Lecture 10 : Duality in Convex Optimization

October 30, 2024
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Today’s Agenda: Convex Duality

Primal Problem

() minimize, fo(x)
fi(x)<0, i=1,....m (1)
x e X.

® Convex domain X C R”
® Every function f; : X C R" — R (real-valued), convex
® Equality constraints Ax = b can be included in X



Today’s Agenda: Convex Duality

Primal Problem

() minimize, fo(x)
fi(x)<0, i=1,....m (1)
x e X.

Convex domain X C R”
Every function f; : X C R" — R (real-valued), convex

Equality constraints Ax = b can be included in X

Many developments deal with the “interior" of X

Definition : Interior
The interior of a set X is the set of all points x € X so that:

Jr>0: B(x,r):={y:|ly—x|| <r}CX

Must talk about the interior even if X is not full-dimensional ...



Relative Interior

® Recall: Affine hull of X is aff(X) := {f1x1 + -+ 0kxx : x; € X, fo:l 0; =1}
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Relative Interior

* Recall: Affine hull of X is aff(X) := {fixi + -+ 0kxx : x € X, S, 0, =1}

Definition Relative Interior

The relative interior of a set X is:

rel int(X) := {x € X : Ir > 0 so that B(x, r) Naff(X) C X}. (2)

What is the relative interior of the following sets?
{(x,y) e R* | (x,y) € [0,1]*}

* {(x,y) eR?[x+y=1,x>0,y >0}
{(y) eR? |2 +y? =1}



Convex Duality

Primal Problem

() minimize, fo(x)
fi(x)<0, i=1,....m
x e X.

® Convex domain X C R”
® Every function f; : X C R" — R (real-valued), convex

® Equality constraints Ax = b can be included in X

Assume rel int(X) # 0

Assume that (?) has an optimal solution x*, optimal value p* = fo(x*)

e Core questions:
1. For x feasible for (£?), how to quantify the optimality gap fo(x) — p*?
2. How to certify that x* is optimal in (£?)?
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Convex Duality

Primal Problem

() minimize, fo(x)
f(x)<0, i=1,....m
x € X.

® To construct lower bounds for (%?), define the Lagrangian function: for A > 0,

L(x,\) = fo(x +Z/\f



Convex Duality

Primal Problem

() minimize, fo(x)
filx)<0, i=1,....,m
x € X.

® To construct lower bounds for (%?), define the Lagrangian function: for A > 0,

L(x,A) = fo(x +Z/\f

® By construction, £(x,\) < fo(x) for any x feasible in ()



Convex Duality

Primal Problem

() minimize, fo(x)
fi(x) <0, i=1,...
x € X.

m

)

® To construct lower bounds for (%?), define the Lagrangian function: for A > 0,

L(x,\) = fo(x +Z/\f

® By construction, £(x,\) < fo(x) for any x feasible in ()

® For a lower bound on p*, minimize £(x, \) over x € X

g(\) == infeex L(x, ).

Dual Problem

(2)  sup g(X).

A>0

Q: Is the dual (2) a convex optimization problem? e



Convex Duality

Primal Problem

() minimize, fo(x)
fi(x) <0, i=1,...
x € X.

m

)

® To construct lower bounds for (%?), define the Lagrangian function: for A > 0,

L(x,\) = fo(x +Z/\f

® By construction, £(x,\) < fo(x) for any x feasible in ()

® For a lower bound on p*, minimize £(x, \) over x € X

g(\) == infeex L(x, ).

Dual Problem

(2)  sup g(X).

A>0

Q: Is the dual () a convex optimization problem? Yes, even if (&) isn't!



Geometric Interpretation

Primal-Dual Pair

(2) p* = inf fo(x) (2) d":=sup g(})

fi(x) <0, i=1,....m

® Suppose () has just one inequality constraint, i.e., m=1
e Let G:={(u,t) eR?: Ix e R", t = fo(x), u=Ff(x)}



Geometric Interpretation

Primal-Dual Pair

(22) p* = inf fo(x) (2) d*:=sup g())
xeX A>0
fi(x) <0, i=1,....,m
® Suppose () has just one inequality constraint, i.e., m=1
o let G:={(u,t) eR?:Ix e R, t = fh(x), u=A(x)}
t
u




Geometric Interpretation

Primal-Dual Pair

(22) p* = inf fo(x) (2) d*:=sup g())
xeX A>0
fi(x) <0, i=1,....,m
® Suppose () has just one inequality constraint, i.e., m=1
o let G:={(u,t) eER?: IxER", t = fh(x), u=f(x)}
t
u

® Given A > 0, to find g(\) we must minimize t + X\ - u over (u,t) € G



Geometric Interpretation

Primal-Dual Pair

(2) p* = inf fo(x) (2) d*:=supg(})

f(x)<0,i=1,...,m

® Suppose () has just one inequality constraint, i.e., m=1
o let G:={(u,t) eER?: IxER", t = fh(x), u=f(x)}




Geometric Interpretation

Primal-Dual Pair

(2) p* = inf fo(x) (2) d*:=supg(})

f(x)<0,i=1,...,m

® Suppose () has just one inequality constraint, i.e., m=1
o let G:={(u,t) eER?: IxER", t = fh(x), u=f(x)}

gM) =AM -u+t

gA*) = A" u+t

*\ g(A2) = Ao u+t

® Here, strong duality does not hold: d* < p*. But the set G is not convex!



Strong Duality in Convex Optimization?
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Strong Duality in Convex Optimization?

Non-zero duality gap

Consider the example:

minimize e~
(x,y)eX

x2/y§0

with domain X = {(x,y) | y > 1}.
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Strong Duality in Convex Optimization?

Non-zero duality gap

Consider the example:

minimize e~
(x,y)eX

x2/y§0

with domain X = {(x,y) | y > 1}.

® Convex optimization problem!
® What are p*, L, g, d*7

pr=1, L(x,y,\)=e 4+ 3]y
2 0 A>0,
G B

xy>1 y —00 A<O0,

® We can write the dual problem as d* = max,>o 0, with optimal value d* =0



Strong Duality in Convex Optimization?

Non-zero duality gap

Consider the example:

with domain X = {(x,y) | y > 1}.

minimize e~
(x,y)eX

x2/y§0

Convex optimization problem!
What are p*, L, g, d*7

pr=1, L(x,y,\)=e 4+ 3]y

2 0 A >0,
g(A\) = inf <ex + )\X> = -
xy>1 y —00 A<O0,

We can write the dual problem as d* = max,>¢o 0, with optimal value d* =0
The optimal duality gap is p* —d* =1
Primal and dual both have finite optimal value, but a gap exists!

Moreover, examples exist where (2) does not achieve its optimal value... (notes)



Conditions Leading to Strong Duality

Primal Problem

(&) minimize, fo(x)

fi(x) <0, i=1,...

x e X.




Conditions Leading to Strong Duality

Primal Problem

(&) minimize, fo(x)
fi(x)<0, i=1,....m
x € X.

Slater Condition

The functions fi,...,f, : X C R” — R satisfy the Slater condition on X if
there exists x € rel int(X) such that

filx)<0, j=1,....,m.




Conditions Leading to Strong Duality

Primal Problem

(&) minimize, fo(x)
fi(x)<0, i=1,....m
x € X.

Slater Condition

The functions fi,...,f, : X C R” — R satisfy the Slater condition on X if
there exists x € rel int(X) such that

filx)<0, j=1,....,m.

® A point x that is strictly feasible

® Condition simpler if some f; are affine: only require f;(x) < 0 for the non-linear f;



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

Geometric intuition for proof:



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

Geometric intuition for proof:

® Recall case with m=1and G := {(u,t) € R? : Ix € R", t = fy(x), u= f(x)}

¢

AL DT g(n) u




Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

Geometric intuition for proof:

® Nothing changes if we replace G with A =G + Ri, which is a convex set

t
A

(AL, 1T g(\) u




Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

Geometric intuition for proof:

® Define another convex set B with ANB =)

t

o]




Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

Geometric intuition for proof:

® The Separating Hyperplane Theorem will give us the optimal \* and p* = d*




Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

Geometric intuition for proof:

® The Slater point will guarantee that the hyperplane is not vertical

o]




Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Define the set
A={(u,t) eR" xR:3Ix € X,

£> 600, u > F(x), i =1,...,m}.

® Ais convex. Why?

(A", T

o]
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Define the set

A={(u,t) eR" xR:3Ix € X,
t > fo(x),u > fi(x), i=1,...,m}.

® Ais convex. Why?

(A", T

® Define the convex set B={(0,s) e R™" xR |s < p*}
Claim: ANB=0. Why? »

o]
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Define the set

A={(u,t) eR" xR:3Ix € X,
t > fo(x),u > fi(x), i=1,...,m}.

® A is convex. Why? ()T

® Define the convex set B={(0,s) e R™" xR |s < p*}
Claim: ANB=0. Why? »

® Separating Hyperplane Theorem:

o]

(A, ) #0,
I\ u) ER™ bER S ATu+ put > b,V (u,t) €A
ATu+ pt < b,V(u,t) € B.
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:
(1) (A u)#0,
I p) ER™, bER:S(2) ANu+put>bV(ut)eA
(3) Au+put <b,V(u,t)eB.

® (2) implies A > 0 and > 0.
Otherwise, inf(, yyea(ATu+ put) = —co so # b (Why?)
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:

(1) (A p)#0,
I p) ER™ bER:S(2) Au+put> bV (u,t)€

A
(3) Au+put <b,V(u,t)eB.

(2) implies A > 0 and p > 0.
Otherwise, inf(, yyea(ATu+ put) = —co so # b (Why?)

(3) simplifies to ut < b for all t < p*, so up* < b. u
We found A >0, > 0:

Z)\f )+ ufo(x) > b>pup*, Vx e X
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R" be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:

(1) (A p)#0,
I\ ) ER™ bER:(2) Au+put>bV(ut)eA
(3) ANu+put<bV(ut)eB. /

® We found A > 0, > 0: CWSiL

Z)\f )+ pufo(x) > b>pup*, ¥Vx e X

® Case 1. p > 0 (non-vertical hyper-plane) B
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R" be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:
(1) (A p)#0,

I\ ) ER™ bER:S(2) Au+pt> bV (u,t) €
(3) ATu+ut<bV(ut)e

w >

® We found A > 0, > 0: on 1T

ZAf )+ pho(x) > b > pp*, Vx e X *

o

® Case 1. p > 0 (non-vertical hyper-plane)

® Divide (4) by p to get: L(x,A/p) > p*, Vx € X.

® This implies g(\/p) > p*

® Weak duality: g(A/p) < p*, so g(A/p) = p*

® Strong duality holds and the dual optimum is attained
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Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let X C R” be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:

(1) (A p) #0,
I p) ER™ BER:S(2) Au+put>bV(ut)eA
(3) Au+put <b,V(u,t)eB. ’
A
® We found A >0, > 0: on T
G
Z)\f )+ ufo(x) > b>pup*, Vx e X \
d-

® Case 2. p = 0 (vertical hyperplane) B E

(4) implies 37", Aifi(x) >0, Vx € X
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Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let X C R” be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:

(1) (A u)#0,
I p) ER™ BER:S(2) Au+put>bV(ut)eA
(3) Au+put <b,V(u,t)eB. ’
A
® We found A > 0, > 0: O, 1T
g
Z)\f )+ ufo(x) > b>pup*, Vx e X )

[}
o}

Case 2. u = 0 (vertical hyperplane)
(4) implies Y7 Nifi(x) >0, Vx € X

® X satisfies Slater condition = fi(x) <O fori=1,...,m

® This together with A > 0= XA=0
® Contradicts (1) that (A, p) # 0.
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Explicit Equality Constraints
® In applications, useful to make the equality constraints explicit:
minimizeyex fo(x)

subject to f( )<0, i=1,....,m,
= b.

where f;,i =0,..., m are convex and A € RP*" has rank p.
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Explicit Equality Constraints

® In applications, useful to make the equality constraints explicit:

minimizeyex fo(x)

subjecttof() 0, i=1,...,m,

<
=b.

where f;,i =0,..., m are convex and A € RP*" has rank p.

® With v € RP denoting Lagrange multipliers for Ax = b, Lagrangian is:

L(x,\,v) = fo(x +Z)\f )+ vT(Ax — b),
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Explicit Equality Constraints

® In applications, useful to make the equality constraints explicit:

minimizeyex fo(x)

subjecttof() 0, i=1,...,m,

<
=b.
where f;,i =0,..., m are convex and A € RP*" has rank p.

® With v € RP denoting Lagrange multipliers for Ax = b, Lagrangian is:

L(x,\,v) = fo(x +Z)\f )+ vT(Ax — b),

e With g(\,v) :=infyex L£(x, A, v), the dual problem becomes:
maximize g(\, v)
subject to A > 0.

No sign constraints on /!
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Nonlinear Farkas Lemma

Proposition (Nonlinear Farkas Lemma)
Let X C R” be convex, let fy, f1,..., fy be real-valued convex functions on X, and
assume fi, ..., fy satisfy the Slater condition on X.

Then, the following system of inequalities has a solution

dx : f(x) <z, fi(x)<0,j=1,....,m, x€X,
if and only if the following system has no solution:
m
ED W Xlrg]ﬁ( f(x)+ ) ANfi(x)| >z, Aj>0,j=1,....,m.
j=1

® Mirrors arguments used in strong duality proof

15/18



Minimum Euclidean Distance Problem

® Given y € R” and affine set {z : Az = b}
e AcRP*" b€ RP has rank p

min {||z—y|3 : Az=b}

® Change of variables x := z — y and with b := b — Ay,

min {||x||§ : Ax = b}

® What is the optimal value p*7?
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Minimum Euclidean Distance Problem

oy
~ I
® Given y € R” and affine set {z : Az = b} !
o Ac RPXM b € RP has rank p ;
1
~ 1
mzin {llz—yl3 : Az=b} °

{z: Az =0}

Change of variables x := z — y and with b := b — Ay,
min {HxH% . Ax = b}

Lagrangian L(x,v) = x"x + vT(Ax — b) : convex quadratic function of x

Dual objective: g(v) = inf. L(x,v). Can find via:

VXL(X,V)ZZ)(-{-ATy:O = X:_%ATV

g(v)=L(-3ATv,v) = —2TAATY — bV

® Primal trivially satisfies Slater condition (if it is feasible) so p* = d*
® To find d*:
1
Vug(v)=0 < —EAATZ/ =b.
o AAT is invertible, so v* = —2(AAT)"!b, p* = d* = g(v*) = bT(AAT)'b

o X' = —LATL — AT(AAT) b
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Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For @ = QT, consider the following unconstrained problem:

1
min f(x) := EXTPX +qTx

® What is the optimal value p*?
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Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For @ = QT, consider the following unconstrained problem:

1
min f(x) := EXTPX +qTx

® What is the optimal value p*?

Vif(x)=0 & Px=—q

—0 otherwise.

o {—;qTPTq if P 0and g € R(P)

e Pf is the (Moore-Penrose) pseudo-inverse of P
® For A with singular value decomposition A = UL VT, Al .= v¥ -1yt
® Equals (ATA)1AT if rank(A) = n and AT(AAT)~ ! if rank(A) = m
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