Lecture 8

October 16, 2024

1/30

Strength of IP Formulation

® Different formulations of the same IP can result in different LP relaxations

® What is an “ideal” formulation?

2/30

Strength of IP Formulation

|

o o o
T o

\\\\\\\\\

(a) (b)
e T : all feasible points to an IP and conv (T) is their convex hull

- T finite because we assumed bounded feasible set
- conv (T) is a polyhedron

3/30

Strength of IP Formulation

i
\

]/

(a) (b)

e T : all feasible points to an IP and conv (T) is their convex hull
= T finite because we assumed bounded feasible set
- conv (T) is a polyhedron

® |If we had access to conv (T), we would be “done”: solve LP over conv (T)!

3/30

Strength of IP Formulation

\\\\\\\\\\\\ |

N N

(a) (b)

e T : all feasible points to an IP and conv (T) is their convex hull
= T finite because we assumed bounded feasible set
- conv (T) is a polyhedron

® |If we had access to conv (T), we would be “done”: solve LP over conv (T)!

® |f P is the feasible region of the LP relaxation, then

T Cconv(T)C P.

3/30

Strength of IP Formulation

P\

\

Ol

(a) (b)

T : all feasible points to an IP and conv (T) is their convex hull
= T finite because we assumed bounded feasible set
- conv (T) is a polyhedron

If we had access to conv (T), we would be “done”: solve LP over conv (T)!

If P is the feasible region of the LP relaxation, then

T Cconv(T)C P.

® The “closer” P hugs conv (T), the better!

3/30

Key Take-Aways and Next Steps

&\\\&\\\\\\\\\

S \
Nconv(T)

(@) (b)

® Quality of IP formulation : how closely its LP relaxation approximates conv (T)
® Formulations A, B equivalent for an IP. A is stronger than B if P, C Pg

® Constraints play a more subtle role in IPs than in LPs
- Adding valid constraints for T that cut off fractional points from P is very useful!
= More constraints not necessarily worse in P!

4/30

Key Take-Aways and Next Steps

&\\\&\\\\\\\\\

S \
Nconv(T)

(@) (b)

® Quality of IP formulation : how closely its LP relaxation approximates conv (T)
® Formulations A, B equivalent for an IP. A is stronger than B if P, C Pg

® Constraints play a more subtle role in IPs than in LPs

- Adding valid constraints for T that cut off fractional points from P is very useful!
= More constraints not necessarily worse in P!

1. Discuss a few ideal formulations : P = conv (T)
2. Discuss how to improve formulations by adding cuts
3. Discuss algorithms/solution approaches

4/30

Ideal Formulations

Setup:
® P={x € R} | Ax < b} polyhedral set, with A € Z™*" and b € Z™

® Goal: conditions on A so that P is integral, i.e., P =conv(x € P: x € Z")

Can anyone recall Cramer's rule?

5/30

Ideal Formulations

Setup:
® P={x € R} | Ax < b} polyhedral set, with A € Z™*" and b € Z™

® Goal: conditions on A so that P is integral, i.e., P =conv(x € P: x € Z")

Can anyone recall Cramer's rule?

Proposition (Cramer’s Rule)
Let A € R"" be a nonsingular matrix. For b € R",

 det(A')
~ det(A)

Ax=b = x=A1b = x , Vi,

where A’ is the matrix with columns Aj"- = A forallj € {1,...,n}\ {i} and Al = b.

5/30

Ideal Formulations

Setup:
® P={x € R} | Ax < b} polyhedral set, with A € Z™*" and b € Z™

® Goal: conditions on A so that P is integral, i.e., P =conv(x € P: x € Z")

Can anyone recall Cramer's rule?

Proposition (Cramer’s Rule)

Let A € R"*" be a nonsingular matrix. For b € R",

det(A)

= Get(A)’

Ax=b = x=A1 = x

where A is the matrix with columns Aj"- = A forallj € {1,...,n}\ {i} and Al = b.

If det(A) € {1, -1}, that would be nice!

5/30

(Total) Unimodularity

Definition
1. A € Z™*" of full row rank is unimodular if the det(Ag) € {1, —1} for every basis B.
2. A€ 7™ " is totally unimodular if the determinant of each square submatrix of A is

0,1, or-1.

® Unimodularity allows handling standard form {x € Z'| | Ax = b}

® Total Unimodularity (TU) allows handling inequality form {x € Z| | Ax < b}

6/30

(Total) Unimodularity

Definition
1. A € Z™*" of full row rank is unimodular if the det(Ag) € {1, —1} for every basis B.
2. A€ 7™ " is totally unimodular if the determinant of each square submatrix of A is

0,1, or-1.
® Unimodularity allows handling standard form {x € Z'| | Ax = b}
® Total Unimodularity (TU) allows handling inequality form {x € Z| | Ax < b}
® Note: a TU matrix must belong to {0,1, —1}"*" but not a unimodular matrix:

3 2
e.g. A_L 1]

6/30

(Total) Unimodularity

Definition
1. A € Z™*" of full row rank is unimodular if the det(Ag) € {1, —1} for every basis B.
2. A€ 7™ " is totally unimodular if the determinant of each square submatrix of A is

0,1, or-1.

® Unimodularity allows handling standard form {x € Z'| | Ax = b}
® Total Unimodularity (TU) allows handling inequality form {x € Z| | Ax < b}

® Note: a TU matrix must belong to {0,1, —1}"*" but not a unimodular matrix:

3 2
e.g. A_L 1]

e Will provide easier ways to test for U and TU, but first let's see why we care...

6/30

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix A € Z™*" of full row rank is unimodular if and only if the
polyhedron P(b) = {x € R, | Ax = b} is integral for all b € Z™ with P(b) # 0.

2. The matrix A is totally unimodular if and only if the polyhedron
P(b) = {x € R | Ax < b} is integral for all b € Z™ with P(b) # 0.

7/30

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix A € Z™*" of full row rank is unimodular if and only if the
polyhedron P(b) = {x € R, | Ax = b} is integral for all b € Z™ with P(b) # 0.

2. The matrix A is totally unimodular if and only if the polyhedron
P(b) = {x € R | Ax < b} is integral for all b € Z™ with P(b) # 0.

Proof. (a) “=" Because A unimodular, for any b € Z™ with P(b) # (), any basic feasible
solution x = (xg,xn) € P(b) must satisfy xg = Ag'b € Z!5.

7/30

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix A € Z™*" of full row rank is unimodular if and only if the
polyhedron P(b) = {x € R, | Ax = b} is integral for all b € Z™ with P(b) # 0.

2. The matrix A is totally unimodular if and only if the polyhedron
P(b) = {x € R | Ax < b} is integral for all b € Z™ with P(b) # 0.
Proof. (a) “=" Because A unimodular, for any b € Z™ with P(b) # (), any basic feasible
solution x = (xg,xn) € P(b) must satisfy xg = Ag'b € Z!5.

“<" We have that P(b) # () is integral b € Z™. Let B be any basis of A.

e Sufficient to prove that Ag' is integral; (Ag integral and det(Ag) - det(A5") = 1 would
imply that det(Ag) € {1, —1} and thus A is unimodular)

7/30

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix A € Z™*" of full row rank is unimodular if and only if the
polyhedron P(b) = {x € R, | Ax = b} is integral for all b € Z™ with P(b) # 0.

2. The matrix A is totally unimodular if and only if the polyhedron
P(b) = {x € R | Ax < b} is integral for all b € Z™ with P(b) # 0.

Proof. (a) “=" Because A unimodular, for any b € Z™ with P(b) # (), any basic feasible
solution x = (xg,xn) € P(b) must satisfy xg = Ag'b € Z!5.
“<" We have that P(b) # () is integral b € Z". Let B be any basis of A.

e Sufficient to prove that Ag' is integral; (Ag integral and det(Ag) - det(A5") = 1 would
imply that det(Ag) € {1, —1} and thus A is unimodular)

® To prove AEI integral, consider b = Ag - z + e; where z is an integral vector
® Then Ag'-b=z+Az'e

7/30

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix A € Z™*" of full row rank is unimodular if and only if the

polyhedron P(b) = {x € R, | Ax = b} is integral for all b € Z™ with P(b) # 0.

2. The matrix A is totally unimodular if and only if the polyhedron
P(b) = {x € R | Ax < b} is integral for all b € Z™ with P(b) # 0.

Proof. (a) “=" Because A unimodular, for any b € Z™ with P(b) # (), any basic feasible
solution x = (xg,xn) € P(b) must satisfy xg = Ag'b € Z!5.

“<" We have that P(b) # () is integral b € Z". Let B be any basis of A.
e Sufficient to prove that Ag' is integral; (Ag integral and det(Ag) - det(A5") = 1 would
imply that det(Ag) € {1, —1} and thus A is unimodular)
® To prove AEI integral, consider b = Ag - z + e; where z is an integral vector
Then Azl - b=z+Ag'e
® By choosing z large so z + Ag'e; > 0, we obtain a b.f.s. for P(b)

Because P(b) integral, A;'e; must be integral

® Repeat argument for all e to proves that AEl is integral.

(b) Similar logic, omitted (see notes)

7/30

Checking for Total Unimodularity

Proposition

Consider a matrix A € {0,1,—1}"*". The following are equivalent:

1.

A is totally unimodular.

2. AT is totally unimodular.

3. [AT — AT | —] is totally unimodular.
4.
5
6

{x € R} | Ax = b,0 < x < u} is integral for all integral b, u.

. {x | a< Ax < b, 0 < x < u} is integral for all integral a, b, ¢, u.

. Each collection of columns of A can be partitioned into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector with
entries 0,+1, and —1. (By part 2, a similar result also holds for the rows of A.)

Each nonsingular submatrix of A has a row with an odd number of non-zero components.

The sum of entries in any square submatrix with even row and column sums is divisible by
four.

No square submatrix of A has determinant +2 or -2.

#6 perhaps most useful in practice...

8/30

Examples of TU Matrices #1
® G = (N,€&) undirected graph

e Ac {0,1}NI*I€l is the node-edge incidence matrix of G
Aie=1ifand only ifi € e

oNgFe

2

{1,5} {2,3} {2,6} {43} {4,5} {4,6}
1] 1 0 0 0 0 0
21 0 1 1 0 0 0
31 0 1 0 1 0 0
4 0 0 0 1 1 1
50 1 0 0 0 1 0
6| 0 0 1 0 0 1

9/30

Examples of TU Matrices #1

® G = (N,€&) undirected graph

e Ac {0,1}NI*I€l is the node-edge incidence matrix of G

Aie=1ifand only ifi € e

{1,5} {2,3} {2,6} {4,3} {4,5} {4,6}
0 e 1] 1 0 0 0 0 0
/ 21 0 1 1 0 0 0
9('6 3| 0 1 0 1 0 0
4] 0 0 0 1 1 1
LN 5/ 10 0 0 1 0
° e 6| 0 0 1 0 0 1

e Ais TU if and only if G is bipartite

® Bipartite matching problems have integral LP relaxations...

9/30

Examples of TU Matrices #2
e D= (V,A) is a directed graph

® M is the V x A incidence matrix of D

1 if and only if a = (-, v) (arc a enters node v)
M, .= ¢ —1 ifand onlyif a=(v,-) (arc a leaves node v)
0 otherwise.
a o (1,2) (1,3) (24 43) (3,5 (54 (46) (506)
1] -1 -1 0 0 0 0 0 0
2 1 0 -1 0 0 0 0 0
o e 3/ 0 1 0 1 -1 0 0 0
4 0 0 1 -1 0 1 -1 0
5 0 0 0 0 1 -1 0 -1
(3) (s) 6 o o o o 0 0 1 1

10/30

Examples of TU Matrices #2
e D=(V,A)is a directed graph

® M is the V x A incidence matrix of D

1 if and only if a= (-, v) (arc a enters node v)
M, .= ¢ —1 ifand onlyif a=(v,-) (arc a leaves node v)
0 otherwise.
a o (1,2) (1,3) (24 43) (3,5 (54 (46) (506)
1| -1 -1 0 0 0 0 0 0
2 1 0 -1 0 0 0 0 0
a e 3/ 0 1 0 1 -1 0 0 0
4 0 0 1 -1 0 1 -1 0
5 0 0 0 0 1 -1 0 -1
(3) (s) 6/ o o o o o o0 1 1

® Then Mis TU

® Network flow problems (e.g., Prosche Motors) with integral arc capacities and
integral supply/demand have integral LP relaxations

10/30

Examples of TU Matrices #3

® D= (V,A)is a directed graph, T = (V, Ao) is a directed tree on V

11/30

Examples of TU Matrices #3

® D= (V,A)is a directed graph, T = (V, Ao) is a directed tree on V
D (N, A) =(N,4")

’G 0 (&)

® M is the Ay x A matrix defined as follows: for a = (v,w) € A and a’ € Ay,

+1 if the unique v — w path in T passes through a’ forwardly
M, , = ¢ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.

11/30

Examples of TU Matrices #3

® D= (V,A)is a directed graph, T = (V, Ao) is a directed tree on V
D (N, A) =(N,4")

’G 0 (&)

® M is the Ay x A matrix defined as follows: for a = (v,w) € A and a’ € Ay,

+1 if the unique v — w path in T passes through a’ forwardly
M, , = ¢ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.

(1,2) (1,3) (2,4) (43) (3,5 (54) (46) (556)
(1,3) | 1 1 1 0 0 0 0 0
2,4 -1 0 0 0 0 0 0 0
(43)] -1 0 0 1 0 -1 1 0
(3,5)| 0 0 0 0 1 ~1 1 0
(56) | 0 0 0 0 0 0 1 1

11/30

Examples of TU Matrices #3

® D= (V,A)is a directed graph, T = (V, Ap) is a directed tree on V
= (N, A) = (N, A"

0 ’G 0 (&)

M is the Ag x A matrix defined as follows: for a = (v,w) € A and a’ € Ao,

+1 if the unique v — w path in T passes through a’ forwardly
M. ;= ¢ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.

Then M is TU

All previous examples were special cases of this
® Paul Seymour: all TU matrices generated from network matrices and two other matrices

12/30

Dual Integrality and Submodular Functions

® Alternative way to show integrality of polyhedra based on LP duality

® Simple observation: to show that LP relaxation is integral, it suffices to check that
the optimal value of any LP with integer cost vector c is an integer

13/30

Dual Integrality and Submodular Functions

® Alternative way to show integrality of polyhedra based on LP duality

® Simple observation: to show that LP relaxation is integral, it suffices to check that
the optimal value of any LP with integer cost vector c is an integer
Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the
optimal value Z;p := min{cTx | x € P} is an integer for all ¢ € Z".

Proof. Straightforward; omitted.

® To show integrality of P, we construct an integral dual-optimal solution
(for any c € Z")

13/30

Dual Integrality and Submodular Functions

® Alternative way to show integrality of polyhedra based on LP duality

® Simple observation: to show that LP relaxation is integral, it suffices to check that
the optimal value of any LP with integer cost vector c is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the
optimal value Z;p := min{cTx | x € P} is an integer for all ¢ € Z".

Proof. Straightforward; omitted.

® To show integrality of P, we construct an integral dual-optimal solution
(for any c € Z")

® Qur discussion here is quite specific

— broader concepts possible related to Totally Dual Integrality
- if interested, see notes for references

13/30

Submodular Functions
Definition
A function f(S) defined on subsets S of a finite set N = {1,...,n} is submodular if

F(S)+F(T)>F(SNT)+F(SUT), ¥S,TCN (1)

and it is supermodular if the reverse inequality holds.

14/30

Submodular Functions
Definition
A function f(S) defined on subsets S of a finite set N = {1,...,n} is submodular if

F(S)+F(T)>F(SNT)+F(SUT), ¥S,TCN (1)

and it is supermodular if the reverse inequality holds.

® For a more intuitive take, note that (1) is equivalent to:

(1) & f(S)—f(SNT)>f(SUT)—1f(T)

14/30

Submodular Functions
Definition
A function f(S) defined on subsets S of a finite set N = {1,...,n} is submodular if

F(S)+F(T)>F(SNT)+F(SUT), ¥S,TCN (1)

and it is supermodular if the reverse inequality holds.

® For a more intuitive take, note that (1) is equivalent to:

(1) < f(S) - f(5m T) >f(SUT)—f(T)
SF(SNT)U(S\T)) —Ff(SNT)=F(TU(S\T))—f(T)

14/30

Submodular Functions
Definition
A function f(S) defined on subsets S of a finite set N = {1,...,n} is submodular if

F(S)+F(T)>F(SNT)+F(SUT), ¥S,TCN (1)

and it is supermodular if the reverse inequality holds.

® For a more intuitive take, note that (1) is equivalent to:
(1) & f(S)—f(SNT)>f(SUT)—1f(T)
Sf((SNT)U(S\T))—f(SNT)>F(TU(S\T))—f(T)
® Set difference between arguments on the left is S\ (SN T)=S\T
® Set difference between arguments on the right is (SUT)\ T =S\ T

14/30

Submodular Functions
Definition
A function f(S) defined on subsets S of a finite set N = {1,...,n} is submodular if
f(S)+f(T)>f(SNT)+f(SUT), VS, TCN (1)

and it is supermodular if the reverse inequality holds.

® For a more intuitive take, note that (1) is equivalent to:

(1) & f(S)—f(SNT)>f(SUT)—1f(T)
Sf((SNT)U(S\T))—f(SNT)>F(TU(S\T))—f(T)
Set difference between arguments on the left is S\ (SN T)=S\T

Set difference between arguments on the right is (SUT)\ T =S5\ T

(1): gains when adding something (S\ T) to a smaller set (SN T) are larger
than when adding it to a larger set (T)

14/30

Submodular Functions
Definition
A function f(S) defined on subsets S of a finite set N = {1,...,n} is submodular if
f(S)+f(T)>f(SNT)+f(SUT), VS, TCN (1)

and it is supermodular if the reverse inequality holds.

® For a more intuitive take, note that (1) is equivalent to:

(1) & f(S)—f(SNT)>f(SUT)—1f(T)
Sf((SNT)U(S\T))—f(SNT)>F(TU(S\T))—f(T)
Set difference between arguments on the left is S\ (SN T)=S\T

Set difference between arguments on the right is (SUT)\ T =S5\ T

(1): gains when adding something (S\ T) to a smaller set (SN T) are larger
than when adding it to a larger set (T)

- Submodular functions exhibit “diminishing returns” or “decreasing differences”
= Might resemble concavity in economic intuition, but not computationally!
(submodular functions are more like convex functions!)

14/30

Submodular Functions - Equivalent Definitions

Proposition

A set function f : 2V — R is submodular if and only if:
(a) Forany S, T C N such that S C T and k ¢ T:

F(SU{k}) —F(S) > (T U{k})—F(T).
(b) Forany S C N and any j, k with j,k ¢ S and j # k:

F(SUL}) = () = F(SU{, k}) = F(SU {k}).

(32)

15/30

Submodular Functions - Equivalent Definitions

Proposition

A set function f : 2V — R is submodular if and only if:
(a) Forany S, T C N such that S C T and k ¢ T:

F(SU{k}) —F(S) > (T U{k})—F(T).
(b) Forany S C N and any j, k with j,k ¢ S and j # k:

F(SUL}) = () = F(SU{, k}) = F(SU {k}). (32)

® Submodular: “diminishing returns” or “decreasing differences”
- cost: economies of scale/scope
- profit: substitutability

® Supermodular is the opposite

15/30

Submodular Functions - Equivalent Definitions

Proposition

A set function f : 2V — R is submodular if and only if:
(a) Forany S, T C N such that S C T and k ¢ T:

F(SU{k}) —F(S) > (T U{k})—F(T).
(b) Forany S C N and any j, k with j,k ¢ S and j # k:

F(SUL}) = () = F(SU{, k}) = F(SU {k}). (32)

® Submodular: “diminishing returns” or “decreasing differences”

- cost: economies of scale/scope
- profit: substitutability

® Supermodular is the opposite

® Subsequently, interested in non-negative and increasing submodular functions

F(S)< f(T), ¥SCTCN.

15/30

Submodular Functions - Equivalent Definitions

® Linear functions. For w € R", f(A) = .., w; is both sub- and super-modular.

® Composition 2. If w > 0 and g concave, then f(S) = g(Z,-Es W,') is submodular.

® Optimal TSP cost on tree graphs. Consider undirected tree graph
G = (N, E) with a positive cost for traversing the edges (c. > 0 for every edge
e € E). For every S C N, define f(S) as the optimal (i.e., smallest) cost for a TSP
that goes through all the nodes in S. Then, 7(S) is submodular.

® Network optimization: consider directed graph with capacities on edges that
constrain how much flow can be transported; if f(S) is the maximum flow that can
be received at a set of sink nodes S, f(S) is submodular.

® |nventory and supply chain management: perishable inventory systems, dual
sourcing, and inventory control problems with trans-shipment.

16/30

Main Result

® For a submodular function f, consider the problem:

n

maximize Z 1+ Xj
j=1
D X <F(S), VSCN
J€S
n
x € ZL.
® T: set of feasible integer solutions

® P(f) the feasible set of the LP relaxation:

P(f)={xeR] | > x < f(S),VSCN

jes

17/30

Main Result

® For a submodular function f, consider the problem:

n

maximize g I X;

j=1
D X <F(S), VSCN
j€s
x € 7.
® T: set of feasible integer solutions

® P(f) the feasible set of the LP relaxation:
P(f)={xeR] | > x < f(S),VSCN
jes

Theorem

If f is submodular, increasing, integer valued, and f(()) = 0, then

P(f) = conv(T).

17/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:
n
maximize Z riX;j
j=1
S <A(S), Sc,
jes
x>0, j€N

® Key idea: construct feasible solutions for both, with equal value

® Key intuition: use a greedy construction in the primal!

18/30

Main Result - Proof

To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rjXx; minimize Z f(S)ys
j=1 SCN
S x < f(S), ScN, > ys>n, jeN,
jes Sjes

® Key idea: construct feasible solutions for both, with equal value
® Key intuition: use a greedy construction in the primal!

® Suppose n>rn>...>2n>0>rng1 > ... > 1

Let S°=0 and S/ = {1,...,j} for j € N.

18/30

Main Result - Proof

To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rjXx; minimize Z f(S)ys
j=1 SCN
S x < f(S), ScN, > ys>n, jeN,
jes Sjes

® Key idea: construct feasible solutions for both, with equal value
® Key intuition: use a greedy construction in the primal!

® Suppose n>rn>...>2n>0>rng1 > ... > 1

o letS°=0and & ={1,...,j} forjEN.

® \We prove that the following x and y are optimal for the primal and dual, respectively.

rj — ri+1, S:5J7 1§_/<k7
ys =191 s = sk,

{f(sf) —F($7Y, 1<k,
)(J' =
0, otherwise.

0, j> k.

18/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® f is integer-valued = x € Z". f increasing = x; > 0. For all T C N, we have:

19/30

Main Result - Proof

To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® f is integer-valued = x € Z". f increasing = x; > 0. For all T C N, we have:

= > (ASH-f™)

JjeT JET.j<k

19/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® f is integer-valued = x € Z". f increasing = x; > 0. For all T C N, we have:

= > (ASH-f™)

jeT JET j<k
(because f submodular) < Z (f(Sj NT)—f(& N T)) =
JET,j<k

19/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® f is integer-valued = x € Z". f increasing = x; > 0. For all T C N, we have:

= > (ASH-f™)

jeT JET j<k
(because f submodular) < Z (f(Sj NT)—f(& N T)) =
JET,j<k

=f(S N T)—F(0)

19/30

Main Result - Proof

To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® f is integer-valued = x € Z". f increasing = x; > 0. For all T C N, we have:

= > (ASH-f™)

jeT JET j<k
(because f submodular) < Z (f(Sj NT)—f(& N T)) =
JET,j<k

=f(S N T)—F(0)
(because f monotone) < f(T) — (D)

19/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.

)) ri—riy1, S=8, 1< <k,
F(S)~ F(S1), 1<j<k, o A
Xj =) ys = Ficy §=S5 ’
0, Jj> k. .
0, otherwise.

® f is integer-valued = x € Z". f increasing = x; > 0. For all T C N, we have:

= > (ASH-f™)

jeT JET j<k
(because f submodular) < Z (f(Sj NT)—f(& N T)) =
JET,j<k

=f(S*NT)-£(0)
(because f monotone) < f(T) — (D)
(because f(0) =0) = f(T). 19/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® To show y is dual feasible, note that ys > 0 and:

20/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® To show y is dual feasible, note that ys > 0 and:

D ys=ys+...tys=r,ifj<k and D ys=0>rp, ifj>k
Sjes Sjes

20/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
ys =< n, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® To show y is dual feasible, note that ys > 0 and:

D ys=ys+...tys=r,ifj<k and D ys=0>rp, ifj>k
Sjes Sjes

k
® The primal objective: Z r (f(sj) _ f(sj—1))

j=1

20/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

n

maximize Z rix; minimize Z f(S)ys
j=1 SCN
Y x <f(S), ScN doys=n, jeN.
JjES SjeSs

® We prove that the following x and y are optimal for the primal and dual, respectively.
rj — ri+1, SZSJ7 1§_/<k7
I, S =5k,

0, otherwise.

F(S)—F(S7Y), 1<j<k,
Xi =
" o, j> k.

® To show y is dual feasible, note that ys > 0 and:

D ys=ys+...tys=r,ifj<k and D ys=0>rp, ifj>k
Sjes Sjes

k

® The primal objective: Z r (f(sj) _ f(sj—1))
j=1
k—1 . . | |
® The dual objective Z(rf —ria)f(8) + rkf(sk) _ Z . (f(SJ) B f(ijl)) .
Jj=1 =

20/30

Improving LP Relaxations With Cuts

N conv(T)

N

® Recall: T are feasible points to an IP, conv (T) is their convex hull
® P is the feasible region of an LP relaxation to the IP
® Typically, the formulation is not ideal:

conv(T)C P

21/30

Improving LP Relaxations With Cuts

\ conv(T)

N

Typically, the formulation is not ideal:

Recall: T are feasible points to an IP, conv (T) is their convex hull

P is the feasible region of an LP relaxation to the IP

conv(T)C P

How to improve it by generating valid cuts?
- Linear inequalities satisfied by T and conv (T), but not by P?

21/30

Improving LP Relaxations With Cuts

® Setup: A, b, c with rational entries and the IP:

minimize{ch c Ax=b, x>0, x€ Z"}

o If x* = [x5: x3] be a b.f.s. for the LP relaxation. Then we have:
Apxp+Awxy =b & xg+ Ag'Awxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

22/30

Improving LP Relaxations With Cuts
® Setup: A, b, ¢ with rational entries and the IP:

minimize{ch c Ax=b, x>0, xe Z”}

o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxi +Anxy =b & xh+Ag'Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

* = * _ 1
x; + E a;jz; =b

JEN

* = *x L
x,-—i—ga,-jxj—b
JEN

22/30

Improving LP Relaxations With Cuts
® Setup: A, b, ¢ with rational entries and the IP:

minimize{ch c Ax=b, x>0, xe Z”}
o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxi +Anxy =b & xh+Ag'Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

x’{—i—Zdija:;:l;
x,-*-i—Zé,-jxf:t_) . o\ —— &N
Jen o o o o
Vx e T:x20:>x,-+ZLa',-ijj§5 . .T. .)
JEN |\
P~ "/

22/30

Improving LP Relaxations With Cuts
® Setup: A, b, ¢ with rational entries and the IP:

minimize{ch c Ax=b, x>0, xe Z”}
o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxi +Anxy =b & xh+Ag'Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

v+ Y agw) =b
X +Z§Uxfk =b ! o N —— &N
JEN o0 o ©
VXeT:x20=>Xi+ZL5ijJXJ§B ° OT' °
VXGT:>X€Z"2>XI'+ZL§UJXJSLEJ i ——

JEN

22/30

Improving LP Relaxations With Cuts

® Setup: A, b, ¢ with rational entries and the IP:

minimize{ch c Ax=b, x>0, x€ Z"}

o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxg +Anxy =b & xh+ Azt Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

* - * 7
x; + E a;jr; =b
JEN

* = * I
x,-+§a,-jxj—b
JEN

Vx e T:>x20:>x,-+ZL5,-ijj§E | $i+ZLdijJ1’j:m
JEN

VX€T=>X€ZHZ>X,'+ZL5;J’JXJ'§|_EJ P
JEN

22/30

Improving LP Relaxations With Cuts

® Setup: A, b, ¢ with rational entries and the IP:
minimize{ch c Ax=b, x>0, x€ Z"}
o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxg +Anxy =b & xh+ Azt Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

_ (E:+Zd”$;=l—)
X/ +Z§,~jxj* =b JEN
jeN |
Vx e T:>x20:>x,-+ZL5,-ijj§E | $i+ZLdijJ1’j:m
JEN
VX€T=>X€ZHZ>X,'+ZL5;J’JXJ'§|_EJ P
JEN

® This inequality is satisfied by all integer solutions x € T
® It is not satisfied by x* because x* = b is fractional

® Gomory cut

22/30

Improving LP Relaxations With Cuts
.T: + Z C_lijm; :i)

X; + Z , VxeT
Jen @i+ Y |ayle; = (b

jEN

® Gomory cut

Systematically adding all the Gomory cuts lead to first cutting algorithm for IP
1. Solve the linear relaxation and get an optimal solution x*
2. If x* is integer stop
3. If not, add a cut (i.e., linear inequality that all integer solutions satisfy but that x*
does not satisfy) and go to step 1 again.

® Can show that this is guaranteed to terminate

Which simplex algorithm would you use in Step 17

® |f you're wondering how this works for Ax < b or why it terminates, see notes!

23/30

Lift-and-Project
® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P:= {x €¢ R” : Ax > b, x > 0}

e Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

24/30

Lift-and-Project
® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P:= {x €¢ R” : Ax > b, x > 0}

e Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

24/30

Lift-and-Project
® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P:= {x €¢ R” : Ax > b, x > 0}

e Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:

xj(Ax —b) >0, (1—x;)(Ax—b)>0.

24/30

Lift-and-Project
® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P:= {x €¢ R” : Ax > b, x > 0}

e Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:
xj(Ax —b) >0, (1—x;)(Ax—b)>0.

3. Linearize system by substituting y; for x;x; (for i # j), and x; for x7.
Call resulting polyhedron in variables (x, y) as M; (dimension R>").

24/30

Lift-and-Project
® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P:= {x €¢ R” : Ax > b, x > 0}

e Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:

xj(Ax —b) >0, (1—x;)(Ax—b)>0.

3. Linearize system by substituting y; for x;x; (for i # j), and x; for x7.
Call resulting polyhedron in variables (x, y) as M; (dimension R>").

4. Project M; onto the x-variables. Let P; be the resulting polyhedron.

24/30

Lift-and-Project
® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P:= {x €¢ R” : Ax > b, x > 0}

e Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:
xj(Ax —b) >0, (1—x;)(Ax—b)>0.

3. Linearize system by substituting y; for x;x; (for i # j), and x; for x7.
Call resulting polyhedron in variables (x, y) as M; (dimension R>").

4. Project M; onto the x-variables. Let P; be the resulting polyhedron.

® Claims. (i) Every binary x € P satisfies x € P;. (ii) P; C P.

24/30

Lift-and-Project
® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P:= {x €¢ R” : Ax > b, x > 0}

e Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:

xj(Ax —b) >0, (1—x;)(Ax—b)>0.

3. Linearize system by substituting y; for x;x; (for i # j), and x; for x7.
Call resulting polyhedron in variables (x, y) as M; (dimension R>").

4. Project M; onto the x-variables. Let P; be the resulting polyhedron.
® Claims. (i) Every binary x € P satisfies x € P;. (ii) P; C P.
® (Nj_, P; is called the lift-and-project closure. Clearly, (7_, P; C P

® Bonami and Minoux : 35 Mixed 0-1 IPs from MIPLIB library, lift-and-project
closure reduces integrality gap by 37% on average

24/30

Other Cuts

¢ Mixed-Integer Rounding (MIR) Cuts: designed for general integer variables
e Knapsack Cover Cuts: applied for knapsack constraint

w>0,wix <K =

25/30

Other Cuts

Mixed-Integer Rounding (MIR) Cuts: designed for general integer variables
Knapsack Cover Cuts: applied for knapsack constraint

w>0,wx <K = ZX,-§|C|—1foranyC : ZW,'>K (Cover)
i ieC

Clique Cuts: used to strengthen Y7 | x; < 1 when some of the x; form a clique
Flow Cover and Flow Path Cuts: specialized cuts for network flow problems
Lattice-Free Cuts, Multi-Branch Split Cuts

Comb Inequalities for TSP

Solvers like Gurobi have many of these built-in and allow adding custom cuts

Adding “good” cuts is problem-dependent; requires good understanding of
combinatorial structure

25/30

Solving IPs

IPs “hard,” but many methods devised

® Exact algorithms: guaranteed to find optimal solution, but may take exponential
number of iterations
- cutting planes
= branch and bound
= branch and cut
- lift-and-project methods
= dynamic programming methods

® Approximation algorithms: suboptimal solution with a bound on the degree of its
suboptimality, in polynomial time

® Heuristic algorithms: suboptimal solution, typically no guarantees on its quality;
typically run fast
= local search methods
- simulated annealing

26/30

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* Ifx,y, z binary, done! @

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

« Ifx y, z binary, done! * At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1

* Ifx,y, z binary, done!
e L:=OPT(F)is a lower bound on optimal cost

Branch based on
fractional variable y

y=0 y=1

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1

* Ifx,y, z binary, done!
e L:=OPT(F)is a lower bound on optimal cost

Branch based on
fractional variable y

) y=0 y=1
F,: Solve withy=0,0<x,z<1
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1

* Ifx,y, z binary, done! . .
e L:=OPT(F)is a lower bound on optimal cost

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1
* Optimal value OPT(F;)

Branch on x if
OPT(F,) < U

x=0 x=1

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

Branch on x if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1

e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)
¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

Branch on x if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

Branch on x if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F,), OPT(F,))

Branch on x if x=1 is better lower bound!

OPT(F;) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F,), OPT(F,))

Branch on x if x=1 is better lower bound!

OPT(F;) < U

x=0

In fact, could do even better!
Replace OPT(F;) with

F;: Solve with x=y=0,0<z< 1 F,: Infeasible! min(OPT(F;), OPT(F,)) = OPT(F;)

e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F,), OPT(F,))

Branch on x if x=1 is better lower bound!

OPT(F;) < U

x=0

In fact, could do even better!

Replace OPT(F,) with
F: Solve with x=y=0,0<z< 1 F,: Infeasible! min(OPT(F;), OPT(F,)) = OPT(F;)
e At optimality: get z;5=1
« A feasible solution! Trade-off between exploring depth-first vs.
* Update upper bound U := OPT(F;) breadth-first
¢ IfU-L < tolerance, stop e depth-first gets to a binary solution “faster”

* breadth-first allow improving lower bounds

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F;), OPT(F,))
is better lower bound!

Branch on x if
OPT(F,) < U

Branch on z if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F;), OPT(F,))
is better lower bound!

Branch on x if
OPT(F,) < U

Branch on z if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible! Keep bran.chmg &'boundmg until
< At optimality: get z,=1 you achieve desired tolerance
* Afeasible solution! (or get proof of optimality)

¢ Update upper bound U := OPT(F;)
¢ If U-L < tolerance, stop

Branch and Bound

® More general formulation: let F be set of feasible solutions to an IP

1. Maintain upper bound U, lower bound L on problem’s objective

2. Partition F into finite collection of subsets F;

3. Choose an unsolved subproblem and solve it; only need a lower bound /(F;) on cost:

L(Fi) < mincTx.
xeF;

If £(F;) > U, no need to explore subproblem F; further!
Otherwise, partition F; further and update collection of subproblems/nodes to explore
If we get a feasible solution, update the upper bound U
If U— L <e, stop
When solving all children of a given node, can update lower bound at the node

© N R

27/30

Branch and Bound

® More general formulation: let F be set of feasible solutions to an IP

1.
2.
3.

© N R

Maintain upper bound U, lower bound L on problem’s objective
Partition F into finite collection of subsets F;
Choose an unsolved subproblem and solve it; only need a lower bound ¢(F;) on cost:
L(Fi) < mincTx.
xeF;
If £(F;) > U, no need to explore subproblem F; further!
Otherwise, partition F; further and update collection of subproblems/nodes to explore
If we get a feasible solution, update the upper bound U
If U— L <e, stop
When solving all children of a given node, can update lower bound at the node

® Many choices:

1.

How to explore subproblems: “breadth-first search” vs “depth-first search” vs...

2. How to derive lower bound ¢(F;): LP relaxation vs. Lagrangean duality
3.
4. How to partition a problem into subproblems? We used x; < |x;"| and x; > [x;"]

Improve LP relaxations by adding cuts: branch-and-cut approaches

27/30

G u I‘Obi Output Available computational resources

Parameter OutputFlag unchanged
Value: 1 Min: @ Max: 1 Default: 1
Gurobi Optimizer version 9.1.2 build v9.1.2rc@ (linux64)
Thread count: 1 physical cores, 2 logical processors, using up to 2 threads Summary of model
Optimize a model with 55 rows, 105 columns and 310 nonzeros . . .
constraints, # variables, sparsity,

Model fingerprint: @x@e3b21e3
coefficient values

Variable types: 5 continuous, 100 integer (100 binary)
Coefficient statistics:

Matrix range [Se-02, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 4e+00] . . .
Found heuristic solution: objective -0.0860000 Can we get close with a heuristic?

Presolve removed 18 rows and 33 columns

Presolve time: 0.00s

Presolved: 37 rows, 72 columns, 192 nonzeros

Found heuristic solution: objective 1.0190799
Variable types: @ continuous, 72 integer (68 binary)

Can we simplify the problem
(presolve)

Root relaxation: objective 3.139194e+00, 54 iterations, .00 seconds

Nodes | Current Node | Objective Bounds |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

Branch & Bound

2] 2] 3.13919 2] 7 1.01908 3.13919 208% - 0s r
H 2] 2] 2.8417259 3.13919 10.5% - os .
H oo o 3losas352 313019 2.03% - o (current node, bound on objective, gap)
H 2] 2] 3.0879121 3.13919 1.66% - 0s

]] 3.10586 [8 3.08791 3.10586 0.58% - s

]] cutoff] 3.08791 3.08791 0.00% - os .

Cutting planes:
Gomory: 1
MIR: 1
GUB cover: 1
RLT: 1

utting planes applied

Explored 1 nodes (57 simplex iterations) in .84 seconds
Thread count was 2 (of 2 available processors)

Solution count 5: 3.08791 3.06484 2.84173 ... -0

Optimal solution found (tolerance 1.00e-04)
Best objective 3.087912087912e+00, best bound 3.087912087912e+00, gap 0.0000%

Optimal solution found

Solved the optimization problem. ..

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

® Suppose the “ugly/hard” constraints are Ax > b ...

.. and we are able to minimize efficiently c7x over X := {x € Z" | Dx > d}

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

® Suppose the “ugly/hard” constraints are Ax > b ...

.. and we are able to minimize efficiently c7x over X := {x € Z" | Dx > d}

® Let p > 0 be dual variables (Lagrange multipliers) for Ax > b; form Lagrangean:
L(x,p) :=c'x+p"(b— Ax)

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

Suppose the “ugly/hard” constraints are Ax > b ...

.. and we are able to minimize efficiently c7x over X := {x € Z" | Dx > d}

Let p > 0 be dual variables (Lagrange multipliers) for Ax > b; form Lagrangean:
L(x,p) :=c'x+p"(b— Ax)

Then we can get the following lower bound on Zp:

Vp>0, g(p) = ng; [c"x+p'(b—Ax)] = g(p) < Zp

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

® Suppose the “ugly/hard” constraints are Ax > b ...

. and we are able to minimize efficiently cTx over X' := {x € Z" | Dx > d}

L(x,p) :=c'x+p"(b— Ax)

® Then we can get the following lower bound on Zp:

Vp>0, g(p) = ng; [c"x+p'(b—Ax)] = g(p) < Zp

® Important! We are not dualizing all the constraints!
— We keep the constraints x € X because these are “easy”
- Similar to LP developments: recall how we kept the constraints x; > 0 or x; <0
- What matters is that we can easily compute g(p) for any p > 0

Let p > 0 be dual variables (Lagrange multipliers) for Ax > b; form Lagrangean:

28/30

Lagrangian Duality in IP
® Because g(p) < Zip,Vp > 0, we can look for the best lower bound:

Zp = rpggg(p) (2)

® This is the Lagrangean dual of our problem.
- g(p) piece-wise linear, concave; supergradient available
— Can compute Zp using first-order-methods
- Weak duality holds: Zp < Zjp
= Unlike LP, we do not have a strong duality result!

29/30

Lagrangian Duality in IP

® Because g(p) < Zip,Vp > 0, we can look for the best lower bound:

Zp = rpggg(p) (2)

This is the Lagrangean dual of our problem.
- g(p) piece-wise linear, concave; supergradient available
— Can compute Zp using first-order-methods
- Weak duality holds: Zp < Zjp
= Unlike LP, we do not have a strong duality result!

® Most important result here (recall that X := {x € Z" | Dx > d})

Zp=min{c'x : Ax>b, xé€ conv(X)}.

Immediate consequence: we get stronger bounds than from LP relaxation,
Zip < Zp < Zp.

® Details, proofs: see notes

29/30

Other Methods

® Dynamic Programming very powerful
® Can solve in pseudo-polynomial time IPs in fixed dimension
® Heuristics can also be powerful

- Local search

- Simmulated annealing
- Genetic algorithms, “ant colony optimization”, etc.

30/30

