Lecture 12: Duality Examples Saddle Point Theory

Nov 1, 2024

Happy Halloween - Part Two!

Typos c/o ChatGPT

Recall (Convex) Duality Framework

$$\begin{aligned} & \text{minimize}_{x \in X} \ f_0(x) \\ & \text{subject to} \ f_i(x) \leq 0, \quad i = 1, \dots, m, \\ & h_j(x) = 0, \quad j = 1, \dots, s. \end{aligned}$$

With λ_i, ν_i denoting Lagrange multipliers for g_i and $h_i(x) = 0$, respectively,

Lagrangian is:

$$\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^s \nu_j h_j(x),$$

With $g(\lambda, \nu) := \inf_{x \in X} \mathcal{L}(x, \lambda, \nu)$, the dual problem becomes:

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \geq 0$.

No sign constraints on ν !

QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

$$\min \frac{1}{2} x^{\mathsf{T}} P x + c^{\mathsf{T}} x$$
$$A_1 x = b_1$$
$$A_2 x \le b_2$$

where $P = P^{\mathsf{T}}$.

QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

$$\min \frac{1}{2} x^{\mathsf{T}} P x + c^{\mathsf{T}} x$$
$$A_1 x = b_1$$
$$A_2 x \le b_2$$

where $P = P^{\mathsf{T}}$.

Quadratically Constrained Quadratic Programs

A Quadratically Constrainted Quadratic Program (QCQP) is a problem:

$$\min \frac{1}{2} x^{\mathsf{T}} P_0 x + c^{\mathsf{T}} x$$

$$x^{\mathsf{T}} P_i x + q_i^{\mathsf{T}} x + b_i \le 0, i = 1, \dots, m$$

$$Ax = b$$

where Q_i , i = 0, ..., m are **symmetric** matrices.

Convex if $P \succeq 0$, $P_i \succeq 0$. Gurobi can now handle **non-convex** QCQPs!

Two Problems to Warm Up

QP with Inequality Constraint

$$\begin{array}{l}
\text{minimize } \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\
A x \le b
\end{array}$$

where $Q \succ 0$ is a **positive definite** matrix.

QCQP

minimize
$$\frac{1}{2}x^{\mathsf{T}}P_0x + q_0^{\mathsf{T}}x + r_0$$

subject to $\frac{1}{2}x^{\mathsf{T}}P_ix + q_i^{\mathsf{T}}x + r_i \leq 0, \quad i = 1, \dots, m,$

where $P_0 \succ 0$ and $P_i \succeq 0$

What is the Lagrangian? What is the dual? Does Slater Condition hold?

Convex QP With Inequality Constraints

QP with Inequality Constraint

$$\begin{array}{l}
\text{minimize } \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x \\
Ax \le b
\end{array}$$

where $Q \succ 0$ is a **positive definite** matrix.

- What is the Lagrangian? What is the dual? Does Slater Condition hold?
- The Langragian function is:

$$\mathcal{L}(x,\lambda) = \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x + \lambda^{\mathsf{T}}(Ax - b)$$

- To compute $g(\lambda)$, take the gradient. Infimum achieved at $x = -Q^{-1}(c + A^{\mathsf{T}}\lambda)$
- The dual function becomes:

$$g(\lambda) = -\frac{1}{2}\lambda^{\mathsf{T}}AQ^{-1}A^{\mathsf{T}}\lambda - \lambda^{\mathsf{T}}(b + AQ^{-1}c) - \frac{1}{2}c^{\mathsf{T}}Q^{-1}c.$$

- Assuming $Ax \le b$ feasible, Slater condition holds
- Dual easier to solve? (maximize a concave quadratic function with constraints $\lambda \geq 0$)

Convex QCQP

QCQP

$$\begin{split} & \text{minimize } \frac{1}{2}x^\mathsf{T} P_0 x + q_0^\mathsf{T} x + r_0 \\ & \text{subject to } \frac{1}{2}x^\mathsf{T} P_i x + q_i^\mathsf{T} x + r_i \leq 0, \quad i=1,\dots,m, \end{split}$$

where $P_0 > 0$ and $P_i \geq 0$

• The Lagrangian is:

$$\mathcal{L}(x,\lambda) = \frac{1}{2}x^{\mathsf{T}}P(\lambda)x + q(\lambda)^{\mathsf{T}}x + r(\lambda),$$
 where $P(\lambda) = P_0 + \sum_{i=1}^m \lambda_i P_i, \quad q(\lambda) = q_0 + \sum_{i=1}^m \lambda_i q_i, \quad r(\lambda) = r_0 + \sum_{i=1}^m \lambda_i r_i$

• Because $\lambda \geq 0$, we have $P(\lambda) \succ 0$ and therefore:

$$g(\lambda) = \inf_{x} L(x,\lambda) = -\frac{1}{2} q(\lambda)^{\mathsf{T}} P(\lambda)^{-1} q(\lambda) + r(\lambda).$$

• We can express the dual problem as:

$$\max_{\lambda \geq 0} - rac{1}{2} q(\lambda)^{\intercal} P(\lambda)^{-1} q(\lambda) + r(\lambda)$$

Slater condition holds if there exists an x with

$$\frac{1}{2}x^{\mathsf{T}}P_{i}x + q_{i}^{\mathsf{T}}x + r_{i} < 0, \quad i = 1, \dots, m.$$

A Non-Convex QCQP

A Special Non-Convex QCQP

For $A = A^{\mathsf{T}}$ and $A \not\succeq 0$, consider:

minimize
$$x^{\mathsf{T}}Ax + 2b^{\mathsf{T}}x$$

 $x^{\mathsf{T}}x \leq 1$

• Lagrangian is:

$$\mathcal{L}(x,\lambda) = x^{\mathsf{T}} A x + 2 b^{\mathsf{T}} x + \lambda (x^{\mathsf{T}} x - 1) = x^{\mathsf{T}} (A + \lambda I) x + 2 b^{\mathsf{T}} x - \lambda,$$

$$g(\lambda) = \begin{cases} -b^{\mathsf{T}} (A + \lambda I)^{\dagger} b - \lambda & A + \lambda I \succeq 0, \ b \in \mathcal{R}(A + \lambda I), \\ -\infty & \text{otherwise,} \end{cases}$$

where M^{\dagger} is the (Moore-Penrose) pseudo-inverse of M

• The dual problem is

maximize_{$$\lambda \geq 0$$} $-b^{\mathsf{T}}(A+\lambda I)^{\dagger}b - \lambda$
subject to $A+\lambda I \succeq 0, b \in \mathcal{R}(A+\lambda I)$

· Readily solved because it can be expressed as

$$\mathsf{maximize} \Big\{ - \sum_{i=1}^n \frac{(\mathsf{q}_i^\mathsf{T} b)^2}{\lambda_i + \lambda} - \lambda \ : \ \lambda \ge -\lambda_{\mathsf{min}}(A) \Big\}$$

where λ_i, q_i are eigen-decomposition of A and $(q_i^T b)^2/0 := 0$ if $q_i^T b = 0$ and ∞ otherwise.

A Non-Convex QCQP

A Special Non-Convex QCQP

For $A = A^{\mathsf{T}}$ and $A \not\succeq 0$, consider:

minimize
$$x^{\mathsf{T}}Ax + 2b^{\mathsf{T}}x$$

 $x^{\mathsf{T}}x \leq 1$

- Slater condition trivially satisfied!
- We actually have **zero duality gap**, $p^* = d^*$!
- A more general result: strong duality for any quadratic optimization problem with two constraints $\ell \leq x^{\mathsf{T}} P x \leq u$ if P and A are simultaneously diagonalizable

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

• Separable by hyperplane $H(w,b)=\{x:w^\intercal x+b=0\}$, where $0\neq w\in\mathbb{R}^n,\ b\in\mathbb{R}$

if and only if
$$\begin{cases} w^\intercal x_i + b \geq 0 & y_i = +1 \\ w^\intercal x_i + b \leq 0 & y_i = -1 \end{cases}$$

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

• Separable by hyperplane $H(w,b)=\{x:w^\intercal x+b=0\}$, where $0\neq w\in\mathbb{R}^n,\ b\in\mathbb{R}$

if and only if
$$\begin{cases} w^{\mathsf{T}}x_i + b \ge 0 & y_i = +1 \\ w^{\mathsf{T}}x_i + b \le 0 & y_i = -1 \end{cases} \Leftrightarrow y_i(w^{\mathsf{T}}x_i + b) \ge 0, \ i = 1, \dots, m.$$

How to solve this problem?

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

• Separable by hyperplane $H(w,b) = \{x : w^{\mathsf{T}}x + b = 0\}$, where $0 \neq w \in \mathbb{R}^n, b \in \mathbb{R}$

if and only if
$$\begin{cases} w^{\mathsf{T}}x_i + b \ge 0 & y_i = +1 \\ w^{\mathsf{T}}x_i + b \le 0 & y_i = -1 \end{cases} \Leftrightarrow y_i(w^{\mathsf{T}}x_i + b) \ge 0, \ i = 1, \dots, m.$$

- How to solve this problem? This is an LP!
- In practice, non-separable. Find hyperplane minimizing total classification errors:

$$\sum_{i=1}^m \psi(y_i(w^\mathsf{T} x_i + b)), \text{ where } \psi(t) = 1 \text{ if } t < 0 \text{ and } 0 \text{ otherwise.}$$

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

• Separable by hyperplane $H(w,b) = \{x : w^{\mathsf{T}}x + b = 0\}$, where $0 \neq w \in \mathbb{R}^n, b \in \mathbb{R}$

if and only if
$$\begin{cases} w^\intercal x_i + b \ge 0 & y_i = +1 \\ w^\intercal x_i + b \le 0 & y_i = -1 \end{cases} \Leftrightarrow y_i (w^\intercal x_i + b) \ge 0, \ i = 1, \dots, m.$$

- How to solve this problem? This is an LP!
- In practice, non-separable. Find hyperplane minimizing total classification errors:

$$\sum_{i=1}^m \psi(y_i(w^\mathsf{T} x_i + b)), \text{ where } \psi(t) = 1 \text{ if } t < 0 \text{ and } 0 \text{ otherwise.}$$

Hard (MIP) problem!

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

- Separable if and only if $y_i(w^Tx_i + b) \ge 0$, i = 1, ..., m.
- Minimize $\sum_{i=1}^{m} \psi(y_i(w^{\mathsf{T}}x_i+b))$, where $\psi(t)=1$ if t<0 and 0 : hard MIP!
- Replace $\psi(t)$ with upper bound $h(t) = (1-t)_+ = \max(0,1-t)$ (hinge function)

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

- Separable if and only if $y_i(w^{\mathsf{T}}x_i + b) \ge 0$, i = 1, ..., m.
- Minimize $\sum_{i=1}^{m} \psi(y_i(w^{\mathsf{T}}x_i+b))$, where $\psi(t)=1$ if t<0 and 0 : hard MIP!
- Replace $\psi(t)$ with upper bound $h(t)=(1-t)_+=\max(0,1-t)$ (hinge function)
- Solve **regularized** version:

$$\min_{w,b} C \cdot \sum_{i=1}^{m} (1 - y_i(w^{\mathsf{T}} x_i + b))_+ + \frac{1}{2} ||w||_2^2,$$

where parameter C > 0 controls trade-off between robustness and performance

• Given m data points $x_i \in \mathbb{R}^n$, each associated with a label $y_i \in \{-1,1\}$, find a hyperplane that separates, as much as possible, the two classes.

- Solve $\min_{w,b} C \cdot \sum_{i=1}^{m} (1 y_i(w^{\mathsf{T}}x_i + b))_+ + \frac{1}{2} \|w\|_2^2$
- Can be written as a QP by introducing slack variables:

$$\min_{w,b,v} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^m v_i : v \ge 0, \ y_i(w^{\mathsf{T}} x_i + b) \ge 1 - v_i, \ i = 1, \ldots, m,$$

or more compactly:

$$\min_{w,b,v} \frac{1}{2} ||w||_2^2 + C \cdot 1^{\mathsf{T}} v \quad : \quad v \ge 0, \ v + Z^{\mathsf{T}} w + b y \ge 1,$$

where $Z^\intercal \in \mathbb{R}^{m \times n}$ is the matrix with rows given by $y_i \cdot x_i^\intercal$

• What is the Lagrangian? What is the dual? Does Slater Condition hold?

Solve

$$\min_{w,b,v} \frac{1}{2} ||w||_2^2 + C \cdot 1^{\mathsf{T}} v \quad : \quad v \ge 0, \ v + Z^{\mathsf{T}} w + b y \ge 1,$$

where $Z^{\mathsf{T}} \in \mathbb{R}^{m \times n}$ is the matrix with rows given by $y_i \cdot x_i^{\mathsf{T}}$

•
$$\mathcal{L}(w, b, \lambda, \mu) = \frac{1}{2} ||w||_2^2 + C \cdot v^{\mathsf{T}} 1 + \lambda^{\mathsf{T}} (1 - v - Z^{\mathsf{T}} w - by) - \mu^{\mathsf{T}} v$$

- $g(\lambda, \mu) = \min_{w,b} \mathcal{L}(w, b, \lambda, \mu)$
- Taking gradients : $w(\lambda, \mu) = Z\lambda$, $C \cdot 1 = \lambda + \mu$, $\lambda^{\mathsf{T}} y = 0$
- We obtain

$$g(\lambda,\mu) = \begin{cases} \lambda^\intercal 1 - \frac{1}{2} \|Z\lambda\|_2^2 & \text{if } \lambda^\intercal y = 0, \ \lambda + \mu = C \cdot 1, \\ +\infty & \text{otherwise.} \end{cases}$$

Dual problem

$$d^* = \max_{\lambda} \Big\{ \lambda^{\mathsf{T}} 1 - \frac{1}{2} \lambda^{\mathsf{T}} Z^{\mathsf{T}} Z \lambda \quad : \quad 0 \le \lambda \le C \cdot 1, \ \lambda^{\mathsf{T}} y = 0 \Big\}.$$

- Strong duality holds, because the primal problem is a QP
- Dual objective depends only on the kernel matrix K = Z^TZ ∈ S^m₊, and dual problem involves only m variables and m + 1 constraints
- Only dependence on the number of dimensions (features) n is through Z; this requires all products $x_i^T x_j$, $1 \le i \le j \le m$ but still more memory-efficient than solving the primal!

Saddle Point Theory

Primal Problem

$$(\mathscr{P}) \text{ minimize}_{x} \quad f_{0}(x)$$

$$f_{i}(x) \leq 0, \quad i = 1, \dots, m$$

$$x \in X.$$

$$(1)$$

- There is a very insightful way to make the primal and dual look more "symmetric"
- Recall: Lagrangian $\mathcal{L}(x,\lambda)$ and dual objective $g(\lambda) := \inf_{x \in X} \mathcal{L}(x,\lambda)$.
- Claim:

$$\sup_{\lambda \geq 0} L(x,\lambda) = \sup_{\lambda \geq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right) =$$

Saddle Point Theory

Primal Problem

(
$$\mathscr{P}$$
) minimize_x $f_0(x)$
 $f_i(x) \le 0, \quad i = 1, ..., m$ (1)
 $x \in X$.

- There is a very insightful way to make the primal and dual look more "symmetric"
- Recall: Lagrangian $\mathcal{L}(x,\lambda)$ and dual objective $g(\lambda) := \inf_{x \in X} \mathcal{L}(x,\lambda)$.
- Claim:

$$\sup_{\lambda \geq 0} L(x,\lambda) = \sup_{\lambda \geq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right) = \begin{cases} f_0(x) & \text{if } f_i(x) \leq 0, \ i = 1, \dots, m, \\ \infty & \text{otherwise.} \end{cases}$$

So we can express the optimal values of the primal and dual as:

$$p^* = \inf_{x \in X} \sup_{\lambda > 0} L(x, \lambda)$$
 $d^* = \sup_{\lambda > 0} \inf_{x \in X} L(x, \lambda)$

Saddle Point Theory

Alternative Formulation of Primal and Dual Problems

We can express the optimal values of the primal and dual as:

$$p^{\star} = \inf_{x \in X} \sup_{\lambda > 0} \mathcal{L}(x, \lambda) \qquad \qquad d^{\star} = \sup_{\lambda > 0} \inf_{x \in X} \mathcal{L}(x, \lambda)$$

- How to restate weak duality and strong duality in terms of the problems above?
- Weak duality:

$$\sup_{\lambda>0}\inf_{x\in X}\mathcal{L}(x,\lambda)\leq\inf_{x\in X}\sup_{\lambda>0}\mathcal{L}(x,\lambda)$$

• Strong duality:

$$\sup_{\lambda \geq 0} \inf_{x \in X} L(x, \lambda) = \inf_{x \in X} \sup_{\lambda \geq 0} \mathcal{L}(x, \lambda).$$

Strong duality holds exactly when we can interchange the order of min and max

Min-Max and Max-Min Problems

Min-Max and Max-Min

Consider more broadly the pair of problems:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \qquad \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

• For any f, Z, W, the **max-min inequality** (i.e., "weak duality") holds:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \le \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

• *f*, *Z*, *W* satisfy the **saddle-point property** if equality holds:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) = \inf_{x \in X} \sup_{y \in Y} f(x, y).$$

Game Theoretic Interpretation

Min-Max and Max-Min

Consider more broadly the pair of problems:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \leq \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

- Zero-sum game between player x and player z
 - Player x pays player z the amount f(x, z)
 - x wants to minimize the amount, z wants to maximize it

Game Theoretic Interpretation

Min-Max and Max-Min

Consider more broadly the pair of problems:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \leq \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

- Zero-sum game between player x and player z
 - Player x pays player z the amount f(x, z)
 - x wants to minimize the amount, z wants to maximize it
- Min-max inequality: the player who moves **second** has an advantage!
 - x moves first and y moves second \Rightarrow larger payment
 - y moves first and x moves second \Rightarrow smaller payment

Game Theoretic Interpretation

Min-Max and Max-Min

Consider more broadly the pair of problems:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \leq \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

- Zero-sum game between player x and player z
 - Player x pays player z the amount f(x, z)
 - x wants to minimize the amount, z wants to maximize it
- Min-max inequality: the player who moves second has an advantage!
 - x moves first and y moves second \Rightarrow larger payment
 - y moves first and x moves second \Rightarrow smaller payment
- Player moving second has information about first player's move and can use a strategy, i.e., make a choice that depends on the first player's choice

Left problem:
$$\inf_{x \in X} f(x, y)$$
 for any given $y \Rightarrow x^*(y)$
Right problem: $\sup_{y \in Y} f(x, y)$ for any given $x \Rightarrow y^*(x)$

Existence of Saddle Points

Min-Max and Max-Min

Consider more broadly the pair of problems:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) = \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

Saddle Point: it does not matter who moves first!

Key Q: Under what conditions on f, X, Y does the equality hold?

Existence of Saddle Points

Min-Max and Max-Min

Consider more broadly the pair of problems:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) = \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

Saddle Point: it does not matter who moves first!

Key Q: Under what conditions on f, X, Y does the equality hold?

Sion-Kakutani Theorem

Let $X\subseteq \mathbb{R}^n$ and $Y\subseteq \mathbb{R}^m$ be convex and compact subsets and let $f:X\times Y\to \mathbb{R}$ be a continuous function that is convex in $x\in X$ for any fixed $y\in Y$ and is concave in $y\in Y$ for any fixed $x\in X$. Then,

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Existence of Saddle Points

Min-Max and Max-Min

Consider more broadly the pair of problems:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) = \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

Saddle Point: it does not matter who moves first!

Key Q: Under what conditions on f, X, Y does the equality hold?

Sion-Kakutani Theorem

Let $X\subseteq \mathbb{R}^n$ and $Y\subseteq \mathbb{R}^m$ be convex and compact subsets and let $f:X\times Y\to \mathbb{R}$ be a continuous function that is convex in $x\in X$ for any fixed $y\in Y$ and is concave in $y\in Y$ for any fixed $x\in X$. Then,

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Generalizations: Y only needs to be convex (not compact); $f(\cdot, y)$ must be quasi-convex on X and with closed lower level sets (for any $y \in Y$); and $f(x, \cdot)$ must be quasi-concave on Y and with closed upper level sets (for any $x \in X$)

Primal Problem

$$(\mathscr{P}) \text{ minimize}_{x} \quad f_{0}(x) \\ f_{i}(x) \leq 0, \quad i = 1, \dots, m \\ x \in X.$$

Primal Problem

$$(\mathscr{P}) \text{ minimize}_{x} \quad f_{0}(x) \\ f_{i}(x) \leq 0, \quad i = 1, \dots, m \\ x \in X.$$

Saddle Point Optimality Condition in Convex Programming

Let $\mathcal{L}(x,\lambda)$ be the Lagrangian function and $x^* \in X$. Then:

Primal Problem

$$(\mathscr{P}) \text{ minimize}_{x} \quad f_{0}(x) \\ f_{i}(x) \leq 0, \quad i = 1, \dots, m \\ x \in X.$$

Saddle Point Optimality Condition in Convex Programming

Let $\mathcal{L}(x,\lambda)$ be the Lagrangian function and $x^* \in X$. Then:

(i) A **sufficient condition** for x^* to be optimal is the existence of $\lambda^* \geq 0$ such that (x^*, λ^*) is a saddle point of the Lagrange function $\mathcal{L}(x, \lambda)$:

$$\mathcal{L}(x,\lambda^*) \ge \mathcal{L}(x^*,\lambda^*) \ge \mathcal{L}(x^*,\lambda) \quad \forall x \in X, \ \lambda \ge 0.$$

Primal Problem

$$(\mathscr{P}) \ \mathsf{minimize}_x \quad f_0(x) \\ f_i(x) \leq 0, \quad i = 1, \dots, m \\ x \in X.$$

Saddle Point Optimality Condition in Convex Programming

Let $\mathcal{L}(x,\lambda)$ be the Lagrangian function and $x^* \in X$. Then:

(i) A sufficient condition for x^* to be optimal is the existence of $\lambda^* \geq 0$ such that (x^*, λ^*) is a saddle point of the Lagrange function $\mathcal{L}(x, \lambda)$:

$$\mathcal{L}(x,\lambda^*) \ge \mathcal{L}(x^*,\lambda^*) \ge \mathcal{L}(x^*,\lambda) \quad \forall x \in X, \ \lambda \ge 0.$$

(ii) If (\mathscr{P}) is a convex optimization problem and satisfies the Slater condition, then the above condition is also **necessary** for the optimality of x^* .