
Lecture 10 : Duality in Convex Optimization

October 30, 2024
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Today’s Agenda: Convex Duality

Primal Problem

(P) minimizex f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

x ∈ X .

(1)

• Convex domain X ⊆ Rn

• Every function fi : X ⊆ Rn → R (real-valued), convex
• Equality constraints Ax = b can be included in X

• Many developments deal with the “interior” of X

Definition : Interior

The interior of a set X is the set of all points x ∈ X so that:

∃ r > 0 : B(x , r) := {y : ∥y − x∥ ≤ r} ⊆ X

Must talk about the interior even if X is not full-dimensional ...
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Relative Interior

• Recall: Affine hull of X is aff(X ) := {θ1x1 + · · ·+ θkxk : xi ∈ X ,
∑k

i=1 θi = 1
}

Definition Relative Interior

The relative interior of a set X is:

rel int(X ) :=
{
x ∈ X : ∃ r > 0 so that B(x , r) ∩ aff(X ) ⊆ X

}
. (2)

What is the relative interior of the following sets?

• {(x , y) ∈ R2 | (x , y) ∈ [0, 1]2}
• {(x , y) ∈ R2 | x + y = 1, x ≥ 0, y ≥ 0}
• {(x , y) ∈ R2 | x2 + y2 = 1}
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Convex Duality

Primal Problem

(P) minimizex f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

x ∈ X .

• Convex domain X ⊆ Rn

• Every function fi : X ⊆ Rn → R (real-valued), convex

• Equality constraints Ax = b can be included in X

• Assume rel int(X ) ̸= ∅
• Assume that (P) has an optimal solution x⋆, optimal value p⋆ = f0(x

⋆)

• Core questions:

1. For x feasible for (P), how to quantify the optimality gap f0(x)− p⋆?

2. How to certify that x⋆ is optimal in (P)?
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Convex Duality
Primal Problem

(P) minimizex f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

x ∈ X .

• To construct lower bounds for (P), define the Lagrangian function: for λ ≥ 0,

L(x , λ) = f0(x) +
n∑

i=1

λi fi (x)

• By construction, L(x , λ) ≤ f0(x) for any x feasible in (P)

• For a lower bound on p⋆, minimize L(x , λ) over x ∈ X

g(λ) := infx∈X L(x , λ).

Dual Problem

(D) sup
λ≥0

g(λ).

Q: Is the dual (D) a convex optimization problem? Yes, even if (P) isn’t!
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Geometric Interpretation

Primal-Dual Pair

(P) p⋆ := inf
x∈X

f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

(D) d⋆ := sup
λ≥0

g(λ)

• Suppose (P) has just one inequality constraint, i.e., m = 1

• Let G := {(u, t) ∈ R2 : ∃x ∈ Rn, t = f0(x), u = f1(x)}
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• Suppose (P) has just one inequality constraint, i.e., m = 1
• Let G := {(u, t) ∈ R2 : ∃x ∈ Rn, t = f0(x), u = f1(x)}

• Given λ ≥ 0, to find g(λ) we must minimize t + λ · u over (u, t) ∈ G
• This yields a supporting hyperplane for G; intersection with t = 0 is value of g(λ)
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Geometric Interpretation
Primal-Dual Pair

(P) p⋆ := inf
x∈X

f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

(D) d⋆ := sup
λ≥0

g(λ)

• Suppose (P) has just one inequality constraint, i.e., m = 1
• Let G := {(u, t) ∈ R2 : ∃x ∈ Rn, t = f0(x), u = f1(x)}

• Here, strong duality does not hold: d⋆ < p⋆. But the set G is not convex!
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Strong Duality in Convex Optimization?

Non-zero duality gap

Consider the example:

minimize
(x,y)∈X

e−x

x2/y ≤ 0

with domain X = {(x , y) | y ≥ 1}.

• Convex optimization problem!

• What are p⋆,L, g , d⋆?

p⋆ = 1, L(x , y , λ) = e−x + λx2/y

g(λ) = inf
x,y≥1

(
e−x + λ

x2

y

)
=

{
0 λ ≥ 0,

−∞ λ < 0,

• We can write the dual problem as d⋆ = maxλ≥0 0, with optimal value d⋆ = 0

• The optimal duality gap is p⋆ − d⋆ = 1

• Primal and dual both have finite optimal value, but a gap exists!

• Moreover, examples exist where (D) does not achieve its optimal value... (notes)
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Conditions Leading to Strong Duality

Primal Problem

(P) minimizex f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

x ∈ X .

Slater Condition

The functions f1, . . . , fm : X ⊆ Rn → R satisfy the Slater condition on X if

there exists x ∈ rel int(X ) such that

fj(x) < 0, j = 1, . . . ,m.

• A point x that is strictly feasible

• Condition simpler if some fi are affine: only require fi (x) < 0 for the non-linear fi
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

Geometric intuition for proof:
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Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

Geometric intuition for proof:

• Recall case with m = 1 and G := {(u, t) ∈ R2 : ∃x ∈ Rn, t = f0(x), u = f1(x)}
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

Geometric intuition for proof:

• Nothing changes if we replace G with A = G + R2
+, which is a convex set
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Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

Geometric intuition for proof:

• Define another convex set B with A ∩ B = ∅
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Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

Geometric intuition for proof:

• The Separating Hyperplane Theorem will give us the optimal λ⋆ and p⋆ = d⋆
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

Geometric intuition for proof:

• The Slater point will guarantee that the hyperplane is not vertical
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

• Define the set

A =
{
(u, t) ∈ Rm × R : ∃ x ∈ X ,

t ≥ f0(x), ui ≥ fi (x), i = 1, . . . ,m
}
.

• A is convex. Why?

• Define the convex set B = {(0, s) ∈ Rm × R | s < p⋆}
• Claim: A ∩ B = ∅. Why?

• Separating Hyperplane Theorem:

∃ (λ, µ) ∈ Rm+1, b ∈ R :


(λ, µ) ̸= 0,

λ⊺u + µt ≥ b, ∀ (u, t) ∈ A

λ⊺u + µt ≤ b, ∀ (u, t) ∈ B.
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Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

• Separating Hyperplane Theorem:

∃ (λ, µ) ∈ Rm+1, b ∈ R :


(1) (λ, µ) ̸= 0,

(2) λ⊺u + µt ≥ b,∀ (u, t) ∈ A

(3) λ⊺u + µt ≤ b,∀ (u, t) ∈ B.

• (2) implies λ ≥ 0 and µ ≥ 0.

Otherwise, inf(u,t)∈A(λ⊺u + µt) = −∞ so ̸≥ b (Why?)

• (3) simplifies to µt ≤ b for all t < p⋆, so µp⋆ ≤ b.

• We found λ ≥ 0, µ ≥ 0:

(4) L(x , λ) :=
m∑
i=1

λi fi (x) + µf0(x) ≥ b ≥ µp⋆, ∀ x ∈ X
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Strong Duality in Convex Optimization
Theorem (Strong Duality in Convex Optimization)

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

• Separating Hyperplane Theorem:

∃ (λ, µ) ∈ Rm+1, b ∈ R :


(1) (λ, µ) ̸= 0,

(2) λ⊺u + µt ≥ b,∀ (u, t) ∈ A

(3) λ⊺u + µt ≤ b,∀ (u, t) ∈ B.

• We found λ ≥ 0, µ ≥ 0:

(4) L(x , λ) :=
m∑
i=1

λi fi (x) + µf0(x) ≥ b ≥ µp⋆, ∀ x ∈ X

• Case 1. µ > 0 (non-vertical hyper-plane)

• Divide (4) by µ to get: L(x , λ/µ) ≥ p⋆, ∀ x ∈ X .

• This implies g(λ/µ) ≥ p⋆

• Weak duality: g(λ/µ) ≤ p⋆, so g(λ/µ) = p⋆

• Strong duality holds and the dual optimum is attained
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Strong Duality in Convex Optimization
Strong Duality in Convex Optimization

Let X ⊂ Rn be convex and f0, f1, . . . , fm : X → R convex functions on X satisfying

the Slater condition on X . Then, p⋆ = d⋆ and the dual attains its optimal value.

• Separating Hyperplane Theorem:

∃ (λ, µ) ∈ Rm+1, b ∈ R :


(1) (λ, µ) ̸= 0,

(2) λ⊺u + µt ≥ b,∀ (u, t) ∈ A

(3) λ⊺u + µt ≤ b,∀ (u, t) ∈ B.

• We found λ ≥ 0, µ ≥ 0:

(4) L(x , λ) :=
m∑
i=1

λi fi (x) + µf0(x) ≥ b ≥ µp⋆, ∀ x ∈ X

• Case 2. µ = 0 (vertical hyperplane)

• (4) implies
∑m

i=1 λi fi (x) ≥ 0, ∀ x ∈ X

• x̄ satisfies Slater condition ⇒ fi (x̄) < 0 for i = 1, . . . ,m

• This together with λ ≥ 0 ⇒ λ = 0

• Contradicts (1) that (λ, µ) ̸= 0.
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(2) λ⊺u + µt ≥ b,∀ (u, t) ∈ A

(3) λ⊺u + µt ≤ b,∀ (u, t) ∈ B.

• We found λ ≥ 0, µ ≥ 0:

(4) L(x , λ) :=
m∑
i=1

λi fi (x) + µf0(x) ≥ b ≥ µp⋆, ∀ x ∈ X

• Case 2. µ = 0 (vertical hyperplane)

• (4) implies
∑m

i=1 λi fi (x) ≥ 0, ∀ x ∈ X

• x̄ satisfies Slater condition ⇒ fi (x̄) < 0 for i = 1, . . . ,m

• This together with λ ≥ 0 ⇒ λ = 0

• Contradicts (1) that (λ, µ) ̸= 0.
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Explicit Equality Constraints

• In applications, useful to make the equality constraints explicit:

minimizex∈X f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m,

Ax = b.

where fi , i = 0, . . . ,m are convex and A ∈ Rp×n has rank p.

• With ν ∈ Rp denoting Lagrange multipliers for Ax = b, Lagrangian is:

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) + ν⊺(Ax − b),

• With g(λ, ν) := infx∈X L(x , λ, ν), the dual problem becomes:

maximize g(λ, ν)

subject to λ ≥ 0.

No sign constraints on ν!
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Nonlinear Farkas Lemma

Proposition (Nonlinear Farkas Lemma)

Let X ⊂ Rn be convex, let f0, f1, . . . , fm be real-valued convex functions on X , and

assume f1, . . . , fm satisfy the Slater condition on X .

Then, the following system of inequalities has a solution

∃ x : f0(x) < z , fj(x) ≤ 0, j = 1, . . . ,m, x ∈ X ,

if and only if the following system has no solution:

∃λ : inf
x∈X

f (x) + m∑
j=1

λj fj(x)

 ≥ z , λj ≥ 0, j = 1, . . . ,m.

• Mirrors arguments used in strong duality proof
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Minimum Euclidean Distance Problem

• Given y ∈ Rn and affine set {z : Az = b̃}
• A ∈ Rp×n, b̃ ∈ Rp has rank p

min
z

{
∥z − y∥22 : Az = b̃

}
• Change of variables x := z − y and with b := b̃ − Ay ,

min
x

{
∥x∥22 : Ax = b

}
• What is the optimal value p⋆?
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• Given y ∈ Rn and affine set {z : Az = b̃}
• A ∈ Rp×n, b̃ ∈ Rp has rank p

min
z

{
∥z − y∥22 : Az = b̃

}
• Change of variables x := z − y and with b := b̃ − Ay ,

min
x

{
∥x∥22 : Ax = b

}
• Lagrangian L(x , ν) = x⊺x + ν⊺(Ax − b) : convex quadratic function of x

• Dual objective: g(ν) = infx L(x , ν). Can find via:

∇xL(x , ν) = 2x + A⊺ν = 0 ⇔ x = −1

2
A⊺ν

• g(ν) = L
(
− 1

2
A⊺ν, ν

)
= − 1

4
ν⊺AA⊺ν − b⊺ν

• Primal trivially satisfies Slater condition (if it is feasible) so p⋆ = d⋆

• To find d⋆:

∇νg(ν) = 0 ⇔ −1

2
AA⊺ν = b.

• AA⊺ is invertible, so ν⋆ = −2(AA⊺)−1b, p⋆ = d⋆ = g(ν⋆) = b⊺(AAT )−1b

• x⋆ = − 1
2
A⊺ν⋆ = A⊺(AA⊺)−1b
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Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For Q = Q⊺, consider the following unconstrained problem:

min f (x) :=
1

2
x⊺Px + q⊺x

• What is the optimal value p⋆?

∇x f (x) = 0 ⇔ Px = −q

p⋆ =

{
− 1

2q
⊺P†q if P ⪰ 0 and q ∈ R(P)

−∞ otherwise.

• P† is the (Moore-Penrose) pseudo-inverse of P

• For A with singular value decomposition A = UΣV ⊺, A† := VΣ−1U⊺

• Equals (A⊺A)−1A⊺ if rank(A) = n and A⊺(AA⊺)−1 if rank(A) = m
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