
Lecture 12: Duality Examples

Saddle Point Theory

Nov 1, 2024
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Happy Halloween - Part Two!

Typos c/o ChatGPT
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Recall (Convex) Duality Framework

minimizex∈X f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , s.

With λi , νj denoting Lagrange multipliers for gi and hj(x) = 0, respectively,

Lagrangian is:

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +
s∑

j=1

νjhj(x),

With g(λ, ν) := infx∈X L(x , λ, ν), the dual problem becomes:

maximize g(λ, ν)

subject to λ ≥ 0.

No sign constraints on ν!
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QPs and QCQPs
Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

min
1

2
x⊺Px + c⊺x

A1x = b1

A2x ≤ b2

where P = P⊺.

Quadratically Constrained Quadratic Programs

A Quadratically Constrainted Quadratic Program (QCQP) is a problem:

min
1

2
x⊺P0x + c⊺x

x⊺Pix + q⊺i x + bi ≤ 0, i = 1, . . . ,m

Ax = b

where Qi , i = 0, . . . ,m are symmetric matrices.

Convex if P ⪰ 0,Pi ⪰ 0. Gurobi can now handle non-convex QCQPs!
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Two Problems to Warm Up

QP with Inequality Constraint

minimize
x

1

2
x⊺Qx + c⊺x

Ax ≤ b

where Q ≻ 0 is a positive definite matrix.

QCQP

minimize
1

2
x⊺P0x + q⊺0 x + r0

subject to
1

2
x⊺Pix + q⊺i x + ri ≤ 0, i = 1, . . . ,m,

where P0 ≻ 0 and Pi ⪰ 0

••• What is the Lagrangian? What is the dual? Does Slater Condition hold?
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Convex QP With Inequality Constraints
QP with Inequality Constraint

minimize
x

1

2
x⊺Qx + c⊺x

Ax ≤ b

where Q ≻ 0 is a positive definite matrix.

• What is the Lagrangian? What is the dual? Does Slater Condition hold?

• The Langragian function is:

L(x , λ) = 1

2
x⊺Qx + c⊺x + λ⊺(Ax − b)

• To compute g(λ), take the gradient. Infimum achieved at x = −Q−1(c + A⊺λ)

• The dual function becomes:

g(λ) = −1

2
λ⊺AQ−1A⊺λ− λ⊺(b + AQ−1c)− 1

2
c⊺Q−1c.

• Assuming Ax ≤ b feasible, Slater condition holds

• Dual easier to solve? (maximize a concave quadratic function with constraints λ ≥ 0)
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Convex QCQP
QCQP

minimize
1

2
x⊺P0x + q⊺0 x + r0

subject to
1

2
x⊺Pix + q⊺i x + ri ≤ 0, i = 1, . . . ,m,

where P0 ≻ 0 and Pi ⪰ 0

• The Lagrangian is:

L(x , λ) = 1

2
x⊺P(λ)x + q(λ)⊺x + r(λ),

where P(λ) = P0 +
∑m

i=1 λiPi , q(λ) = q0 +
∑m

i=1 λiqi , r(λ) = r0 +
∑m

i=1 λi ri

• Because λ ≥ 0, we have P(λ) ≻ 0 and therefore:

g(λ) = inf
x
L(x , λ) = −1

2
q(λ)⊺P(λ)−1q(λ) + r(λ).

• We can express the dual problem as:

maxλ≥0 −
1

2
q(λ)⊺P(λ)−1q(λ) + r(λ)

• Slater condition holds if there exists an x with
1

2
x⊺Pix + q⊺

i x + ri < 0, i = 1, . . . ,m.
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A Non-Convex QCQP
A Special Non-Convex QCQP

For A = A⊺ and A ̸⪰ 0, consider:

minimize x⊺Ax + 2b⊺x

x⊺x ≤ 1

• Lagrangian is:

L(x , λ) = x⊺Ax + 2b⊺x + λ(x⊺x − 1) = x⊺(A+ λI )x + 2b⊺x − λ,

g(λ) =

{
−b⊺(A+ λI )†b − λ A+ λI ⪰ 0, b ∈ R(A+ λI ),

−∞ otherwise,

where M† is the (Moore-Penrose) pseudo-inverse of M

• The dual problem is
maximizeλ≥0 − b⊺(A+ λI )†b − λ

subject to A+ λI ⪰ 0, b ∈ R(A+ λI )

• Readily solved because it can be expressed as

maximize
{
−

n∑
i=1

(q⊺
i b)

2

λi + λ
− λ : λ ≥ −λmin(A)

}
where λi , qi are eigen-decomposition of A and (q⊺

i b)
2/0 := 0 if q⊺

i b = 0 and ∞ otherwise.
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A Non-Convex QCQP

A Special Non-Convex QCQP

For A = A⊺ and A ̸⪰ 0, consider:

minimize x⊺Ax + 2b⊺x

x⊺x ≤ 1

• Slater condition trivially satisfied!

• We actually have zero duality gap, p⋆ = d⋆ !

• A more general result: strong duality for any quadratic optimization problem with two

constraints ℓ ≤ x⊺Px ≤ u if P and A are simultaneously diagonalizable
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Regularized Support Vector Machines (SVM)

• Given m data points xi ∈ Rn, each associated

with a label yi ∈ {−1, 1}, find a hyperplane that

separates, as much as possible, the two classes.

• Separable by hyperplane H(w , b) = {x : w⊺x + b = 0}, where 0 ̸= w ∈ Rn, b ∈ R

if and only if

{
w⊺xi + b ≥ 0 yi = +1

w⊺xi + b ≤ 0 yi = −1

⇔ yi (w
⊺xi + b) ≥ 0, i = 1, . . . ,m.

• How to solve this problem? This is an LP!

• In practice, non-separable. Find hyperplane minimizing total classification errors:

m∑
i=1

ψ(yi (w
⊺xi + b)), where ψ(t) = 1 if t < 0 and 0 otherwise.

• Hard (MIP) problem!
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Regularized Support Vector Machines (SVM)

• Given m data points xi ∈ Rn, each associated

with a label yi ∈ {−1, 1}, find a hyperplane that

separates, as much as possible, the two classes.

• Separable if and only if yi (w
⊺xi + b) ≥ 0, i = 1, . . . ,m.

• Minimize
∑m

i=1 ψ(yi (w
⊺xi + b)), where ψ(t) = 1 if t < 0 and 0 : hard MIP!

• Replace ψ(t) with upper bound h(t) = (1− t)+ = max(0, 1− t) (hinge function)

• Solve regularized version:

min
w ,b

C ·
m∑
i=1

(1− yi (w
⊺xi + b))+ +

1

2
∥w∥22,

where parameter C > 0 controls trade-off between robustness and performance
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Regularized Support Vector Machines (SVM)

• Given m data points xi ∈ Rn, each associated

with a label yi ∈ {−1, 1}, find a hyperplane that

separates, as much as possible, the two classes.

• Solve minw ,b C ·
∑m

i=1(1− yi (w
⊺xi + b))+ + 1

2∥w∥22

• Can be written as a QP by introducing slack variables:

min
w ,b,v

1

2
∥w∥22 + C

m∑
i=1

vi : v ≥ 0, yi (w
⊺xi + b) ≥ 1− vi , i = 1, . . . ,m,

or more compactly:

min
w ,b,v

1

2
∥w∥22 + C · 1⊺v : v ≥ 0, v + Z⊺w + by ≥ 1,

where Z⊺ ∈ Rm×n is the matrix with rows given by yi · x⊺i

• What is the Lagrangian? What is the dual? Does Slater Condition hold?
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Regularized Support Vector Machines (SVM)

• Solve

min
w,b,v

1

2
∥w∥22 + C · 1⊺v : v ≥ 0, v + Z⊺w + by ≥ 1,

where Z⊺ ∈ Rm×n is the matrix with rows given by yi · x⊺
i

• L(w , b, λ, µ) = 1
2
∥w∥22 + C · v⊺1 + λ⊺(1− v − Z⊺w − by)− µ⊺v

• g(λ, µ) = minw,b L(w , b, λ, µ)

• Taking gradients : w(λ, µ) = Zλ, C · 1 = λ+ µ, λ⊺y = 0

• We obtain

g(λ, µ) =

{
λ⊺1− 1

2
∥Zλ∥22 if λ⊺y = 0, λ+ µ = C · 1,

+∞ otherwise.

• Dual problem

d⋆ = max
λ

{
λ⊺1− 1

2
λ⊺Z⊺Zλ : 0 ≤ λ ≤ C · 1, λ⊺y = 0

}
.

• Strong duality holds, because the primal problem is a QP

• Dual objective depends only on the kernel matrix K = Z⊺Z ∈ Sm
+ , and dual problem

involves only m variables and m + 1 constraints

• Only dependence on the number of dimensions (features) n is through Z ; this requires all

products x⊺
i xj , 1 ≤ i ≤ j ≤ m but still more memory-efficient than solving the primal!
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Saddle Point Theory

Primal Problem

(P) minimizex f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

x ∈ X .

(1)

• There is a very insightful way to make the primal and dual look more “symmetric”

• Recall: Lagrangian L(x , λ) and dual objective g(λ) := infx∈X L(x , λ).

• Claim:

sup
λ≥0

L(x , λ) = sup
λ≥0

(
f0(x) +

m∑
i=1

λi fi (x)

)
=

{
f0(x) if fi (x) ≤ 0, i = 1, . . . ,m,

∞ otherwise.

• So we can express the optimal values of the primal and dual as:

p⋆ = inf
x∈X

sup
λ≥0

L(x , λ) d⋆ = sup
λ≥0

inf
x∈X

L(x , λ)
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Saddle Point Theory

Alternative Formulation of Primal and Dual Problems

We can express the optimal values of the primal and dual as:

p⋆ = inf
x∈X

sup
λ≥0

L(x , λ) d⋆ = sup
λ≥0

inf
x∈X

L(x , λ)

• How to restate weak duality and strong duality in terms of the problems above?

• Weak duality:

sup
λ≥0

inf
x∈X

L(x , λ) ≤ inf
x∈X

sup
λ≥0

L(x , λ)

• Strong duality:

sup
λ≥0

inf
x∈X

L(x , λ) = inf
x∈X

sup
λ≥0

L(x , λ).

• Strong duality holds exactly when we can interchange the order of min and max
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Min-Max and Max-Min Problems
Min-Max and Max-Min

Consider more broadly the pair of problems:

sup
y∈Y

inf
x∈X

f (x , y) inf
x∈X

sup
y∈Y

f (x , y)

• For any f ,Z ,W , the max-min inequality (i.e., “weak duality”) holds:

sup
y∈Y

inf
x∈X

f (x , y) ≤ inf
x∈X

sup
y∈Y

f (x , y)

• f ,Z ,W satisfy the saddle-point property if equality holds:

sup
y∈Y

inf
x∈X

f (x , y) = inf
x∈X

sup
y∈Y

f (x , y).

Figure: Caption

16 / 19



Game Theoretic Interpretation

Min-Max and Max-Min

Consider more broadly the pair of problems:

sup
y∈Y

inf
x∈X

f (x , y) ≤ inf
x∈X

sup
y∈Y

f (x , y)

• Zero-sum game between player x and player z
– Player x pays player z the amount f (x , z)
– x wants to minimize the amount, z wants to maximize it

• Min-max inequality: the player who moves second has an advantage!
– x moves first and y moves second ⇒ larger payment
– y moves first and x moves second ⇒ smaller payment

• Player moving second has information about first player’s move and can use a

strategy, i.e., make a choice that depends on the first player’s choice

Left problem: inf
x∈X

f (x , y) for any given y ⇒ x⋆(y)

Right problem: sup
y∈Y

f (x , y) for any given x ⇒ y⋆(x)
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Existence of Saddle Points

Min-Max and Max-Min

Consider more broadly the pair of problems:

sup
y∈Y

inf
x∈X

f (x , y) = inf
x∈X

sup
y∈Y

f (x , y)

Saddle Point: it does not matter who moves first!

Key Q: Under what conditions on f ,X ,Y does the equality hold?

Sion-Kakutani Theorem

Let X ⊆ Rn and Y ⊆ Rm be convex and compact subsets and let f : X × Y → R be

a continuous function that is convex in x ∈ X for any fixed y ∈ Y and is concave in

y ∈ Y for any fixed x ∈ X . Then,

min
x∈X

max
y∈Y

f (x , y) = max
y∈Y

min
x∈X

f (x , y).

Generalizations: Y only needs to be convex (not compact); f (·, y) must be

quasi-convex on X and with closed lower level sets (for any y ∈ Y ); and f (x , ·) must be

quasi-concave on Y and with closed upper level sets (for any x ∈ X )
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Saddle Points and Optimality in Convex Programming

Primal Problem

(P) minimizex f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

x ∈ X .

Saddle Point Optimality Condition in Convex Programming

Let L(x , λ) be the Lagrangian function and x⋆ ∈ X . Then:

(i) A sufficient condition for x⋆ to be optimal is the existence of λ⋆ ≥ 0 such that

(x⋆, λ⋆) is a saddle point of the Lagrange function L(x , λ):

L(x , λ⋆) ≥ L(x⋆, λ⋆) ≥ L(x⋆, λ) ∀x ∈ X , λ ≥ 0.

(ii) If (P) is a convex optimization problem and satisfies the Slater condition, then

the above condition is also necessary for the optimality of x⋆.
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Let L(x , λ) be the Lagrangian function and x⋆ ∈ X . Then:

(i) A sufficient condition for x⋆ to be optimal is the existence of λ⋆ ≥ 0 such that

(x⋆, λ⋆) is a saddle point of the Lagrange function L(x , λ):

L(x , λ⋆) ≥ L(x⋆, λ⋆) ≥ L(x⋆, λ) ∀x ∈ X , λ ≥ 0.

(ii) If (P) is a convex optimization problem and satisfies the Slater condition, then

the above condition is also necessary for the optimality of x⋆.
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