
Lecture 8

October 16, 2024
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Strength of IP Formulation

• Different formulations of the same IP can result in different LP relaxations

• What is an “ideal” formulation?
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Strength of IP Formulation

• T : all feasible points to an IP and conv (T ) is their convex hull
– T finite because we assumed bounded feasible set
– conv (T ) is a polyhedron

• If we had access to conv (T ), we would be “done”: solve LP over conv (T )!

• If P is the feasible region of the LP relaxation, then

T ⊆ conv (T ) ⊆ P.

• The “closer” P hugs conv (T ), the better!
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Key Take-Aways and Next Steps

• Quality of IP formulation : how closely its LP relaxation approximates conv (T )

• Formulations A, B equivalent for an IP. A is stronger than B if PA ⊂ PB

• Constraints play a more subtle role in IPs than in LPs
– Adding valid constraints for T that cut off fractional points from P is very useful!
– More constraints not necessarily worse in IP!

1. Discuss a few ideal formulations : P = conv (T )

2. Discuss how to improve formulations by adding cuts

3. Discuss algorithms/solution approaches
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Ideal Formulations

Setup:

• P = {x ∈ Rn
+ | Ax ≤ b} polyhedral set, with A ∈ Zm×n and b ∈ Zm

• Goal: conditions on A so that P is integral, i.e., P = conv (x ∈ P : x ∈ Zn)

Can anyone recall Cramer’s rule?

Proposition (Cramer’s Rule)

Let A ∈ Rn×n be a nonsingular matrix. For b ∈ Rn,

Ax = b =⇒ x = A−1b =⇒ xi =
det(Ai )

det(A)
, ∀i ,

where Ai is the matrix with columns Ai
j = Aj for all j ∈ {1, . . . , n} \ {i} and Ai

i = b.

If det(A) ∈ {1,−1}, that would be nice!
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(Total) Unimodularity

Definition

1. A ∈ Zm×n of full row rank is unimodular if the det(AB) ∈ {1,−1} for every basis B.

2. A ∈ Zm×n is totally unimodular if the determinant of each square submatrix of A is

0, 1, or -1.

• Unimodularity allows handling standard form {x ∈ Zn
+ | Ax = b}

• Total Unimodularity (TU) allows handling inequality form {x ∈ Zn
+ | Ax ≤ b}

• Note: a TU matrix must belong to {0, 1,−1}m×n, but not a unimodular matrix:

e.g. A =

[
3 2

1 1

]

• Will provide easier ways to test for U and TU, but first let’s see why we care...
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(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix A ∈ Zm×n of full row rank is unimodular if and only if the

polyhedron P(b) = {x ∈ Rn
+ | Ax = b} is integral for all b ∈ Zm with P(b) ̸= ∅.

2. The matrix A is totally unimodular if and only if the polyhedron

P(b) = {x ∈ Rn
+ | Ax ≤ b} is integral for all b ∈ Zm with P(b) ̸= ∅.

Proof. (a) “⇒” Because A unimodular, for any b ∈ Zm with P(b) ̸= ∅, any basic feasible

solution x = (xB , xN) ∈ P(b) must satisfy xB = A−1
B b ∈ Z|B|.

“⇐” We have that P(b) ̸= ∅ is integral b ∈ Zm. Let B be any basis of A.

• Sufficient to prove that A−1
B is integral; (AB integral and det(AB) · det(A−1

B ) = 1 would

imply that det(AB) ∈ {1,−1} and thus A is unimodular)

• To prove A−1
B integral, consider b = AB · z + ei where z is an integral vector

• Then A−1
B · b = z + A−1

B ei

• By choosing z large so z + A−1
B ei ≥ 0, we obtain a b.f.s. for P(b)

• Because P(b) integral, A−1
B ei must be integral

• Repeat argument for all ei to proves that A−1
B is integral.

(b) Similar logic, omitted (see notes)
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Checking for Total Unimodularity

Proposition

Consider a matrix A ∈ {0, 1,−1}m×n. The following are equivalent:

1. A is totally unimodular.

2. A⊺ is totally unimodular.

3. [A⊺ − A⊺ I − I ] is totally unimodular.

4. {x ∈ Rn
+ | Ax = b, 0 ≤ x ≤ u} is integral for all integral b, u.

5. {x | a ≤ Ax ≤ b, ℓ ≤ x ≤ u} is integral for all integral a, b, ℓ, u.

6. Each collection of columns of A can be partitioned into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector with

entries 0,+1, and −1. (By part 2, a similar result also holds for the rows of A.)

7. Each nonsingular submatrix of A has a row with an odd number of non-zero components.

8. The sum of entries in any square submatrix with even row and column sums is divisible by

four.

9. No square submatrix of A has determinant +2 or -2.

#6 perhaps most useful in practice...
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Examples of TU Matrices #1

• G = (N , E) undirected graph

• A ∈ {0, 1}|N |×|E| is the node-edge incidence matrix of G

Ai,e = 1 if and only if i ∈ e

• A is TU if and only if G is bipartite

• Bipartite matching problems have integral LP relaxations...
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Examples of TU Matrices #2

• D = (V ,A) is a directed graph

• M is the V × A incidence matrix of D

Mv ,a =


1 if and only if a = (·, v) (arc a enters node v)

−1 if and only if a = (v , ·) (arc a leaves node v)

0 otherwise.

• Then M is TU

• Network flow problems (e.g., Prosche Motors) with integral arc capacities and

integral supply/demand have integral LP relaxations
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Examples of TU Matrices #3

• D = (V ,A) is a directed graph, T = (V ,A0) is a directed tree on V

• M is the A0 × A matrix defined as follows: for a = (v ,w) ∈ A and a′ ∈ A0,

Ma′,a =


+1 if the unique v − w path in T passes through a′ forwardly

−1 if the unique v − w path in T passes through a′ backwardly

0 if the unique v − w path in T does not pass through a′.

(1, 2) (1, 3) (2, 4) (4, 3) (3, 5) (5, 4) (4, 6) (5, 6)

(1, 3) 1 1 1 0 0 0 0 0

(2, 4) −1 0 0 0 0 0 0 0

(4, 3) −1 0 0 1 0 −1 1 0

(3, 5) 0 0 0 0 1 −1 1 0

(5, 6) 0 0 0 0 0 0 1 1
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Examples of TU Matrices #3

• D = (V ,A) is a directed graph, T = (V ,A0) is a directed tree on V

• M is the A0 × A matrix defined as follows: for a = (v ,w) ∈ A and a′ ∈ A0,

Ma′,a =


+1 if the unique v − w path in T passes through a′ forwardly

−1 if the unique v − w path in T passes through a′ backwardly

0 if the unique v − w path in T does not pass through a′.

• Then M is TU

• All previous examples were special cases of this

• Paul Seymour: all TU matrices generated from network matrices and two other matrices
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Dual Integrality and Submodular Functions

• Alternative way to show integrality of polyhedra based on LP duality

• Simple observation: to show that LP relaxation is integral, it suffices to check that

the optimal value of any LP with integer cost vector c is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the

optimal value ZLP := min{c⊺x | x ∈ P} is an integer for all c ∈ Zn.

Proof. Straightforward; omitted.

• To show integrality of P, we construct an integral dual-optimal solution

(for any c ∈ Zn)

• Our discussion here is quite specific
– broader concepts possible related to Totally Dual Integrality
– if interested, see notes for references

13 / 30



Dual Integrality and Submodular Functions

• Alternative way to show integrality of polyhedra based on LP duality

• Simple observation: to show that LP relaxation is integral, it suffices to check that

the optimal value of any LP with integer cost vector c is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the

optimal value ZLP := min{c⊺x | x ∈ P} is an integer for all c ∈ Zn.

Proof. Straightforward; omitted.

• To show integrality of P, we construct an integral dual-optimal solution

(for any c ∈ Zn)

• Our discussion here is quite specific
– broader concepts possible related to Totally Dual Integrality
– if interested, see notes for references

13 / 30



Dual Integrality and Submodular Functions

• Alternative way to show integrality of polyhedra based on LP duality

• Simple observation: to show that LP relaxation is integral, it suffices to check that

the optimal value of any LP with integer cost vector c is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the

optimal value ZLP := min{c⊺x | x ∈ P} is an integer for all c ∈ Zn.

Proof. Straightforward; omitted.

• To show integrality of P, we construct an integral dual-optimal solution

(for any c ∈ Zn)

• Our discussion here is quite specific
– broader concepts possible related to Totally Dual Integrality
– if interested, see notes for references

13 / 30



Submodular Functions

Definition

A function f (S) defined on subsets S of a finite set N = {1, . . . , n} is submodular if

f (S) + f (T ) ≥ f (S ∩ T ) + f (S ∪ T ), ∀S ,T ⊂ N (1)

and it is supermodular if the reverse inequality holds.

• For a more intuitive take, note that (1) is equivalent to:

(1) ⇔ f (S)− f (S ∩ T ) ≥ f (S ∪ T )− f (T )

⇔ f
(
(S ∩ T ) ∪ (S \ T )

)
− f (S ∩ T ) ≥ f

(
T ∪ (S \ T )

)
− f (T )

• Set difference between arguments on the left is S \ (S ∩ T ) = S \ T
• Set difference between arguments on the right is (S ∪ T ) \ T = S \ T
• (1): gains when adding something (S \ T ) to a smaller set (S ∩ T ) are larger
than when adding it to a larger set (T )

– Submodular functions exhibit “diminishing returns” or “decreasing differences”
– Might resemble concavity in economic intuition, but not computationally!

(submodular functions are more like convex functions!)
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• For a more intuitive take, note that (1) is equivalent to:

(1) ⇔ f (S)− f (S ∩ T ) ≥ f (S ∪ T )− f (T )

⇔ f
(
(S ∩ T ) ∪ (S \ T )

)
− f (S ∩ T ) ≥ f

(
T ∪ (S \ T )

)
− f (T )

• Set difference between arguments on the left is S \ (S ∩ T ) = S \ T
• Set difference between arguments on the right is (S ∪ T ) \ T = S \ T

• (1): gains when adding something (S \ T ) to a smaller set (S ∩ T ) are larger
than when adding it to a larger set (T )

– Submodular functions exhibit “diminishing returns” or “decreasing differences”
– Might resemble concavity in economic intuition, but not computationally!

(submodular functions are more like convex functions!)
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Submodular Functions - Equivalent Definitions

Proposition

A set function f : 2N → R is submodular if and only if:

(a) For any S ,T ⊆ N such that S ⊆ T and k /∈ T:

f (S ∪ {k})− f (S) ≥ f (T ∪ {k})− f (T ).

(b) For any S ⊆ N and any j , k with j , k /∈ S and j ̸= k:

f (S ∪ {j})− f (S) ≥ f (S ∪ {j , k})− f (S ∪ {k}). (3.2)

• Submodular: “diminishing returns” or “decreasing differences”
– cost: economies of scale/scope
– profit: substitutability

• Supermodular is the opposite

• Subsequently, interested in non-negative and increasing submodular functions

f (S) ≤ f (T ), ∀S ⊂ T ⊆ N.
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Submodular Functions - Equivalent Definitions

• Linear functions. For w ∈ Rn, f (A) =
∑

i∈A wi is both sub- and super-modular.

• Composition 2. If w ≥ 0 and g concave, then f (S) = g
(∑

i∈S wi

)
is submodular.

• Optimal TSP cost on tree graphs. Consider undirected tree graph

G = (N,E ) with a positive cost for traversing the edges (ce ≥ 0 for every edge

e ∈ E ). For every S ⊆ N, define f (S) as the optimal (i.e., smallest) cost for a TSP

that goes through all the nodes in S . Then, f (S) is submodular.

• Network optimization: consider directed graph with capacities on edges that

constrain how much flow can be transported; if f (S) is the maximum flow that can

be received at a set of sink nodes S , f (S) is submodular.

• Inventory and supply chain management: perishable inventory systems, dual

sourcing, and inventory control problems with trans-shipment.
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Main Result
• For a submodular function f , consider the problem:

maximize

n∑
j=1

rj · xj∑
j∈S

xj ≤ f (S), ∀S ⊆ N

x ∈ Zn
+.

• T : set of feasible integer solutions

• P(f ) the feasible set of the LP relaxation:

P(f ) =

x ∈ Rn
+

∣∣∣∣∣∣
∑
j∈S

xj ≤ f (S), ∀S ⊂ N



Theorem

If f is submodular, increasing, integer valued, and f (∅) = 0, then

P(f ) = conv(T ).
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Main Result - Proof
To show: f is submodular, increasing, integer-valued, f (∅) = 0, then P(f ) = conv(T ).

Proof. Consider the linear relaxation and its dual:

maximize
n∑

j=1

rjxj∑
j∈S

xj ≤ f (S), S ⊂ N,

xj ≥ 0, j ∈ N

minimize
∑
S⊂N

f (S)yS∑
S:j∈S

yS ≥ rj , j ∈ N,

yS ≥ 0, S ⊂ N.

• Key idea: construct feasible solutions for both, with equal value

• Key intuition: use a greedy construction in the primal!

• Suppose r1 ≥ r2 ≥ . . . ≥ rk > 0 ≥ rk+1 ≥ . . . ≥ rn.

• Let S0 = ∅ and S j = {1, . . . , j} for j ∈ N.

• We prove that the following x and y are optimal for the primal and dual, respectively.

xj =

{
f (S j)− f (S j−1), 1 ≤ j ≤ k,

0, j > k.
yS =


rj − rj+1, S = S j , 1 ≤ j < k,

rk , S = Sk ,

0, otherwise.
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rj − rj+1, S = S j , 1 ≤ j < k,

rk , S = Sk ,

0, otherwise.

• f is integer-valued ⇒ x ∈ Zn. f increasing ⇒ xj ≥ 0. For all T ⊂ N, we have:

∑
j∈T

xj =
∑

j∈T ,j≤k

(
f (S j)− f (S j−1)

)
(because f submodular) ≤

∑
j∈T ,j≤k

(
f (S j ∩ T )− f (S j−1 ∩ T )

)
=

= f (Sk ∩ T )− f (∅)
(because f monotone) ≤ f (T )− f (∅)

(because f (∅) = 0) = f (T ).
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Main Result - Proof
To show: f is submodular, increasing, integer-valued, f (∅) = 0, then P(f ) = conv(T ).
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yS =


rj − rj+1, S = S j , 1 ≤ j < k,

rk , S = Sk ,

0, otherwise.

• To show y is dual feasible, note that yS ≥ 0 and:

∑
S:j∈S

yS = yS j + . . .+ ySk = rj , if j ≤ k and
∑
S :j∈S

yS = 0 ≥ rj , if j > k.

• The primal objective:
k∑

j=1

rj
(
f (S j)− f (S j−1)

)
• The dual objective

k−1∑
j=1

(rj − rj+1)f (S
j) + rk f (S

k) =
k∑

j=1

rj
(
f (S j)− f (S j−1)

)
.
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k−1∑
j=1

(rj − rj+1)f (S
j) + rk f (S

k) =
k∑

j=1

rj
(
f (S j)− f (S j−1)

)
.
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Improving LP Relaxations With Cuts

• Recall: T are feasible points to an IP, conv (T ) is their convex hull

• P is the feasible region of an LP relaxation to the IP

• Typically, the formulation is not ideal:

conv (T ) ⊂ P

• How to improve it by generating valid cuts?
– Linear inequalities satisfied by T and conv (T ), but not by P?
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Improving LP Relaxations With Cuts
• Setup: A, b, c with rational entries and the IP:

minimize
{
c⊺x : Ax = b, x ≥ 0, x ∈ Zn

}
• If x∗ = [x∗B ; x

∗
N ] be a b.f.s. for the LP relaxation. Then we have:

ABx
∗
B + ANx

∗
N = b ⇔ x∗B + A−1

B ANx
∗
N = A−1

B b

• Consider an equality in which the right-hand-side is fractional

x∗i +
∑
j∈N

āijx
∗
j = b̄

∀ x ∈ T ⇒ x ≥ 0 ⇒ xi +
∑
j∈N

⌊āij⌋xj ≤ b̄

∀ x ∈ T ⇒ x ∈ Zn ⇒ xi +
∑
j∈N

⌊āij⌋xj ≤ ⌊b̄⌋

• This inequality is satisfied by all integer solutions x ∈ T

• It is not satisfied by x∗ because x∗i = b̄ is fractional

• Gomory cut
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Improving LP Relaxations With Cuts

xi +
∑
j∈N

⌊āij⌋xj ≤ ⌊b̄⌋, ∀ x ∈ T

• Gomory cut

• Systematically adding all the Gomory cuts lead to first cutting algorithm for IP

1. Solve the linear relaxation and get an optimal solution x∗

2. If x∗ is integer stop

3. If not, add a cut (i.e., linear inequality that all integer solutions satisfy but that x∗

does not satisfy) and go to step 1 again.

• Can show that this is guaranteed to terminate

• Which simplex algorithm would you use in Step 1?

• If you’re wondering how this works for Ax ≤ b or why it terminates, see notes!
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Lift-and-Project
• Balas, Céria and Cornuéjols introduced a new approach

• Binary IP, feasible set x ∈ P ∩ {0, 1}n where P := {x ∈ Rn : Ax ≥ b, x ≥ 0}

• Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j ∈ {1, . . . , n}.
2. Multiply each inequality with xj and then 1− xj to generate nonlinear inequalities:

xj(Ax − b) ≥ 0, (1− xj)(Ax − b) ≥ 0.

3. Linearize system by substituting yi for xixj (for i ̸= j), and xj for x
2
j .

Call resulting polyhedron in variables (x , y) as Mj (dimension R2n).

4. Project Mj onto the x-variables. Let Pj be the resulting polyhedron.

• Claims. (i) Every binary x ∈ P satisfies x ∈ Pj . (ii) Pj ⊆ P.

• ⋂n
j=1 Pj is called the lift-and-project closure. Clearly,

⋂n
j=1 Pj ⊆ P

• Bonami and Minoux : 35 Mixed 0-1 IPs from MIPLIB library, lift-and-project

closure reduces integrality gap by 37% on average
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• Balas, Céria and Cornuéjols introduced a new approach

• Binary IP, feasible set x ∈ P ∩ {0, 1}n where P := {x ∈ Rn : Ax ≥ b, x ≥ 0}

• Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j ∈ {1, . . . , n}.
2. Multiply each inequality with xj and then 1− xj to generate nonlinear inequalities:

xj(Ax − b) ≥ 0, (1− xj)(Ax − b) ≥ 0.

3. Linearize system by substituting yi for xixj (for i ̸= j), and xj for x
2
j .

Call resulting polyhedron in variables (x , y) as Mj (dimension R2n).

4. Project Mj onto the x-variables. Let Pj be the resulting polyhedron.

• Claims. (i) Every binary x ∈ P satisfies x ∈ Pj . (ii) Pj ⊆ P.

• ⋂n
j=1 Pj is called the lift-and-project closure. Clearly,

⋂n
j=1 Pj ⊆ P

• Bonami and Minoux : 35 Mixed 0-1 IPs from MIPLIB library, lift-and-project

closure reduces integrality gap by 37% on average

24 / 30



Lift-and-Project
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Other Cuts

• Mixed-Integer Rounding (MIR) Cuts: designed for general integer variables

• Knapsack Cover Cuts: applied for knapsack constraint

w ≥ 0,w⊺x ≤ K ⇒

∑
i

xi ≤ |C | − 1 for any C :
∑
i∈C

wi > K (Cover)

• Clique Cuts: used to strengthen
∑n

i=1 xi ≤ 1 when some of the xi form a clique

• Flow Cover and Flow Path Cuts: specialized cuts for network flow problems

• Lattice-Free Cuts, Multi-Branch Split Cuts

• Comb Inequalities for TSP

• Solvers like Gurobi have many of these built-in and allow adding custom cuts

• Adding “good” cuts is problem-dependent; requires good understanding of

combinatorial structure
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Solving IPs

IPs “hard,” but many methods devised

• Exact algorithms: guaranteed to find optimal solution, but may take exponential
number of iterations

– cutting planes
– branch and bound
– branch and cut
– lift-and-project methods
– dynamic programming methods

• Approximation algorithms: suboptimal solution with a bound on the degree of its

suboptimality, in polynomial time

• Heuristic algorithms: suboptimal solution, typically no guarantees on its quality;
typically run fast

– local search methods
– simulated annealing
– ...
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F1: Solve with y=0, 0 ≤ x,z ≤	1
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• Optimal value OPT(F1)

Branch based on 
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F3 F4

F3: Solve with x=y=0, 0 ≤ z ≤	1
• At optimality: get zF3=1
• A feasible solution!
• Update upper bound U := OPT(F3)
• If U – L ≤ tolerance, stop

• At optimality, get: xF=0, yF=0.3, zF=1
• L := OPT(F) is a lower bound on optimal cost

Branch on x if 
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Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

• If x, y, z binary, done!

y=0 y=1

x=0

F4: Infeasible!
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In fact, could do even better!
Replace OPT(F1) with 

min(OPT(F3), OPT(F4)) = OPT(F3)

x=1
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F

Root node: solve LP relaxation 
0 ≤ x, y, z ≤ 1

F1 F2
F1: Solve with y=0, 0 ≤ x,z ≤	1
• Optimal: xF1=0.5, yF1=0, zF1=1
• Optimal value OPT(F1)

Branch based on 
fractional variable y F2: Solve with y=1, 0 <= x,z <=1

• Optimal: xF2=0, yF2=1, zF2=0.2
• Optimal value OPT(F2)

F3 F4

F3: Solve with x=y=0, 0 ≤ z ≤	1
• At optimality: get zF3=1
• A feasible solution!
• Update upper bound U := OPT(F3)
• If U – L ≤ tolerance, stop

• At optimality, get: xF=0, yF=0.3, zF=1
• L := OPT(F) is a lower bound on optimal cost

Branch on x if 
OPT(F1) < U

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

• If x, y, z binary, done!

y=0 y=1

x=0

F4: Infeasible!

L:= min(OPT(F1), OPT(F2)) 
is better lower bound!

In fact, could do even better!
Replace OPT(F1) with 

min(OPT(F3), OPT(F4)) = OPT(F3)

Trade-off between exploring depth-first vs. 
breadth-first

• depth-first gets to a binary solution “faster”
• breadth-first allow improving lower bounds

x=1
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• Optimal: xF1=0.5, yF1=0, zF1=1
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• Update upper bound U := OPT(F3)
• If U – L ≤ tolerance, stop

• At optimality, get: xF=0, yF=0.3, zF=1
• L := OPT(F) is a lower bound on optimal cost

L:= min(OPT(F3), OPT(F2)) 
is better lower bound!

Branch on x if 
OPT(F1) < U

Branch on z if 
OPT(F2) < U

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

• If x, y, z binary, done!

y=0 y=1

x=0

F4: Infeasible!

x=1
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Root node: solve LP relaxation 
0 ≤ x, y, z ≤ 1

F1 F2
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• A feasible solution!
• Update upper bound U := OPT(F3)
• If U – L ≤ tolerance, stop

• At optimality, get: xF=0, yF=0.3, zF=1
• L := OPT(F) is a lower bound on optimal cost

L:= min(OPT(F3), OPT(F2)) 
is better lower bound!

Branch on x if 
OPT(F1) < U

Keep branching & bounding until 
you achieve desired tolerance

(or get proof of optimality)

……

Branch on z if 
OPT(F2) < U

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

• If x, y, z binary, done!

y=0 y=1

x=0

F4: Infeasible!

x=1



Branch and Bound

• More general formulation: let F be set of feasible solutions to an IP

1. Maintain upper bound U, lower bound L on problem’s objective

2. Partition F into finite collection of subsets Fi

3. Choose an unsolved subproblem and solve it; only need a lower bound ℓ(Fi ) on cost:

ℓ(Fi ) ≤ min
x∈Fi

c⊺x .

4. If ℓ(Fi ) ≥ U, no need to explore subproblem Fi further!

5. Otherwise, partition Fi further and update collection of subproblems/nodes to explore

6. If we get a feasible solution, update the upper bound U

7. If U − L ≤ ϵ, stop

8. When solving all children of a given node, can update lower bound at the node

• Many choices:

1. How to explore subproblems: “breadth-first search” vs “depth-first search” vs...

2. How to derive lower bound ℓ(Fi ): LP relaxation vs. Lagrangean duality

3. Improve LP relaxations by adding cuts: branch-and-cut approaches

4. How to partition a problem into subproblems? We used xi ≤ ⌊x∗
i ⌋ and xi ≥ ⌈x∗

i ⌉
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Summary of model
# constraints, # variables, sparsity, 

coefficient values

Can we get close with a heuristic?

Can we simplify the problem? 
(presolve)

Branch & Bound
(current node, bound on objective, gap)

Available computational resources

Cutting planes applied

Optimal solution found



Lagrangian Duality in IP

• Good lower bounds critical for MILPs!

ZIP := min
{
c⊤x : Ax ≥ b, Dx ≥ d , x ∈ Z n

}
• We get a lower bound from LP relaxation:

ZLP := min
{
c⊤x : Ax ≥ b, Dx ≥ d

}
⇒ ZLP ≤ ZIP

• Suppose the “ugly/hard” constraints are Ax ≥ b ...

... and we are able to minimize efficiently c⊺x over X := {x ∈ Zn | Dx ≥ d}

• Let p ≥ 0 be dual variables (Lagrange multipliers) for Ax ≥ b; form Lagrangean:

L(x , p) := c⊤x + p⊤(b − Ax)

• Then we can get the following lower bound on ZIP:

∀ p ≥ 0, g(p) := min
x∈X

[
c⊤x + p⊤(b − Ax)

]
⇒ g(p) ≤ ZIP

• Important! We are not dualizing all the constraints!
– We keep the constraints x ∈ X because these are “easy”
– Similar to LP developments: recall how we kept the constraints xi ≥ 0 or xi ≤ 0
– What matters is that we can easily compute g(p) for any p ≥ 0
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Lagrangian Duality in IP
• Because g(p) ≤ ZIP,∀p ≥ 0, we can look for the best lower bound:

ZD := max
p≥0

g(p) (2)

• This is the Lagrangean dual of our problem.
– g(p) piece-wise linear, concave; supergradient available
– Can compute ZD using first-order-methods
– Weak duality holds: ZD ≤ ZIP

– Unlike LP, we do not have a strong duality result!

• Most important result here (recall that X := {x ∈ Zn | Dx ≥ d})

ZD = min
{
c⊤x : Ax ≥ b, x ∈ conv (X )

}
.

• Immediate consequence: we get stronger bounds than from LP relaxation,

ZIP ≤ ZD ≤ ZIP.

• Details, proofs: see notes
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Other Methods

• Dynamic Programming very powerful

• Can solve in pseudo-polynomial time IPs in fixed dimension

• Heuristics can also be powerful
– Local search
– Simmulated annealing
– Genetic algorithms, “ant colony optimization”, etc.
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