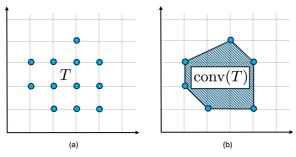
Lecture 8

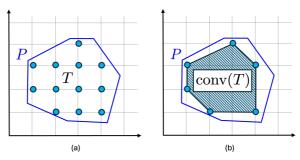
October 16, 2024

• Different formulations of the same IP can result in different LP relaxations

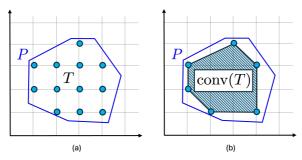
• What is an "ideal" formulation?



- T : all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron

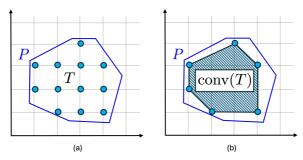


- T : all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If we had access to conv(T), we would be "done": solve LP over conv(T)!



- T : all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If we had access to conv(T), we would be "done": solve LP over conv(T)!
- If *P* is the feasible region of the LP relaxation, then

$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.

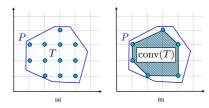


- T : all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If we had access to conv(T), we would be "done": solve LP over conv(T)!
- If *P* is the feasible region of the LP relaxation, then

$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.

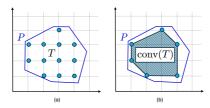
• The "closer" *P* hugs conv (*T*), the better!

Key Take-Aways and Next Steps



- Quality of IP formulation : how closely its LP relaxation approximates $\operatorname{conv}\left(T\right)$
- Formulations A, B equivalent for an IP. A is **stronger than** B if $P_A \subset P_B$
- Constraints play a more subtle role in IPs than in LPs
 - Adding valid constraints for T that cut off fractional points from P is very useful!
 - More constraints not necessarily worse in IP!

Key Take-Aways and Next Steps



- ullet Quality of IP formulation : how closely its LP relaxation approximates $\operatorname{conv}\left(\mathcal{T}\right)$
- Formulations A, B equivalent for an IP. A is **stronger than** B if $P_A \subset P_B$
- Constraints play a more subtle role in IPs than in LPs
 - Adding valid constraints for T that cut off fractional points from P is very useful!
 - More constraints not necessarily worse in IP!
- 1. Discuss a few **ideal formulations** : P = conv(T)
- 2. Discuss how to **improve** formulations by adding **cuts**
- 3. Discuss algorithms/solution approaches

Ideal Formulations

Setup:

- $P = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ polyhedral set, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$
- Goal: conditions on A so that P is integral, i.e., $P = \operatorname{conv} (x \in P : x \in \mathbb{Z}^n)$

Can anyone recall Cramer's rule?

Ideal Formulations

Setup:

- $P = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ polyhedral set, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$
- **Goal:** conditions on A so that P is integral, i.e., $P = \operatorname{conv}(x \in P : x \in \mathbb{Z}^n)$

Can anyone recall Cramer's rule?

Proposition (Cramer's Rule)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. For $b \in \mathbb{R}^n$,

$$Ax = b \implies x = A^{-1}b \implies x_i = \frac{\det(A')}{\det(A)}, \ \forall i,$$

where A^i is the matrix with columns $A^i_i = A_j$ for all $j \in \{1, ..., n\} \setminus \{i\}$ and $A^i_i = b$.

Ideal Formulations

Setup:

- $P = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ polyhedral set, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$
- Goal: conditions on A so that P is integral, i.e., $P = \operatorname{conv} (x \in P : x \in \mathbb{Z}^n)$

Can anyone recall Cramer's rule?

Proposition (Cramer's Rule)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. For $b \in \mathbb{R}^n$,

$$Ax = b \implies x = A^{-1}b \implies x_i = \frac{\det(A')}{\det(A)}, \ \forall i,$$

where A^i is the matrix with columns $A^i_j = A_j$ for all $j \in \{1, \dots, n\} \setminus \{i\}$ and $A^i_i = b$.

If $det(A) \in \{1, -1\}$, that would be nice!

(Total) Unimodularity

Definition

- 1. $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $det(A_B) \in \{1, -1\}$ for every basis B.
- 2. $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is
- 0, 1, or -1.
 - **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
 - **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$

(Total) Unimodularity

Definition

- 1. $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $det(A_B) \in \{1, -1\}$ for every basis B.
- 2. $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is
- 0, 1, or -1.
 - **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
 - **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$
 - **Note:** a TU matrix must belong to $\{0,1,-1\}^{m\times n}$, but not a unimodular matrix:

e.g.
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

(Total) Unimodularity

Definition

- 1. $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $det(A_B) \in \{1, -1\}$ for every basis B.
- 2. $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is
- 0, 1, or -1.
 - **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
 - **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$
 - Note: a TU matrix must belong to $\{0,1,-1\}^{m\times n}$, but not a unimodular matrix:

e.g.
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

Will provide easier ways to test for U and TU, but first let's see why we care...

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

" \Leftarrow " We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A.

• Sufficient to prove that A_B^{-1} is integral; $(A_B \text{ integral and } \det(A_B) \cdot \det(A_B^{-1}) = 1$ would imply that $\det(A_B) \in \{1, -1\}$ and thus A is unimodular)

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

" \Leftarrow " We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A.

- Sufficient to prove that A_B⁻¹ is integral; (A_B integral and det(A_B) · det(A_B⁻¹) = 1 would imply that det(A_B) ∈ {1, −1} and thus A is unimodular)
- To prove A_B^{-1} integral, consider $b = A_B \cdot z + e_i$ where z is an integral vector
- Then $A_B^{-1} \cdot b = z + A_B^{-1} e_i$

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

" \Leftarrow " We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A.

- Sufficient to prove that A_B⁻¹ is integral; (A_B integral and det(A_B) · det(A_B⁻¹) = 1 would imply that det(A_B) ∈ {1, −1} and thus A is unimodular)
- To prove A_B^{-1} integral, consider $b = A_B \cdot z + e_i$ where z is an integral vector
- Then $A_B^{-1} \cdot b = z + A_B^{-1} e_i$
- By choosing z large so $z + A_B^{-1}e_i \ge 0$, we obtain a b.f.s. for P(b)
- Because P(b) integral, $A_B^{-1}e_i$ must be integral
- Repeat argument for all e_i to proves that A_B^{-1} is integral.
- (b) Similar logic, omitted (see notes)

Checking for Total Unimodularity

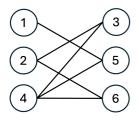
Proposition

Consider a matrix $A \in \{0, 1, -1\}^{m \times n}$. The following are equivalent:

- 1. A is totally unimodular.
- 2. A^T is totally unimodular.
- 3. $[A^T A^T I I]$ is totally unimodular.
- 4. $\{x \in \mathbb{R}^n_+ \mid Ax = b, 0 \le x \le u\}$ is integral for all integral b, u.
- 5. $\{x \mid a \leq Ax \leq b, \ell \leq x \leq u\}$ is integral for all integral a, b, ℓ, u .
- 6. Each collection of columns of A can be partitioned into two parts so that the sum of the columns in one part minus the sum of the columns in the other part is a vector with entries 0, +1, and -1. (By part 2, a similar result also holds for the rows of A.)
- 7. Each nonsingular submatrix of A has a row with an odd number of non-zero components.
- 8. The sum of entries in any square submatrix with even row and column sums is divisible by four.
- 9. No square submatrix of A has determinant +2 or -2.

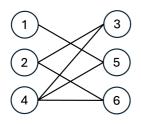
#6 perhaps most useful in practice...

- $G = (\mathcal{N}, \mathcal{E})$ undirected graph
- $A \in \{0,1\}^{|\mathcal{N}|\times|\mathcal{E}|}$ is the node-edge incidence matrix of G $A_{i,e} = 1$ if and only if $i \in e$



	$\mid \{1, 5\}$	$\{2,3\}$	$\{2, 6\}$	$\{4, 3\}$	$\{4, 5\}$	$\{4, 6\}$
1	1	0	0	0	0	0
2	0	1	1	0	0	0
3	0	1	0	1	0	0
4	0	0	0	1	1	1
5	1	0	0	0	1	0
6	0	0	1	0	0	1

- $G = (\mathcal{N}, \mathcal{E})$ undirected graph
- $A \in \{0,1\}^{|\mathcal{N}|\times|\mathcal{E}|}$ is the node-edge incidence matrix of G $A_{i,e} = 1$ if and only if $i \in e$

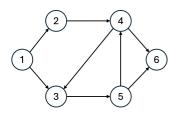


	$ \{1, 5\}$	$\{2,3\}$	$\{2, 6\}$	$\{4, 3\}$	$\{4, 5\}$	$\{4,6\}$
1	1	0	0	0	0	0
2	0	1	1	0	0	0
3	0	1	0	1	0	0
4	0	0	0	1	1	1
5	1	0	0	0	1	0
6	0	0	1	0	0	1

- A is **TU** if and only if G is bipartite
- Bipartite matching problems have integral LP relaxations...

- D = (V, A) is a **directed graph**
- M is the $V \times A$ incidence matrix of D

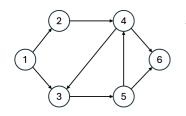
$$M_{v,a} = \begin{cases} 1 & \text{if and only if } a = (\cdot, v) \text{ (arc } a \text{ enters node } v) \\ -1 & \text{if and only if } a = (v, \cdot) \text{ (arc } a \text{ leaves node } v) \\ 0 & \text{otherwise.} \end{cases}$$



(1, 2)	(1, 3)	(2, 4)	(4, 3)	(3, 5)	(5, 4)	(4, 6)	(5, 6)
					0	0	0
1	0	-1	0	0	0	0	0
					0	0	0
0	0	1	-1	0	1	-1	0
0	0	0	0	1	-1	0	-1
0	0	0	0	0	0	1	1
	$ \begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{ccc} -1 & -1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ccccc} -1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- D = (V, A) is a **directed graph**
- *M* is the *V* × *A* incidence matrix of *D*

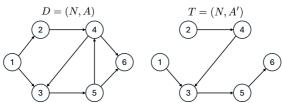
$$M_{v,a} = \begin{cases} 1 & \text{if and only if } a = (\cdot, v) \text{ (arc } a \text{ enters node } v) \\ -1 & \text{if and only if } a = (v, \cdot) \text{ (arc } a \text{ leaves node } v) \\ 0 & \text{otherwise.} \end{cases}$$



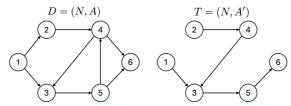
(1, 2)	(1, 3)	(2, 4)	(4, 3)	(3, 5)	(5, 4)	(4, 6)	(5, 6)
-1	-1	0	0	0	0	0	0
1	0	-1	0	0	0	0	0
0	1	0	1	-1	0	0	0
0	0	1	-1	0	1	-1	0
0	0	0	0	1	-1	0	-1
0	0	0	0	0	0	1	1
	-1 1 0 0	$\begin{array}{ccc} -1 & -1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$	$\begin{array}{ccccc} -1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- Then M is TU
- Network flow problems (e.g., Prosche Motors) with integral arc capacities and integral supply/demand have integral LP relaxations

• D = (V, A) is a **directed graph**, $T = (V, A_0)$ is a directed tree on V



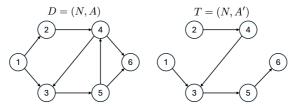
• D = (V, A) is a **directed graph**, $T = (V, A_0)$ is a directed tree on V



• M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v-w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v-w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v-w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

• D = (V, A) is a **directed graph**, $T = (V, A_0)$ is a directed tree on V

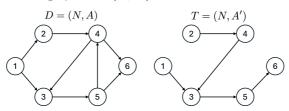


• M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v-w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v-w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v-w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

	(1, 2)	(1, 3)	(2,4)	(4, 3)	(3,5)	(5,4)	(4, 6)	(5,6)
(1,3)	1	1	1	0	0	0	0	0
	-1							
(4, 3)	-1	0	0	1	0	-1	1	0
(3,5)	0	0	0	0	1	-1	1	0
(5,6)	0	0	0	0	0	0	1	1

• D = (V, A) is a **directed graph**, $T = (V, A_0)$ is a directed tree on V



• M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v - w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

- Then M is TU
- All previous examples were special cases of this
- Paul Seymour: all TU matrices generated from network matrices and two other matrices

Dual Integrality and Submodular Functions

- Alternative way to show integrality of polyhedra based on LP duality
- Simple observation: to show that LP relaxation is integral, it suffices to check that the optimal value of any LP with integer cost vector *c* is an integer

Dual Integrality and Submodular Functions

- Alternative way to show integrality of polyhedra based on LP duality
- Simple observation: to show that LP relaxation is integral, it suffices to check that the optimal value of any LP with integer cost vector *c* is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the optimal value $Z_{LP} := \min\{c^{\mathsf{T}}x \mid x \in P\}$ is an integer for all $c \in \mathbb{Z}^n$.

Proof. Straightforward; omitted.

• To show integrality of P, we construct an integral dual-optimal solution (for any $c \in \mathbb{Z}^n$)

Dual Integrality and Submodular Functions

- Alternative way to show integrality of polyhedra based on LP duality
- Simple observation: to show that LP relaxation is integral, it suffices to check that the optimal value of any LP with integer cost vector *c* is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the optimal value $Z_{LP} := \min\{c^{\mathsf{T}}x \mid x \in P\}$ is an integer for all $c \in \mathbb{Z}^n$.

Proof. Straightforward; omitted.

- To show integrality of P, we construct an integral dual-optimal solution (for any $c \in \mathbb{Z}^n$)
- Our discussion here is quite specific
 - broader concepts possible related to Totally Dual Integrality
 - if interested, see notes for references

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

$$(1) \Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \setminus T)) - f(T)$

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \setminus T)) - f(T)$

- Set difference between arguments on the left is $S \setminus (S \cap T) = S \setminus T$
- Set difference between arguments on the right is $(S \cup T) \setminus T = S \setminus T$

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \setminus T)) - f(T)$

- Set difference between arguments on the left is $S \setminus (S \cap T) = S \setminus T$
- Set difference between arguments on the right is $(S \cup T) \setminus T = S \setminus T$
- (1): gains when adding something $(S \setminus T)$ to a smaller set $(S \cap T)$ are larger than when adding it to a larger set (T)

Submodular Functions

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, ..., n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

• For a more intuitive take, note that (1) is equivalent to:

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \setminus T)) - f(T)$

- Set difference between arguments on the left is $S \setminus (S \cap T) = S \setminus T$
- Set difference between arguments on the right is $(S \cup T) \setminus T = S \setminus T$
- (1): gains when adding something (S \ T) to a smaller set (S ∩ T) are larger than when adding it to a larger set (T)
 - Submodular functions exhibit "diminishing returns" or "decreasing differences"
 - Might resemble concavity in economic intuition, but not computationally! (submodular functions are more like convex functions!)

Proposition

A set function $f: 2^N \to \mathbb{R}$ is submodular if and only if:

(a) For any $S, T \subseteq N$ such that $S \subseteq T$ and $k \notin T$:

$$f(S \cup \{k\}) - f(S) \ge f(T \cup \{k\}) - f(T).$$

(b) For any $S \subseteq N$ and any j, k with $j, k \notin S$ and $j \neq k$:

$$f(S \cup \{j\}) - f(S) \ge f(S \cup \{j,k\}) - f(S \cup \{k\}).$$
 (3.2)

Proposition

A set function $f: 2^N \to \mathbb{R}$ is submodular if and only if:

(a) For any $S, T \subseteq N$ such that $S \subseteq T$ and $k \notin T$:

$$f(S \cup \{k\}) - f(S) \ge f(T \cup \{k\}) - f(T).$$

(b) For any $S \subseteq N$ and any j, k with $j, k \notin S$ and $j \neq k$:

$$f(S \cup \{j\}) - f(S) \ge f(S \cup \{j, k\}) - f(S \cup \{k\}).$$
 (3.2)

- Submodular: "diminishing returns" or "decreasing differences"
 - cost: economies of scale/scope
 - profit: substitutability
- Supermodular is the opposite

Proposition

A set function $f: 2^N \to \mathbb{R}$ is submodular if and only if:

(a) For any $S, T \subseteq N$ such that $S \subseteq T$ and $k \notin T$:

$$f(S \cup \{k\}) - f(S) \ge f(T \cup \{k\}) - f(T).$$

(b) For any $S \subseteq N$ and any j, k with $j, k \notin S$ and $j \neq k$:

$$f(S \cup \{j\}) - f(S) \ge f(S \cup \{j, k\}) - f(S \cup \{k\}).$$
 (3.2)

- Submodular: "diminishing returns" or "decreasing differences"
 - cost: economies of scale/scope
 - profit: substitutability
- Supermodular is the opposite
- Subsequently, interested in non-negative and increasing submodular functions

$$f(S) \le f(T), \quad \forall S \subset T \subseteq N.$$

- Linear functions. For $w \in \mathbb{R}^n$, $f(A) = \sum_{i \in A} w_i$ is both sub- and super-modular.
- Composition 2. If $w \ge 0$ and g concave, then $f(S) = g\left(\sum_{i \in S} w_i\right)$ is submodular.
- Optimal TSP cost on tree graphs. Consider undirected tree graph
 G = (N, E) with a positive cost for traversing the edges (c_e ≥ 0 for every edge
 e ∈ E). For every S ⊆ N, define f(S) as the optimal (i.e., smallest) cost for a TSP
 that goes through all the nodes in S. Then, f(S) is submodular.
- **Network optimization:** consider directed graph with capacities on edges that constrain how much flow can be transported; if f(S) is the maximum flow that can be received at a set of sink nodes S, f(S) is submodular.
- **Inventory and supply chain management:** perishable inventory systems, dual sourcing, and inventory control problems with trans-shipment.

Main Result

• For a submodular function f, consider the problem:

$$\begin{aligned} \text{maximize } & \sum_{j=1}^n r_j \cdot x_j \\ & \sum_{j \in S} x_j \leq f(S), \ \forall S \subseteq N \\ & x \in \mathbb{Z}_+^n. \end{aligned}$$

- T: set of feasible integer solutions
- P(f) the feasible set of the LP relaxation:

$$P(f) = \left\{ x \in \mathbb{R}^n_+ \mid \sum_{j \in S} x_j \le f(S), \ \forall S \subset N \right\}$$

Main Result

• For a submodular function f, consider the problem:

$$\begin{aligned} \text{maximize } & \sum_{j=1}^n r_j \cdot x_j \\ & \sum_{j \in S} x_j \leq f(S), \ \forall S \subseteq N \\ & x \in \mathbb{Z}_+^n. \end{aligned}$$

- *T*: set of feasible integer solutions
- P(f) the feasible set of the LP relaxation:

$$P(f) = \left\{ x \in \mathbb{R}^n_+ \mid \sum_{j \in S} x_j \le f(S), \ \forall S \subset N \right\}$$

Theorem

If f is submodular, increasing, integer valued, and $f(\emptyset) = 0$, then

$$P(f) = \operatorname{conv}(T)$$
.

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

maximize
$$\sum_{j=1}^{n} r_{j}x_{j}$$

 $\sum_{j \in S} x_{j} \leq f(S), \quad S \subset N,$
 $x_{j} \geq 0, \ j \in N$

- Key idea: construct feasible solutions for both, with equal value
- Key intuition: use a **greedy** construction in the primal!

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

maximize
$$\sum_{j=1}^{n} r_{j}x_{j}$$
 minimize $\sum_{S \subset N} f(S)y_{S}$
 $\sum_{j \in S} x_{j} \leq f(S), \quad S \subset N,$ $\sum_{S:j \in S} y_{S} \geq r_{j}, \ j \in N,$
 $x_{j} \geq 0, \ j \in N$ $y_{S} \geq 0, \quad S \subset N.$

- Key idea: construct feasible solutions for both, with equal value
- Key intuition: use a greedy construction in the primal!
- Suppose $r_1 \geq r_2 \geq \ldots \geq r_k > 0 \geq r_{k+1} \geq \ldots \geq r_n$.
- Let $S^0 = \emptyset$ and $S^j = \{1, \dots, j\}$ for $j \in N$.

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize } \sum_{j=1}^n r_j x_j & \text{minimize } \sum_{S \subset N} f(S) y_S \\ \\ \sum_{j \in S} x_j \leq f(S), \quad S \subset N, & \sum_{S: j \in S} y_S \geq r_j, \ j \in N, \\ \\ x_j \geq 0, \ j \in N & y_S \geq 0, \quad S \subset N. \end{array}$$

- Key idea: construct feasible solutions for both, with equal value
- Key intuition: use a greedy construction in the primal!
- Suppose $r_1 \ge r_2 \ge ... \ge r_k > 0 \ge r_{k+1} \ge ... \ge r_n$.
- Let $S^0 = \emptyset$ and $S^j = \{1, \dots, j\}$ for $j \in N$.
- We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, & 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll}
\text{maximize} \sum_{j=1}^{n} r_{j} x_{j} & \text{minimize} \sum_{S \subset N} f(S) y_{S} \\
\sum_{j \in S} x_{j} \leq f(S), \quad S \subset N & \sum_{S: j \in S} y_{S} \geq r_{j}, \ j \in N.
\end{array}$$

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} \ \sum_{j=1}^n r_j x_j & \text{minimize} \ \sum_{S \subset N} f(S) y_S \\ \\ \sum_{j \in S} x_j \leq f(S), \quad S \subset N & \sum_{S: j \in S} y_S \geq r_j, \ j \in N. \end{array}$$

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n r_j x_j & \text{minimize} & \sum_{S \subset N} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset N & \sum_{S: j \in S} y_S \geq r_j, \ j \in N. \end{array}$$

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j\in\mathcal{T}} x_j = \sum_{j\in\mathcal{T}, j\leq k} \left(f(S^j) - f(S^{j-1}) \right)$$
 (because f submodular) $\leq \sum_{j\in\mathcal{T}, j\leq k} \left(f(S^j\cap\mathcal{T}) - f(S^{j-1}\cap\mathcal{T}) \right) =$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n r_j x_j & \text{minimize} & \sum_{S \subset N} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset N & \sum_{S: j \in S} y_S \geq r_j, \ j \in N. \end{array}$$

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$
(because f submodular) $\leq \sum_{j \in T, j \le k} \left(f(S^j \cap T) - f(S^{j-1} \cap T) \right) = f(S^k \cap T) - f(\emptyset)$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n r_j x_j & \text{minimize} & \sum_{S \subset \mathcal{N}} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset \mathcal{N} & \sum_{S:j \in S} y_S \geq r_j, \ j \in \mathcal{N}. \end{array}$$

We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$
(because f submodular) $\leq \sum_{j \in T, j \le k} \left(f(S^j \cap T) - f(S^{j-1} \cap T) \right) = f(S^k \cap T) - f(\emptyset)$
(because f monotone) $\leq f(T) - f(\emptyset)$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^{\infty} r_j x_j & \text{minimize} & \sum_{S \subset \mathcal{N}} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset \mathcal{N} & \sum_{S: j \in S} y_S \geq r_j, \ j \in \mathcal{N}. \end{array}$$

We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• f is integer-valued $\Rightarrow x \in \mathbb{Z}^n$. f increasing $\Rightarrow x_j \geq 0$. For all $T \subset N$, we have:

(because $f(\emptyset) = 0$) = f(T).

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$
(because f submodular) $\leq \sum_{j \in T, j \le k} \left(f(S^j \cap T) - f(S^{j-1} \cap T) \right) = f(S^k \cap T) - f(\emptyset)$
(because f monotone) $\leq f(T) - f(\emptyset)$

19 / 30

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll}
\text{maximize} \sum_{j=1}^{n} r_{j} x_{j} & \text{minimize} \sum_{S \subset N} f(S) y_{S} \\
\sum_{j \in S} x_{j} \leq f(S), \quad S \subset N & \sum_{S: j \in S} y_{S} \geq r_{j}, \ j \in N.
\end{array}$$

We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

$$\sum_{S:j\in S}y_S=y_{S^j}+\ldots+y_{S^k}=r_j, \text{ if } j\leq k \quad \text{and} \quad \sum_{S:j\in S}y_S=0\geq r_j, \text{ if } j>k.$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

$$\sum_{S:j\in S}y_S=y_{S^j}+\ldots+y_{S^k}=r_j, \text{ if } j\leq k \quad \text{and} \quad \sum_{S:j\in S}y_S=0\geq r_j, \text{ if } j>k.$$

• The primal objective: $\sum_{j=1}^{k} r_j \left(f(S^j) - f(S^{j-1}) \right)$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n r_j x_j & \text{minimize} & \sum_{S \subset N} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset N & \sum_{S:j \in S} y_S \geq r_j, \ j \in N. \end{array}$$

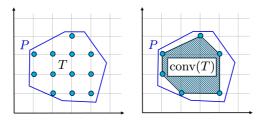
We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

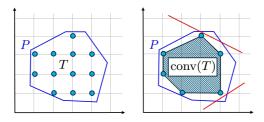
$$\sum_{S:i\in S}y_S=y_{S^j}+\ldots+y_{S^k}=r_j, \text{ if } j\leq k \quad \text{and} \quad \sum_{S:i\in S}y_S=0\geq r_j, \text{ if } j>k.$$

- The primal objective: $\sum_{i=1}^{k} r_j \left(f(S^j) f(S^{j-1}) \right)$
- The dual objective $\sum_{j=1}^{k-1} (r_j r_{j+1}) f(S^j) + r_k f(S^k) = \sum_{j=1}^k r_j \left(f(S^j) f(S^{j-1}) \right)$.



- Recall: T are feasible points to an IP, conv(T) is their convex hull
- P is the feasible region of an LP relaxation to the IP
- Typically, the formulation is **not ideal**:

$$\operatorname{conv}(T) \subset P$$



- **Recall:** T are feasible points to an IP, conv(T) is their convex hull
- P is the feasible region of an LP relaxation to the IP
- Typically, the formulation is **not ideal**:

$$\operatorname{conv}(T) \subset P$$

- How to improve it by generating valid cuts?
 - Linear inequalities satisfied by T and conv(T), but not by P?

• **Setup:** A, b, c with rational entries and the IP:

minimize
$$\{c^{\mathsf{T}}x : Ax = b, x \geq 0, x \in \mathbb{Z}^n\}$$

• If $x^* = [x_B^*; x_N^*]$ be a b.f.s. for the LP relaxation. Then we have:

$$A_B x_B^* + A_N x_N^* = b \quad \Leftrightarrow \quad x_B^* + A_B^{-1} A_N x_N^* = A_B^{-1} b$$

• Consider an equality in which the right-hand-side is fractional

• **Setup:** *A*, *b*, *c* with rational entries and the IP:

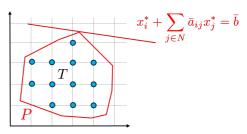
minimize
$$\{c^{\mathsf{T}}x : Ax = b, x \ge 0, x \in \mathbb{Z}^n\}$$

• If $x^* = [x_B^*; x_N^*]$ be a b.f.s. for the LP relaxation. Then we have:

$$A_B x_B^* + A_N x_N^* = b \quad \Leftrightarrow \quad x_B^* + A_B^{-1} A_N x_N^* = A_B^{-1} b$$

Consider an equality in which the right-hand-side is fractional

$$x_i^* + \sum_{j \in \mathcal{N}} \bar{a}_{ij} x_j^* = \bar{b}$$



• **Setup:** *A*, *b*, *c* with rational entries and the IP:

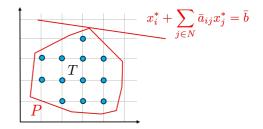
minimize
$$\{c^{\mathsf{T}}x : Ax = b, x \ge 0, x \in \mathbb{Z}^n\}$$

• If $x^* = [x_B^*; x_N^*]$ be a b.f.s. for the LP relaxation. Then we have:

$$A_B x_B^* + A_N x_N^* = b \quad \Leftrightarrow \quad x_B^* + A_B^{-1} A_N x_N^* = A_B^{-1} b$$

Consider an equality in which the right-hand-side is fractional

$$\begin{aligned} x_i^* + \sum_{j \in N} \bar{a}_{ij} x_j^* &= \bar{b} \\ \forall \, x \in \mathcal{T} \Rightarrow x \geq 0 \Rightarrow x_i + \sum_{j \in I} \lfloor \bar{a}_{ij} \rfloor x_j \leq \bar{b} \end{aligned}$$



• **Setup:** *A*, *b*, *c* with rational entries and the IP:

minimize
$$\{c^{\mathsf{T}}x : Ax = b, x \geq 0, x \in \mathbb{Z}^n\}$$

• If $x^* = [x_B^*; x_N^*]$ be a b.f.s. for the LP relaxation. Then we have:

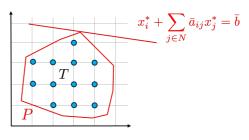
$$A_B x_B^* + A_N x_N^* = b \quad \Leftrightarrow \quad x_B^* + A_B^{-1} A_N x_N^* = A_B^{-1} b$$

• Consider an equality in which the right-hand-side is **fractional**

$$x_{i}^{*} + \sum_{j \in N} \bar{a}_{ij} x_{j}^{*} = \bar{b}$$

$$\forall x \in T \Rightarrow x \geq 0 \Rightarrow x_{i} + \sum_{j \in N} \lfloor \bar{a}_{ij} \rfloor x_{j} \leq \bar{b}$$

$$\forall x \in T \Rightarrow x \in \mathbb{Z}^{n} \Rightarrow x_{i} + \sum_{j \in N} \lfloor \bar{a}_{ij} \rfloor x_{j} \leq \lfloor \bar{b} \rfloor$$



• **Setup:** *A*, *b*, *c* with rational entries and the IP:

$$minimize \{c^{\mathsf{T}}x : Ax = b, x \ge 0, x \in \mathbb{Z}^n\}$$

• If $x^* = [x_B^*; x_N^*]$ be a b.f.s. for the LP relaxation. Then we have:

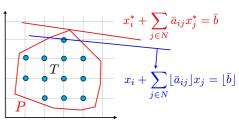
$$A_B x_B^* + A_N x_N^* = b \quad \Leftrightarrow \quad x_B^* + A_B^{-1} A_N x_N^* = A_B^{-1} b$$

Consider an equality in which the right-hand-side is fractional

$$x_{i}^{*} + \sum_{j \in N} \bar{a}_{ij} x_{j}^{*} = \bar{b}$$

$$\forall x \in T \Rightarrow x \geq 0 \Rightarrow x_{i} + \sum_{j \in N} \lfloor \bar{a}_{ij} \rfloor x_{j} \leq \bar{b}$$

$$\forall x \in T \Rightarrow x \in \mathbb{Z}^{n} \Rightarrow x_{i} + \sum_{j \in N} \lfloor \bar{a}_{ij} \rfloor x_{j} \leq \lfloor \bar{b} \rfloor$$



• **Setup:** *A*, *b*, *c* with rational entries and the IP:

minimize
$$\{c^{\mathsf{T}}x : Ax = b, x \geq 0, x \in \mathbb{Z}^n\}$$

• If $x^* = [x_B^*; x_N^*]$ be a b.f.s. for the LP relaxation. Then we have:

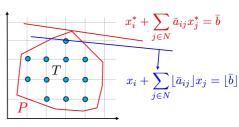
$$A_B x_B^* + A_N x_N^* = b \quad \Leftrightarrow \quad x_B^* + A_B^{-1} A_N x_N^* = A_B^{-1} b$$

• Consider an equality in which the right-hand-side is **fractional**

$$x_{i}^{*} + \sum_{j \in N} \bar{a}_{ij} x_{j}^{*} = \bar{b}$$

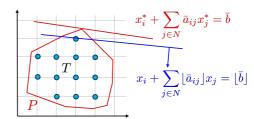
$$\forall x \in T \Rightarrow x \geq 0 \Rightarrow x_{i} + \sum_{j \in N} \lfloor \bar{a}_{ij} \rfloor x_{j} \leq \bar{b}$$

$$\forall x \in T \Rightarrow x \in \mathbb{Z}^{n} \Rightarrow x_{i} + \sum_{i \in N} \lfloor \bar{a}_{ij} \rfloor x_{j} \leq \lfloor \bar{b} \rfloor$$



- This inequality is satisfied by all integer solutions $x \in T$
- It is **not** satisfied by x^* because $x_i^* = \bar{b}$ is fractional
- Gomory cut

$$x_i + \sum_{i \in N} \lfloor \bar{a}_{ij} \rfloor x_j \le \lfloor \bar{b} \rfloor, \ \forall x \in T$$



Gomory cut

- Systematically adding all the Gomory cuts lead to first cutting algorithm for IP
 - 1. Solve the linear relaxation and get an optimal solution x^*
 - 2. If x^* is integer stop
 - 3. If not, add a cut (i.e., linear inequality that all integer solutions satisfy but that x^* does not satisfy) and go to step 1 again.
- Can show that this is guaranteed to terminate
- Which simplex algorithm would you use in Step 1?
- If you're wondering how this works for $Ax \leq b$ or why it terminates, see notes!

- Balas, Céria and Cornuéjols introduced a new approach
- Binary IP, feasible set $x \in P \cap \{0,1\}^n$ where $P := \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$
- Key idea: lift linear relaxation polyhedron P to higher dimension where IP formulation is strengthened, and project back

- Balas, Céria and Cornuéjols introduced a new approach
- Binary IP, feasible set $x \in P \cap \{0,1\}^n$ where $P := \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$
- Key idea: lift linear relaxation polyhedron P to higher dimension where IP formulation is strengthened, and project back
 - 1. Select $j \in \{1, ..., n\}$.

- Balas, Céria and Cornuéjols introduced a new approach
- Binary IP, feasible set $x \in P \cap \{0,1\}^n$ where $P := \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$
- Key idea: lift linear relaxation polyhedron P to higher dimension where IP formulation is strengthened, and project back
 - 1. Select $j \in \{1, ..., n\}$.
 - 2. Multiply each inequality with x_j and then $1 x_j$ to generate **nonlinear** inequalities:

$$x_j(Ax - b) \ge 0$$
, $(1 - x_j)(Ax - b) \ge 0$.

- Balas, Céria and Cornuéjols introduced a new approach
- Binary IP, feasible set $x \in P \cap \{0,1\}^n$ where $P := \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$
- Key idea: lift linear relaxation polyhedron P to higher dimension where IP formulation is strengthened, and project back
 - 1. Select $j \in \{1, ..., n\}$.
 - 2. Multiply each inequality with x_j and then $1 x_j$ to generate **nonlinear** inequalities:

$$x_j(Ax - b) \ge 0$$
, $(1 - x_j)(Ax - b) \ge 0$.

3. Linearize system by substituting y_i for $x_i x_j$ (for $i \neq j$), and x_j for x_j^2 . Call resulting **polyhedron** in variables (x, y) as M_j (dimension \mathbb{R}^{2n}).

- Balas, Céria and Cornuéjols introduced a new approach
- Binary IP, feasible set $x \in P \cap \{0,1\}^n$ where $P := \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$
- Key idea: lift linear relaxation polyhedron P to higher dimension where IP formulation is strengthened, and project back
 - 1. Select $j \in \{1, ..., n\}$.
 - 2. Multiply each inequality with x_j and then $1 x_j$ to generate nonlinear inequalities:

$$x_j(Ax - b) \ge 0$$
, $(1 - x_j)(Ax - b) \ge 0$.

- 3. Linearize system by substituting y_i for $x_i x_j$ (for $i \neq j$), and x_j for x_j^2 . Call resulting **polyhedron** in variables (x, y) as M_j (dimension \mathbb{R}^{2n}).
- 4. Project M_j onto the x-variables. Let P_j be the resulting polyhedron.

- Balas, Céria and Cornuéjols introduced a new approach
- Binary IP, feasible set $x \in P \cap \{0,1\}^n$ where $P := \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$
- Key idea: lift linear relaxation polyhedron P to higher dimension where IP formulation is strengthened, and project back
 - 1. Select $j \in \{1, ..., n\}$.
 - 2. Multiply each inequality with x_j and then $1 x_j$ to generate nonlinear inequalities:

$$x_j(Ax - b) \ge 0$$
, $(1 - x_j)(Ax - b) \ge 0$.

- 3. Linearize system by substituting y_i for $x_i x_j$ (for $i \neq j$), and x_j for x_j^2 . Call resulting **polyhedron** in variables (x, y) as M_i (dimension \mathbb{R}^{2n}).
- 4. Project M_i onto the x-variables. Let P_i be the resulting polyhedron.
- Claims. (i) Every binary $x \in P$ satisfies $x \in P_j$. (ii) $P_j \subseteq P$.

- Balas, Céria and Cornuéjols introduced a new approach
- Binary IP, feasible set $x \in P \cap \{0,1\}^n$ where $P := \{x \in \mathbb{R}^n : Ax \ge b, x \ge 0\}$
- Key idea: lift linear relaxation polyhedron P to higher dimension where IP formulation is strengthened, and project back
 - 1. Select $j \in \{1, ..., n\}$.
 - 2. Multiply each inequality with x_j and then $1 x_j$ to generate **nonlinear** inequalities:

$$x_j(Ax - b) \ge 0$$
, $(1 - x_j)(Ax - b) \ge 0$.

- 3. Linearize system by substituting y_i for $x_i x_j$ (for $i \neq j$), and x_j for x_j^2 . Call resulting **polyhedron** in variables (x, y) as M_j (dimension \mathbb{R}^{2n}).
- 4. Project M_j onto the x-variables. Let P_j be the resulting polyhedron.
- Claims. (i) Every binary $x \in P$ satisfies $x \in P_j$. (ii) $P_j \subseteq P$.
- $\bigcap_{j=1}^n P_j$ is called the **lift-and-project closure**. Clearly, $\bigcap_{j=1}^n P_j \subseteq P$
- Bonami and Minoux: 35 Mixed 0-1 IPs from MIPLIB library, lift-and-project closure reduces integrality gap by 37% on average

Other Cuts

- Mixed-Integer Rounding (MIR) Cuts: designed for general integer variables
- Knapsack Cover Cuts: applied for knapsack constraint

$$w \ge 0, w^{\mathsf{T}} x \le K \Rightarrow$$

Other Cuts

- Mixed-Integer Rounding (MIR) Cuts: designed for general integer variables
- Knapsack Cover Cuts: applied for knapsack constraint

$$w \geq 0, w^\intercal x \leq \mathcal{K} \ \Rightarrow \ \sum_i x_i \leq |\mathcal{C}| - 1 \text{ for any } \mathcal{C} \ : \ \sum_{i \in \mathcal{C}} w_i > \mathcal{K} \ \ ext{(Cover)}$$

- Clique Cuts: used to strengthen $\sum_{i=1}^{n} x_i \leq 1$ when some of the x_i form a clique
- Flow Cover and Flow Path Cuts: specialized cuts for network flow problems
- Lattice-Free Cuts, Multi-Branch Split Cuts
- Comb Inequalities for TSP
- Solvers like Gurobi have many of these built-in and allow adding custom cuts
- Adding "good" cuts is problem-dependent; requires good understanding of combinatorial structure

Solving IPs

IPs "hard," but many methods devised

- Exact algorithms: guaranteed to find optimal solution, but may take exponential number of iterations
 - cutting planes
 - branch and bound
 - branch and cut
 - lift-and-project methods
 - dynamic programming methods
- Approximation algorithms: suboptimal solution with a bound on the degree of its suboptimality, in polynomial time
- **Heuristic algorithms**: suboptimal solution, typically no guarantees on its quality; typically run fast
 - local search methods
 - simulated annealing
 - ...

Suppose we have binary variables x, y, z and minimize an objective Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation

$$0 \le x$$
, y , $z \le 1$

• If x, y, z binary, done!

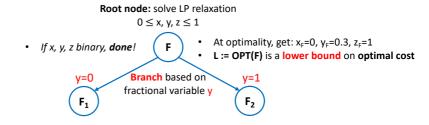
Suppose we have binary variables x, y, z and minimize an objective Maintain upper bound **U** and lower bound **L** on optimal value

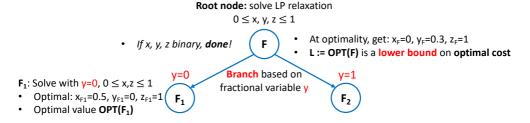
Root node: solve LP relaxation

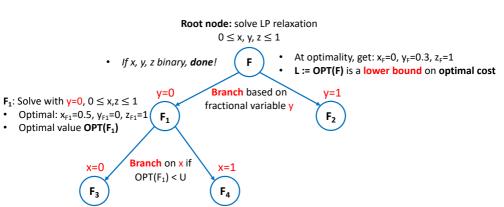
$$0 \le x$$
, y , $z \le 1$

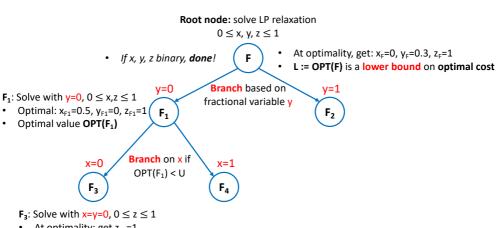
• If x, y, z binary, done!

- At optimality, get: x_F=0, y_F=0.3, z_F=1
 L := OPT(F) is a lower bound on optimal cost



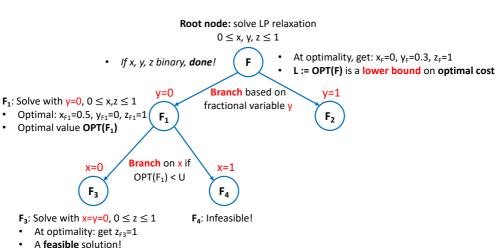




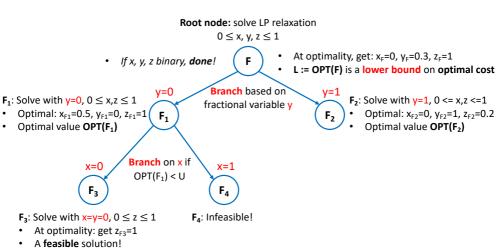


- At optimality: get z_{F3}=1
- A feasible solution!
- Update upper bound U := OPT(F₃)
- If U L ≤ tolerance, stop

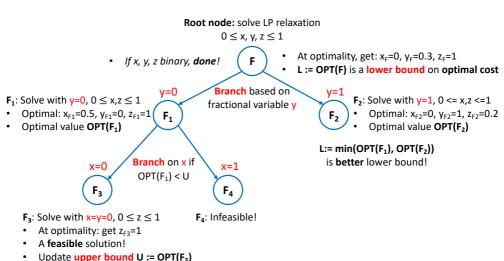
Update upper bound $U := OPT(F_3)$ If $U - L \le tolerance$, stop

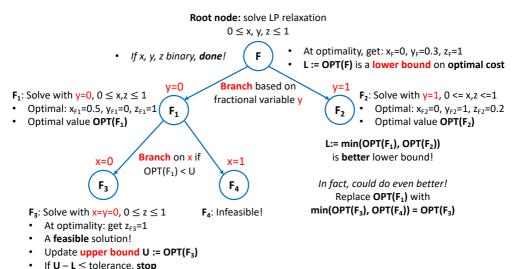


Update upper bound $U := OPT(F_3)$ If $U - L \le tolerance$, stop

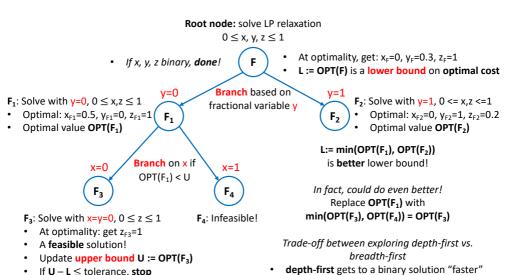


If $U - L \le$ tolerance, stop



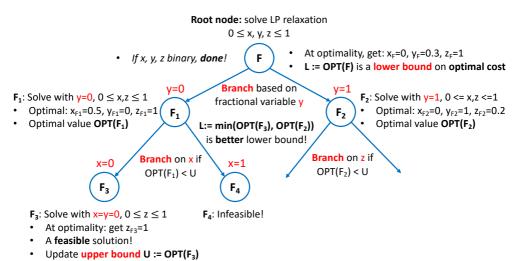


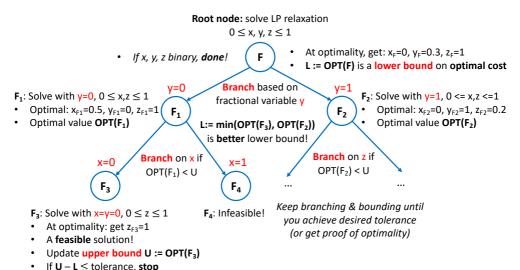
Suppose we have **binary** variables **x**, **y**, **z** and **minimize an objective**Maintain upper bound **U** and lower bound **L** on optimal value



breadth-first allow improving lower bounds

If $U - L \le tolerance$, stop





- More general formulation: let F be set of feasible solutions to an IP
 - 1. Maintain upper bound U, lower bound L on problem's objective
 - 2. Partition F into finite collection of subsets F_i
 - 3. Choose an unsolved subproblem and solve it; only need a **lower bound** $\ell(F_i)$ on cost:

$$\ell(F_i) \leq \min_{x \in F_i} c^{\mathsf{T}} x.$$

- 4. If $\ell(F_i) \geq U$, no need to explore subproblem F_i further!
- 5. Otherwise, partition F_i further and update collection of subproblems/nodes to explore
- 6. If we get a feasible solution, update the upper bound U
- 7. If $U L \le \epsilon$, stop
- 8. When solving all children of a given node, can update lower bound at the node

- More general formulation: let F be set of feasible solutions to an IP
 - 1. Maintain upper bound U, lower bound L on problem's objective
 - 2. Partition F into finite collection of subsets F_i
 - 3. Choose an unsolved subproblem and solve it; only need a **lower bound** $\ell(F_i)$ on cost:

$$\ell(F_i) \leq \min_{x \in F_i} c^{\mathsf{T}} x.$$

- 4. If $\ell(F_i) \geq U$, no need to explore subproblem F_i further!
- 5. Otherwise, partition F_i further and update collection of subproblems/nodes to explore
- 6. If we get a feasible solution, update the upper bound U
- 7. If $U L \le \epsilon$, stop
- 8. When solving all children of a given node, can update lower bound at the node

Many choices:

- 1. How to **explore subproblems**: "breadth-first search" vs "depth-first search" vs...
- 2. How to **derive lower bound** $\ell(F_i)$: LP relaxation vs. Lagrangean duality
- 3. Improve LP relaxations by adding cuts: branch-and-cut approaches
- 4. How to **partition a problem** into subproblems? We used $x_i \leq \lfloor x_i^* \rfloor$ and $x_i \geq \lceil x_i^* \rceil$

Gurobi Output

```
Parameter OutputFlag unchanged
   Value: 1 Min: 0 Max: 1 Default: 1
Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (linux64)
Thread count: 1 physical cores, 2 logical processors, using up to 2 threads
Optimize a model with 55 rows, 105 columns and 310 nonzeros
Model fingerprint: 0x0e3b21e3
Variable types: 5 continuous, 100 integer (100 binary)
Coefficient statistics:
  Matrix range
                  [5e-02, 1e+00]
  Objective range [1e+00, 1e+00]
  Bounds range
                  [1e+00, 1e+00]
  RHS range
                  [1e+00, 4e+00]
Found heuristic solution: objective -0.0000000
Presolve removed 18 rows and 33 columns
Presolve time: 0.00s
Presolved: 37 rows. 72 columns. 192 nonzeros
```

Root relaxation: objective 3.139194e+00. 54 iterations. 0.00 seconds

Nodes Expl Unexpl			Current Obj Dept			Object Incumbent	ive Bounds BestBd	Gap	Work It/Node	
	0	0	3.13919	0	7	1.01908	3.13919	208%	-	0s
Н	0	0				2.8417259	3.13919	10.5%	-	0s
Н	0	0				3.0648352	3.13919	2.43%	-	0s
Н	0	0				3.0879121	3.13919	1.66%	-	0s
	0	0	3.10586	0	8	3.08791	3.10586	0.58%	-	0s
	0	0	cutoff	0		3.08791	3.08791	0.00%	-	0s _

Cutting planes: Gomory: 1 MIR: 1 GUB cover: 1 RIT: 1

Explored 1 nodes (57 simplex iterations) in 0.04 seconds Thread count was 2 (of 2 available processors)

Solution count 5: 3.08791 3.06484 2.84173 ... -0

Found heuristic solution: objective 1.0190799

Variable types: 0 continuous, 72 integer (68 binary)

Optimal solution found (tolerance 1.00e-04)
Best objective 3.087912087912e+00, best bound 3.087912087912e+00, gap 0.0000%

Solved the optimization problem...

Available computational resources

Summary of model
constraints, # variables, sparsity,
coefficient values

Can we get close with a heuristic?

Can we simplify the problem? (presolve)

Branch & Bound (current node, bound on objective, gap)

Cutting planes applied

Optimal solution found

Good lower bounds critical for MILPs!

$$Z_{\mathsf{IP}} := \min \left\{ c^{\top} x : Ax \ge b, Dx \ge d, x \in \mathbb{Z}^n \right\}$$

• We get a lower bound from LP relaxation:

$$Z_{\mathsf{LP}} := \min \left\{ c^{\top} x : Ax \ge b, Dx \ge d \right\} \ \Rightarrow \ Z_{\mathsf{LP}} \le Z_{\mathsf{IP}}$$

Good lower bounds critical for MILPs!

$$Z_{\mathsf{IP}} := \min \left\{ c^{\top} x : Ax \ge b, Dx \ge d, x \in \mathbb{Z}^n \right\}$$

• We get a lower bound from LP relaxation:

$$Z_{LP} := \min \{ c^{\top} x : Ax \ge b, Dx \ge d \} \Rightarrow Z_{LP} \le Z_{IP}$$

• Suppose the "ugly/hard" constraints are $Ax \ge b$...

... and we are able to **minimize efficiently** $c^{\intercal}x$ **over** $\mathcal{X} := \{x \in \mathbb{Z}^n \mid Dx \geq d\}$

Good lower bounds critical for MILPs!

$$Z_{\mathsf{IP}} := \min \left\{ c^{\top} x : Ax \ge b, Dx \ge d, x \in \mathbb{Z}^n \right\}$$

• We get a lower bound from LP relaxation:

$$Z_{\mathsf{LP}} := \mathsf{min} \left\{ c^{\top} x : Ax \ge b, Dx \ge d \right\} \ \Rightarrow \ Z_{\mathsf{LP}} \le Z_{\mathsf{IP}}$$

• Suppose the "ugly/hard" constraints are $Ax \ge b$...

... and we are able to **minimize efficiently** $c^{\mathsf{T}}x$ **over** $\mathcal{X} := \{x \in \mathbb{Z}^n \mid Dx \geq d\}$

• Let $p \ge 0$ be dual variables (**Lagrange multipliers**) for $Ax \ge b$; form Lagrangean:

$$\mathcal{L}(x, \mathbf{p}) := c^{\top}x + \mathbf{p}^{\top}(b - Ax)$$

Good lower bounds critical for MILPs!

$$Z_{\mathsf{IP}} := \min \left\{ c^{\mathsf{T}} x : Ax \ge b, Dx \ge d, x \in \mathbb{Z}^n \right\}$$

• We get a lower bound from LP relaxation:

$$Z_{\mathsf{LP}} := \min \left\{ c^{\top} x : Ax \ge b, Dx \ge d \right\} \ \Rightarrow \ Z_{\mathsf{LP}} \le Z_{\mathsf{IP}}$$

• Suppose the "ugly/hard" constraints are $Ax \ge b$...

... and we are able to **minimize efficiently** $c^{\mathsf{T}}x$ **over** $\mathcal{X} := \{x \in \mathbb{Z}^n \mid Dx \geq d\}$

• Let $p \ge 0$ be dual variables (**Lagrange multipliers**) for $Ax \ge b$; form Lagrangean:

$$\mathcal{L}(x, \mathbf{p}) := c^{\top}x + \mathbf{p}^{\top}(b - Ax)$$

• Then we can get the following lower bound on $Z_{\rm IP}$:

$$\forall p \geq 0, \ g(p) := \min_{\mathbf{x} \in \mathcal{X}} \left[c^{\top} \mathbf{x} + \mathbf{p}^{\top} (b - A\mathbf{x}) \right] \ \Rightarrow \ g(p) \leq Z_{\mathsf{IP}}$$

Good lower bounds critical for MILPs!

$$Z_{\mathsf{IP}} := \min \left\{ c^{\top} x : Ax \ge b, Dx \ge d, x \in \mathbb{Z}^n \right\}$$

We get a lower bound from LP relaxation:

$$Z_{\mathsf{LP}} := \mathsf{min} \left\{ c^{\top} x \; : \; Ax \geq b, \; Dx \geq d \right\} \;\; \Rightarrow \;\; Z_{\mathsf{LP}} \leq Z_{\mathsf{IP}}$$

• Suppose the "ugly/hard" constraints are $Ax \ge b$...

... and we are able to **minimize efficiently** $c^{\mathsf{T}}x$ **over** $\mathcal{X} := \{x \in \mathbb{Z}^n \mid Dx \geq d\}$

• Let $p \ge 0$ be dual variables (**Lagrange multipliers**) for $Ax \ge b$; form Lagrangean:

$$\mathcal{L}(x, \mathbf{p}) := c^{\top}x + \mathbf{p}^{\top}(b - Ax)$$

• Then we can get the following lower bound on Z_{IP} :

$$\forall p \geq 0, \ g(p) := \min_{\mathbf{x} \in \mathcal{X}} \left[c^{\top} \mathbf{x} + \mathbf{p}^{\top} (b - A\mathbf{x}) \right] \ \Rightarrow \ g(p) \leq Z_{\mathsf{IP}}$$

- Important! We are not dualizing all the constraints!
 - We keep the constraints $x \in \mathcal{X}$ because these are "easy"
 - Similar to LP developments: recall how we kept the constraints $x_i \ge 0$ or $x_i \le 0$
 - What matters is that we can easily compute g(p) for any $p \ge 0$

• Because $g(p) \le Z_{IP}, \forall p \ge 0$, we can look for **the best lower bound**:

$$Z_D := \max_{p \ge 0} g(p) \tag{2}$$

- This is the Lagrangean dual of our problem.
 - -g(p) piece-wise linear, concave; supergradient available
 - Can compute Z_D using first-order-methods
 - − Weak duality holds: $Z_D \le Z_{IP}$
 - Unlike LP, we do **not** have a strong duality result!

• Because $g(p) \le Z_{IP}, \forall p \ge 0$, we can look for **the best lower bound**:

$$Z_D := \max_{p \ge 0} g(p) \tag{2}$$

- This is the Lagrangean dual of our problem.
 - -g(p) piece-wise linear, concave; supergradient available
 - Can compute Z_D using first-order-methods
 - Weak duality holds: $Z_D \leq Z_{IP}$
 - Unlike LP, we do **not** have a strong duality result!
- Most important result here (recall that $\mathcal{X} := \{x \in \mathbb{Z}^n \mid Dx \geq d\}$)

$$Z_D = \min \{ c^\top x : Ax \ge b, x \in \operatorname{conv}(\mathcal{X}) \}.$$

• Immediate consequence: we get stronger bounds than from LP relaxation,

$$Z_{\mathsf{IP}} \leq Z_{\mathsf{D}} \leq Z_{\mathsf{IP}}.$$

Details, proofs: see notes

Other Methods

- Dynamic Programming very powerful
- Can solve in pseudo-polynomial time IPs in fixed dimension
- Heuristics can also be powerful
 - Local search
 - Simmulated annealing
 - Genetic algorithms, "ant colony optimization", etc.