Lecture 12: Duality Examples
Saddle Point Theory

Nov 1, 2024
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Happy Halloween - Part Two!
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Recall (Convex) Duality Framework

minimizeyex fo(x)

subject to fi(x) <0, i=1,...,m,
hj(X):O, _j: yeeey S

With \;, v; denoting Lagrange multipliers for g; and h;j(x) = 0, respectively,
Lagrangian is:

i=1

L(x, A\, v) = fo(x) + Z Aifi(x) + Z vjhj(x),
j=1
With g(\,v) :=infyex L(x, A, V), the dual problem becomes:

maximize g(\, v)

subject to A > 0.

No sign constraints on /!
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QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

1

min EXTPX + cTx
A1X = b1
A2X S b2

where P = PT.




QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

1
min EXTPX + cTx
A1X = b1

A2X S b2

where P = PT.

Quadratically Constrained Quadratic Programs

A Quadratically Constrainted Quadratic Program (QCQP) is a problem:

1

min EXTPOX—&— cTx
XTPix+qix+b<0,i=1,....m
Ax=0>b

where Q;,/ =0, ..., m are symmetric matrices.

Convex if P = 0, P; = 0. Gurobi can now handle non-convex QCQPs!



Two Problems to Warm Up

QP with Inequality Constraint

|
minimize EXT Qx + cTx
X

Ax < b

where @ > 0 is a positive definite matrix.
QCQP

o1
minimize EXTP()X-F ax+n

1
subject to EXTP,'X +q'x+r<0, i=1,...,m,

where Py =0 and P; = 0

® What is the Lagrangian? What is the dual? Does Slater Condition hold?



Convex QP With Inequality Constraints

QP with Inequality Constraint

1
minimize EXT Qx +cTx
X

Ax < b

where Q = 0 is a positive definite matrix.

® What is the Lagrangian? What is the dual? Does Slater Condition hold?

® The Langragian function is:
L(x,\) = %XT Qx + c"x + AT(Ax — b)

® To compute g(\), take the gradient. Infimum achieved at x = —Q~'(c + AT)\)

® The dual function becomes:
1 T —1aT T -1 1 TH1!
g(/\):fi)\ AQTATA = AT(b+ AQ C)fﬁcQ c.

® Assuming Ax < b feasible, Slater condition holds

® Dual easier to solve? (maximize a concave quadratic function with constraints A > 0)



Convex QCQP

1
minimize EXTP()X + gix+ ro

. 1 .
subject to ixTP,-X+ gix+r<0, i=1,...,m,

where Pg =0 and P; = 0

® The Lagrangian is:

£(x.X) = ExTP(N)x + g(A)Tx + r().

where P(A) = Po+ 2.7 AiPi,  g(A) =qo+ > " Aigi, r(A)=r+> 0, Aini
® Because A > 0, we have P(\) - 0 and therefore:
. 1 -
g(0) = inf L(x, \) = 3 a(0)TP() " a(N) + ().
® \We can express the dual problem as:
1 -

maxazo — 54(A)"P(A) g(N) + r(V)

® Slater condition holds if there exists an x with

1
§XTPiX+q,-TX+ri<O, i=1,....,m.



A Non-Convex QCQP
A Special Non-Convex QCQP

For A= AT and A % 0, consider:

minimize xTAx + 2bTx

xTx <1

® | agrangian is:
L(x,\) =xTAx+2bTx + AM(x"Tx — 1) = xT(A+ M )x + 2b"x — A,
) = {bT(AJr/\I)*b A A+M =0, beR(A+ A,
—00 otherwise,

where M is the (Moore-Penrose) pseudo-inverse of M

® The dual problem is ,
maximizex>o — bT(A+AI)'b— A

subjectto A+ X >0, be R(A+ Al)

® Readily solved because it can be expressed as

maX|m|ze{ Zn: by +>\ S>> —/\min(A)}

where );, g; are eigen-decomposition of A and (g b)?/0 := 0 if g7 b = 0 and co otherwise.
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A Non-Convex QCQP

A Special Non-Convex QCQP

For A= AT and A / 0, consider:

minimize xTAx + 2bTx

xTx <1

® Slater condition trivially satisfied!

*

® We actually have zero duality gap, p* = d

® A more general result: strong duality for any quadratic optimization problem with two
constraints £ < xTPx < u if P and A are simultaneously diagonalizable



Regularized Support Vector Machines (SVM)

® Given m data points x; € R”, each associated
with a label y; € {—1,1}, find a hyperplane that
separates, as much as possible, the two classes.
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Regularized Support Vector Machines (SVM)

® Given m data points x; € R”, each associated
with a label y; € {—1,1}, find a hyperplane that
separates, as much as possible, the two classes.

® Separable by hyperplane H(w, b) = {x : wTx+ b =0}, where 0 #w € R", be R

wix;+b>0 y,=+1

if and only if
wix;i+b<0 y=-1
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Regularized Support Vector Machines (SVM)
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separates, as much as possible, the two classes.

® Separable by hyperplane H(w, b) = {x : wTx+ b =0}, where 0 #w € R", be R

wix;+b>0 y,=+1

< yiwTx;+b) >0, i=1,...,m.
wix;i+b<0 y=-1

if and only if {

® How to solve this problem?
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Regularized Support Vector Machines (SVM)

® Given m data points x; € R”, each associated
with a label y; € {—1,1}, find a hyperplane that
separates, as much as possible, the two classes.

® Separable by hyperplane H(w, b) = {x : wTx+ b =0}, where 0 #w € R", be R

wix;+b>0 y,=+1

< yiwTx;+b) >0, i=1,...,m.
wix;i+b<0 y=-1

if and only if {

® How to solve this problem? This is an LP!

® |n practice, non-separable. Find hyperplane minimizing total classification errors:

m

Z’l/)(y,'(WTX; + b)), where ¢(t) =1if t <0 and 0 otherwise.
i=1
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Regularized Support Vector Machines (SVM)
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wix;+b>0 y,=+1

< yiwTx;+b) >0, i=1,...,m.
wix;i+b<0 y=-1

if and only if {

® How to solve this problem? This is an LP!

® |n practice, non-separable. Find hyperplane minimizing total classification errors:

m

Z’l/)(y,'(WTX; + b)), where ¢(t) =1if t <0 and 0 otherwise.
i=1

® Hard (MIP) problem!
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Regularized Support Vector Machines (SVM)

® Given m data points x; € R”, each associated
with a label y; € {—1,1}, find a hyperplane that
separates, as much as possible, the two classes.

® Separable if and only if y;(wTx; + b) >0, i=1,...,m.
® Minimize >, ¥(yi(wTx; + b)), where ¥(t) =1 if t <0 and 0 : hard MIP!

® Replace 1(t) with upper bound h(t) = (1 — t)+ = max(0,1 — t) (hinge function)
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Regularized Support Vector Machines (SVM)

® Given m data points x; € R”, each associated
with a label y; € {—1,1}, find a hyperplane that
separates, as much as possible, the two classes.

® Separable if and only if y;(wTx; + b) >0, i=1,...,m.
® Minimize >, ¥(yi(wTx; + b)), where ¥(t) =1 if t <0 and 0 : hard MIP!
® Replace 1(t) with upper bound h(t) = (1 — t)+ = max(0,1 — t) (hinge function)

® Solve regularized version:

m

. 1
min C- (1—)/i(WTXi+b))++§||WH§7
' i—1

where parameter C > 0 controls trade-off between robustness and performance
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Regularized Support Vector Machines (SVM)

® Given m data points x; € R", each associated
with a label y; € {—1,1}, find a hyperplane that
separates, as much as possible, the two classes.

® Solve min,, p, C- Y7 (1= yi(wTx; + b))+ + %HWH%

® Can be written as a QP by introducing slack variables:

1 m
leian E”WH%‘FC;W Dovz20, yi(wixi+b)>1—v, i=1,...,m,

or more compactly:
1

min Z|wl3+C-1Tv : v>0, v+ ZTw+ by > 1,
w,byv 2

where ZT € R™*" is the matrix with rows given by y; - xT

® What is the Lagrangian? What is the dual? Does Slater Condition hold?

12/19



Regularized Support Vector Machines (SVM)

® Solve
L1 Py
min §||W||2—|—C'1TV : v>0, v+ ZTw+ by > 1,
where ZT € R™*" is the matrix with rows given by y; - x
® [’(W7 b,)\,[l/) = %HW”% + c-vi1 + AT(]‘ —v—2ZTw — by) - AU‘TV
° g()\,,u) = miny,p ‘C(Wv b, A7.LL)
® Taking gradients : w(\, pu) =Z\, C-1=X+p, ATy =0

® \\e obtain

ATL—LZN3 if ATy =0, A+ pu=C-1,
+00 otherwise.

g\ ) = {

® Dual problem
d* = max{)\Tl— flATZTZ)\ D 0<ALSC-1L, Ny = 0}.
A 2 — — b

® Strong duality holds, because the primal problem is a QP

® Dual objective depends only on the kernel matrix K = Z7Z € ST, and dual problem
involves only m variables and m + 1 constraints

® Only dependence on the number of dimensions (features) n is through Z; this requires all
products x'x;, 1 < i < j < m but still more memory-efficient than solving the primal!
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Saddle Point Theory

Primal Problem

() minimize, fo(x)
filx)<0, i=1,....,m (1)
x € X.

® There is a very insightful way to make the primal and dual look more “symmetric”
® Recall: Lagrangian £(x, A) and dual objective g(\) := infyex £(x, \).

e Claim:

sup L(x,A) = sup (fo(x) + ZA,-ﬁ(x)) =

A>0 A>0
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Saddle Point Theory

Primal Problem

() minimize, fo(x)
fi(x)<0, i=1,....m (1)
x e X.

® There is a very insightful way to make the primal and dual look more “symmetric”

® Recall: Lagrangian £(x, A) and dual objective g(\) := infyex £(x, \).

e Claim:
S fo(x) iff(x)<0,i=1,....m,
sup L(x,\) = sup ’(0(X)+Z)\iff(x) _ o(x) i (x).f , =1, m,
A20 A=l -1 oo otherwise.

® So we can express the optimal values of the primal and dual as:

* = inf sup L(x, A d* = sup inf L(x, A
P XGX)\ZFS ( ’ ) )\ZF())XGX ( ’ )
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Saddle Point Theory

Alternative Formulation of Primal and Dual Problems
We can express the optimal values of the primal and dual as:

* = inf sup L(x, A d* = sup inf L(x,\
p xeX )\ZF()) ( ) )\ngex ( )

® How to restate weak duality and strong duality in terms of the problems above?

Weak duality:

sup inf £(x,A) < inf sup L(x, \)

A>0 xeX xeX A>0

Strong duality:

sup inf L(x,\) = inf sup L(x, ).
)\ZI:())XGX ( ) XGX)\ZI:()J ( )

Strong duality holds exactly when we can interchange the order of min and max
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Min-Max and Max-Min Problems
Min-Max and Max-Min

Consider more broadly the pair of problems:

inf £ inf sup f
sup inf (x,¥) inf sup (x,¥)

® For any f,Z, W, the max-min inequality (i.e., “weak duality”) holds:

sup inf f(x,y) < inf sup f(x,y)
erXGX XeXer

e f Z W satisfy the saddle-point property if equality holds:

sup inf f(x,y) = inf sup f(x,y).
sup jnf (x,¥) Jnf sup (x,y)
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Game Theoretic Interpretation

Min-Max and Max-Min
Consider more broadly the pair of problems:

sup inf f(x,y) < inf supf(x,y)
yeyxEX xeX yey

® Zero-sum game between player x and player z

- Player x pays player z the amount f(x, z)
- x wants to minimize the amount, z wants to maximize it
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® Min-max inequality: the player who moves second has an advantage!

= x moves first and y moves second = larger payment
- y moves first and x moves second =- smaller payment
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Game Theoretic Interpretation

Min-Max and Max-Min
Consider more broadly the pair of problems:

sup inf f(x,y) < inf supf(x,y)
yey xeX xeX yey

® Zero-sum game between player x and player z

- Player x pays player z the amount f(x, z)
- x wants to minimize the amount, z wants to maximize it

® Min-max inequality: the player who moves second has an advantage!

— x moves first and y moves second = larger payment
- y moves first and x moves second =- smaller payment

® Player moving second has information about first player's move and can use a
strategy, i.e., make a choice that depends on the first player's choice

Left problem: in; f(x,y) for any given y = x*(y)
x€

Right problem: sup f(x, y) for any given x = y*(x)
yey
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Existence of Saddle Points

Min-Max and Max-Min

Consider more broadly the pair of problems:

sup inf f(x, = inf sup f(x,
sup jof floy) = Jnf sup flxy)

Saddle Point: it does not matter who moves first!

Key Q: Under what conditions on f, X, Y does the equality hold?
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Existence of Saddle Points

Min-Max and Max-Min
Consider more broadly the pair of problems:

sup inf f(x, = inf sup f(x,
sup jof floy) = Jnf sup flxy)

Saddle Point: it does not matter who moves first!

Key Q: Under what conditions on f, X, Y does the equality hold?

Sion-Kakutani Theorem
Let X CR" and Y C R™ be convex and compact subsets and let f : X X Y — R be
a continuous function that is convex in x € X for any fixed y € Y and is concave in

y € Y for any fixed x € X. Then,

i f = inf .
TR e oY) =y )
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Existence of Saddle Points
Min-Max and Max-Min

Consider more broadly the pair of problems:

sup inf f(x, = inf sup f(x,
sup jof floy) = Jnf sup flxy)

Saddle Point: it does not matter who moves first!

Key Q: Under what conditions on f, X, Y does the equality hold?

Sion-Kakutani Theorem

Let X CR" and Y C R™ be convex and compact subsets and let f : X X Y — R be
a continuous function that is convex in x € X for any fixed y € Y and is concave in
y € Y for any fixed x € X. Then,

i f = inf .
TR e oY) =y )

Generalizations: Y only needs to be convex (not compact); f(-,y) must be
quasi-convex on X and with closed lower level sets (for any y € Y); and f(x,-) must be
quasi-concave on Y and with closed upper level sets (for any x € X)
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Saddle Points and Optimality in Convex Programming

Primal Problem

(Z2) minimize, fo(x)
fi(x)<0, i=1,....m
x € X.
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Saddle Points and Optimality in Convex Programming

Primal Problem

(Z2) minimize, fo(x)
fi(x)<0, i=1,....m
x € X.

Saddle Point Optimality Condition in Convex Programming
Let £(x, ) be the Lagrangian function and x* € X. Then:
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Saddle Points and Optimality in Convex Programming

Primal Problem

() minimize, fo(x)
fi(x)<0, i=1,....m
x e X.

Saddle Point Optimality Condition in Convex Programming

Let £(x, ) be the Lagrangian function and x* € X. Then:

(i) A sufficient condition for x* to be optimal is the existence of A\* > 0 such that
(x*, \*) is a saddle point of the Lagrange function £(x, \):

L(x,\*) > L(x*,\*) > L(x",\) Vxe X, A>0.
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Saddle Points and Optimality in Convex Programming

Primal Problem

(Z2) minimize, fo(x)
fi(x)<0, i=1,....m
x € X.

Saddle Point Optimality Condition in Convex Programming

Let £(x, ) be the Lagrangian function and x* € X. Then:

(i) A sufficient condition for x* to be optimal is the existence of A\* > 0 such that
(x*, \*) is a saddle point of the Lagrange function £(x, \):

L(x,\*) > L(x*,\*) > L(x*,\) Vxe X, A\>0.

(ii) If (22) is a convex optimization problem and satisfies the Slater condition, then
the above condition is also necessary for the optimality of x*.
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