 14




Aircraft 1

Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

* Aircraft 2: -6(

* JFK-ORD in the morning
* ORD-LAX in the afternoon

Resources needed

BOS_ORD BOS_SFO  BOS_LAX JFK_ORD  JFK_SFO  JFK_LAX  ORD_SFO ORD_LAX

Flight leg

BOS_ORD_Leg 1 1 1 0 0 0 0 0
JFK_ ORD_Leg O 0 0 1 1 1 0 0
ORD_SFO_Leg 0 1 0 0 1 0 1 0

ORD_LAX Leg 0 0 1 0 0 1 0 1




Network Revenue Management

® Airline is planning operations for a specific day in the future
® Airline operates a set F of direct flights in its (hub-and-spoke) network
® For each flight leg f € F, we know the capacity of the aircraft cr

® The airline can offer a large number of “products” (i.e., itineraries) /:

- each itinerary refers to an origin-destination-fare class combination

- each itinerary i has a price r; that is fixed

- for each itinerary, the airline estimates the demand d;

= each itinerary requires a seat on several flight legs operated by the airline
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® Airline operates a set F of direct flights in its (hub-and-spoke) network

For each flight leg f € F, we know the capacity of the aircraft cf

® The airline can offer a large number of “products” (i.e., itineraries) /:

- each itinerary refers to an origin-destination-fare class combination

- each itinerary i has a price r; that is fixed

- for each itinerary, the airline estimates the demand d;

= each itinerary requires a seat on several flight legs operated by the airline

® Requirements: A € {0, l}F" with Af; = 1 & itinerary i needs seat on flight leg f
Itinerary 1 Itinerary 2 ... ltinerary |/|

Flight leg 1 1 0 1

Resource matrix A : Flight leg 2 0 1 0

Flight leg |F| 1 1 o 0

® Goal: decide how many itineraries of each type to sell to maximize revenue
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Network Revenue Management

® x;: number of itineraries of type i that the airline plans to sell

® Airline Network RM problem:

max {rTx tAx < ¢, x< d}
xER!

® Ax < c : constraints on plane capacity

x < d : planned sales cannot exceed the demand

® |n practice, would not include all possible itineraries
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Network Revenue Management

® x;: number of itineraries of type i that the airline plans to sell

® Airline Network RM problem:

max {rTx tAx < ¢, x< d}
xER!

® Ax < c : constraints on plane capacity

x < d : planned sales cannot exceed the demand
® |n practice, would not include all possible itineraries

- gargantuan LP
- poor demand estimates for some itineraries

® To sell “exotic itineraries”, use the shadow prices for the capacity constraints
- p € RF : dual variables for capacity constraints Ax < ¢
- At optimality, pr is marginal revenue lost if airline loses one seat on flight 7
= For an “exotic” itinerary that requires seats on several flights f € E, the minimum
price to charge is given by the sum of the shadow prices, > . pr
]

Bid-price heuristic in network revenue management
® Broader principle of how to price “products” through resource usage/cost
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Discrete Optimization
Today, we consider optimization problems with discrete variables:

min ¢’ x+dy
Ax+ By =b
x,y >0

X integer
This is called a mixed integer programming (MIP) problem
Without continuous variables y, it is called an integer program (IP)
If instead of x € Z" we have x € {0,1}" : binary optimization problem

Very powerful modeling paradigm
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Example: Knapsack

® nitems
® |tem j has weight w; and reward r;
® Have a bound K on the weight that can be carried in the knapsack

® \Want to select items to maximize the total value
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Example: Knapsack

® nitems
® |tem j has weight w; and reward r;
® Have a bound K on the weight that can be carried in the knapsack

® \Want to select items to maximize the total value

n

maximize E I‘JXJ
j=1

n
subject to Z wix; < K
j=1
x;€4{0,1}, j=1,...,n
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Example: Facility Location

® 1 potential locations to open facilities
® Cost ¢; for opening a facility at location j

® m clients who need service

Cost dj; for serving client i from facility j

Smallest cost for opening facilities while serving all clients
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Example: Facility Location
® 1 potential locations to open facilities
® Cost ¢; for opening a facility at location j

® m clients who need service

Cost dj; for serving client i from facility j

Smallest cost for opening facilities while serving all clients

min chyj +ZZdUXU

i=1 j=1

Zx,-j =1, Vi
j=1

xij < Yj, Vi, Vj
X,j,yj S {0, 1}
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Example: Facility Location
® 1 potential locations to open facilities
® Cost ¢; for opening a facility at location j

® m clients who need service

Cost dj; for serving client i from facility j

Smallest cost for opening facilities while serving all clients

min ZQ)/J+ZZdUX,J min ZCJ)/J+ZZdUXU

i=1 j=1 i=1 j=1
Y oxy=1 Vi S =t Vi
j=1 j=1
v Yi. VY m
e S oxg < my;, i
X,'j,y_jE{O,l} .
xij, y; € {0,1}.

Which formulation is “better”?
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Example: Piecewise Linear Cost
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Example: Piecewise Linear Cost
o Idea: x = 3K, Nay
e Cost: Zf;l Aif (&)
® How to impose adjacency?

X = Ajaj + Ajip1aiq1
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Example: Piecewise Linear Cost

az

as

ag

® |dea: x = Zle \ia;
® Cost: Zf:l Aif(ay)
® How to impose adjacency?

X = Ajaj + Ajip1aiq1

® New binary variables y; to impose:

yj=1= N=0fori¢{j,j+1}

Koo o= 1
=1 )
>\1 < Y1,
)\i < )/i—l‘f')/h 1_27 ak_]-a
A < Yk-1,
ngllyi - 17
)\i Z 07
yi € {071}, Vi.
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Example: Matching Problems
® Set U of jobs/tasks to complete; set V of persons available to work
® FEach task assigned to at most one person; a person can only complete some tasks

® Reward wj; if task i € U completed by person j € V
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® Reward wj; if task i € U completed by person j € V
® Graph representation G = (N, &)

e e={i,j} € & indicates j € V can complete task i € U

Jobs Persons xo € {0,1} : whether edge selected

maximize Z WeXe
ecE
Y %<1, VieN,
ecs(i)
xe € {0,1},

o(i):={j:{i,j} € &} : all neighbors of i
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Example: Matching Problems

® Set U of jobs/tasks to complete; set V of persons available to work

Each task assigned to at most one person; a person can only complete some tasks
® Reward wj; if task i € U completed by person j € V
® Graph representation G = (N, &)

e e={i,j} € & indicates j € V can complete task i € U

Jobs Persons xo € {0,1} : whether edge selected

maximize E WeXe
ecE

Y %<1, VieN,

eed(i)
xe € {0,1},

o(i):={j:{i,j} € &} : all neighbors of i

Many variations: minimize cost, require jobs completed, perfect matching, ...
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Example: Minimum Spanning Tree

® Given an undirected graph G = (N, &); |N| = n,

El=m
® Edge e € £ has associated cost ¢

® Find minimum spanning tree (MST)
(subset of edges that connect all nodes in N' at minimum cost)
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® Edge e € £ has associated cost ¢,

® Find minimum spanning tree (MST)
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min E CeXe

ec&
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(Connectivity) er =n—-1
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Example: Minimum Spanning Tree

® Given an undirected graph G = (N, €&); IN| = n,

El=m
® Edge e € £ has associated cost ¢,

® Find minimum spanning tree (MST)
(subset of edges that connect all nodes in N at minimum cost)

min E CeXe

ec&
xe € {0,1}
(Connectivity) er =n—-1
ecf
(Cutset) Z xe>1, SCN,S#0
eci(S)
. or ...
(Subtour-elimination) Z xe <|S|—1, SCN,S#0D

ec&(S)

Again exponentially-sized formulations! Any preference between them?

11/22



Example: Traveling Salesperson Problem (TSP)

® Given an undirected graph G = (N, &); |N| = n,

El=m
® Edge e € £ has associated cost ¢,

® Find a tour (cycle that visits each node exactly once) with minimum cost
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x>0 P
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® x,p € R = this is a primal-dual pair; optimal value % by strong duality
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Bad News First

Example. The optimal solution is the following IP does not exist:

supx—i—\@y
X,y
1
X+\ﬁ)/§§
X,y € Z.

Example. Consider the following pair of optimization programs:

(<) min x (2) max p
x>0 P
2x =1 2p <1
® x,p € R = this is a primal-dual pair; optimal value % by strong duality
® x,p €Z = (2) infeasible, (Z) has optimal value 0.

Strong duality does not hold in IPs
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Bad News First

Unfortunately, (M)IPs are significantly harder than LPs

Theorem

Given a matrix A € Qm™*" and a vector b € Q™, the problem: “does Ax < b have an
integral solution x” is NP-complete.

® |P “feasibility problem” is already in the hardest class of problems in NP
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Bad News First

Unfortunately, (M)IPs are significantly harder than LPs

Theorem

Given a matrix A € Qm™*" and a vector b € Q™, the problem: “does Ax < b have an
integral solution x” is NP-complete.

IP “feasibility problem” is already in the hardest class of problems in NP

Despite this, substantial body of theory and scalable algorithms exist for IPs

We will focus on optimization problems with rational entries:
AeQm" be QM ce Q" (in fact, often integer)

® \We assume that the feasible set is bounded
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Lower Bounds Again

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!
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Lower Bounds Again

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)
The linear programming relaxation for the integer program
min cTx +dTy
Ax+ By =b
x,y >0
x € {0,1}™y € Z™,

is obtained by replacing x € {0,1}™ with x € [0,1]™ and y € Z™ with y € R™.

Observation

1) The LP relaxation’s optimal value is a lower bound on the IP’s optimal value.
2) If the LP relaxation’s optimal solution is feasible for the IP, it is optimal for the IP.

Key Q: How good is this bound?

17/22



LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL) (AFL)

ZX,'J':].7 i=1,....m le'j:]-; i=1,...,m
Jj=1 j=1

xj <y, i=1....m j=1,...,n

m
xj <my, j=1,...,n
leayje{071} ;

xij, ¥j € {0,1}.

® Prr, PapL : feasible sets for LP relaxations
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LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(AFL)

(FL)

n
g xj =1, i=1,...,m
Jj=1

xj <y, i=1....,m j=1,...
xij, y; € {0,1}

n

)

PreL, ParL : feasible sets for LP relaxations

PrL € PafpL and can have strict inclusion

(FL) provides better lower bound than (AFL)

Same IP feasible set, different LP feasible set!

n
E xj=1, i=1...,m
Jj=1

m
Zxﬁgmyj, j=1...,n
i=1

xij, ¥j € {0,1}.

b

PAFT, 2

iy
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LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST) (Subtour-elimination MST)

er:nfl, er:nfl,

ecé ecé

Y xe>1, SCN,S#0 Y xe<IS|-1, SCN,S#0,
ecd(S) ec&(S)
xe € {0,1} xe € {0,1}.

® Py, Psub : feasible sets for LP relaxations
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LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

er:nfl

(Subtour-elimination MST)

er:nfl,

ecé eec&
Y xe>1, SCN,S#0 Y xe<IS|-1, SCN,S#0,
ecd(S) ec&(S)
xe € {0,1} xe € {0,1}.
Preuts Psub : feasible sets for LP relaxations ‘
Peut o
Psub € Pyt and can have strict inclusion Cu/%}
(Proof in the notes) 3 N
" T Psub\,'
(SUB) provides better lower bound than (CUT) i) o 0
1 1
\\\ 'l
N~ K
Same IP feasible set, different LP feasible set!
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LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP) (Subtour-elimination TSP)
Z xe =2,¥i €N Z xe =2,Yie N
ecd({i}) ecd({i})
Y x=2VSCN,S#D > % <[S|-LYSCN,S#0.
ecs(S) ec&(S)

® Put, Psub : feasible sets for LP relaxations
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LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP) (Subtour-elimination TSP)
Z xe =2,¥i €N Z xe =2,Yie N
eco({i}) eco({i})
Y x=2VSCN,S#D > % <[S|-LYSCN,S#0.
ecs(S) ec&(S)

® Put, Psub : feasible sets for LP relaxations

® Pob=Pcu




Strength of IP Formulation

® Different formulations of the same IP can result in different LP relaxations

® What is an “ideal” formulation?
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Strength of IP Formulation

e T : all feasible points to an IP and conv (T) is their convex hull
- T finite because we assumed bounded feasible set

- conv (T) is a polyhedron

\
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Strength of IP Formulation

e T : all feasible points to an IP and conv (T) is their convex hull
= T finite because we assumed bounded feasible set
- conv (T) is a polyhedron

® If P is the feasible region of an LP relaxation to our IP, then

T Cconv(T)C P.
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Strength of IP Formulation

e T : all feasible points to an IP and conv (T) is their convex hull
= T finite because we assumed bounded feasible set
- conv (T) is a polyhedron

® If P is the feasible region of an LP relaxation to our IP, then

T Cconv(T)C P.

® |deal LP relaxation would have P = conv (T)
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Strength of IP Formulation

T : all feasible points to an IP and conv (T) is their convex hull
— T finite because we assumed bounded feasible set
- conv (T) is a polyhedron

If P is the feasible region of an LP relaxation to our IP, then

T Cconv(T)C P.

Ideal LP relaxation would have P = conv (T)

Key take-aways:

Quality of IP formulation : how closely its LP relaxation approximates conv (T)

Formulation A is better than formulation B for some IP if P4, C Pg

® Constraints play a more subtle role in IPs than in LPs
- Adding valid constraints for T that cut off fractional points from P is very useful!
= More constraints not necessarily worse in IP!
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