Lecture 12: KKT Optimality Conditions
Conjugacy and Fenchel Duality

Nov 4, 2024
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Quick Announcements

® Assignment 4 will be posted later today

- Covers convex optimization
= Due on Wednesday, Nov 13

® There will be only one more homework

® My office hours this week: Wednesday, 4-5pm (instead of 3-4pm)
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Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(2) min,  fo(x)
fi(x)<0, i=1,...
hi(x)=0, i=1,...,s

® Will not assume convexity unless explicitly stated...

® Key Q: “We have a feasible x. What are the conditions (necessary, sufficient,
necessary and sufficient) for x to be optimal?”

® What to hope for?
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Will not assume convexity unless explicitly stated...

necessary and sufficient) for x to be optimal?”

What to hope for?

- necessary conditions for the optimality of x*
- sufficient conditions for the local optimality of x*

® Cannot expect global optimality of x* without some “global”
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Optimality Conditions
Basic Optimization Problem
We will be concerned with the following optimization problem:

(2) min,  fo(x)

(N—) filx)<0, i=1,....,m
(vj—) hi(x)=0, i=1,...,s
xeX

® If we had strong duality and x* optimal for (%) and A\*,v* optimal for (2):
fo(x*) = (A", ")

= inf [6(x) + Z:n: Aji(x) + Z_: v hi(x)]

xeX

< fo(x")

® This implies complementary slackness: A - f;(x) = 0, or equivalently,

AP >0=fi(x)=0 , fi(x) <0= X =0



Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(Z) min,  fo(x)

(A=) filx)<0, j=1,....m
(vj—=) h(x)=0, j=1,....s
xeX

e x*c X, \* € R™ and v* dual variables
® The Karush-Kuhn-Tucker (KKT) conditions at x* are given by:

KKT Conditions
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(Z) min,  fo(x)

(A=) filx)<0, j=1,....m
(vj—=) h(x)=0, j=1,....s
xeX

e x*c X, \* € R™ and v* dual variables
® The Karush-Kuhn-Tucker (KKT) conditions at x* are given by:

KKT Conditions

m P
0=Vh(x*)+ Y A - VAi(x*)+ Y v - Vh(x*), (“Stationarity”)

i=1 i=1
fi(x)<0,i=1,....m; h(x*)=0,i=1,...,s, (“Primal Feasibility")
A*>0 (“Dual Feasibility")
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Geometry Behind KKT Conditions: Inequality Case
KKT Conditions For Case Without Equality Constraints

0= Vf(x*)+ Z AF - ViEi(xY) (“Stationarity”)
i=1
Aifi(x*)=0, i=1,...,m (“Complementary Slackness”).
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Geometry Behind KKT Conditions: Inequality Case
KKT Conditions For Case Without Equality Constraints

0= Vf(x*)+ Z AF - ViEi(xY) (“Stationarity”)
i=1

Aifi(x*)=0, i=1,...,m (“Complementary Slackness”).

~fi(z) =0

VAT _vpe)

® Consider all active constraints at x*, i.e., {/ : fi(x*) =0}

® Stationarity: —Vfy(x*) is conic combination of gradients Vfi(x*) of active constraints

(Complementary slackness: only active constraints have \; > 0)
® FYI: Ne(x*) :=={>"", \iVfi(x*) : A > 0} is the normal cone at x*
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Failure of KKT Conditions

® |n some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing
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Failure of KKT Conditions

® |n some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing

® fy(x) = x and fi(x) = —x3

Feasible set is (—o0, 0], the optimal solution is x* = 0.

KKT condition fails because Vfy(x*) = 1 while VA(x*) =0
® There is no A > 0 such that —Vfi(x*) = AV (x*).

® Note: not a convex optimization problem!
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Failure of KKT Conditions - More Subtle

KKT Conditions Failing Y
min  — x 1
x,y€R

y—(1-xP°<0
x,y >0 0] 1 T
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Failure of KKT Conditions - More Subtle

KKT Conditions Failing

min  — x
x,y€R

y—(1-xP°<0
x,y >0

0] 1 =

* filx,y) = —x Alxy) =y - (1-x)° f(x,y) == —x and f(x,y) = —y.

® Gradients of objective and binding constraints f; and f3 at (x*,y*) := (1, 0):

vite )= (o). aw) = (7). vaen = (1)

No A1, A3 > 0 satisfy —Viy(x*, y*) = MVA(X*, y*) + A3V Hi(x*, y*)

Reason for failing: the linearization of constraint ; < 0 around (1,0) is y <0,

which is parallel to the existing constraint f3(x,y) := —y >0
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Constraint Qualification Conditions

Setup: x* feasible. Active inequality constraints: /(x*) = {i € {1,...,m}: fi(x*) = 0}.
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If one of the following holds, KKT conditions are necessary for x* to be optimal:

1. Affine Active Constraints
® a|| active constraints are affine functions
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Constraint Qualification Conditions

Setup: x* feasible. Active inequality constraints: /(x*) = {i € {1,..., m} : fi(x*) = 0}.

If one of the following holds, KKT conditions are necessary for x* to be optimal:

1. Affine Active Constraints
® a|| active constraints are affine functions

2. Slater Conditions
® equality constraints {h;}/_; are affine

® convex active inequality constraints: {f; : j € /(x)} are convex

e 3x € rel int(X) : fj(x) <0 for all j € I(x*)

3. Regular Point (Linearly Independent Gradients)

® x* is a regular point: gradients of active constraints
{Vhi(x)};_; U{Vfi(x):j € I(x*)} are linearly independent

4. Mangasarian-Fromovitz

® the gradients of equality constraints are linearly independent
e Jve R": vTVfi(x*) <0 forj e I(x*) and vIVhi(x*)=0,i=1,...,s




Second Order Necessary Conditions

Second Order Necessary Optimality Conditions

x* feasible for Problem (&) and regular, fy, fi,...,fm, h1,..., hs twice continuously
differentiable in neighborhood of x*. Define the Lagrangian function of the problem:

L0\ ) = f(x +Z)\f )+ > nihi(x)
j=1
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Second Order Necessary Conditions

Second Order Necessary Optimality Conditions

x* feasible for Problem (&) and regular, fy, fi,...,fm, h1,..., hs twice continuously
differentiable in neighborhood of x*. Define the Lagrangian function of the problem:

S
L0\ ) = f(x +Z>\ fi(x)+ Y uihi(x)
j=1
If x* is locally optimal, then there exist unique A7 > 0 and p} such that:
® (A\*, u*) certify that x* satisfies KKT conditions:
NF(x*)=0, i=1,....,m

Vo L(x*; N, 1) +Z/\*Vf )+ > W Vhi(x*) =
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Second Order Necessary Conditions

Second Order Necessary Optimality Conditions

x* feasible for Problem (&) and regular, fy, fi,...,fm, h1,..., hs twice continuously
differentiable in neighborhood of x*. Define the Lagrangian function of the problem:

s
L(x; A\ p) = f(x +Z>\ fi(x) + Y uihi(x)
j=1
If x* is locally optimal, then there exist unique A7 > 0 and p} such that:
® (A\*, u*) certify that x* satisfies KKT conditions:
ANifi(x*)=0, i=1....m
Vi L(x*; X%, 1) )+ ZA*V:‘ )+ Zuth
® The Hessian V2L (x*; \*, u*) of L in x is positive semldeflnlte on the
orthogonal complement M* to the set of gradients of active constraints at x*:
dT V2L(x*; \*, ;i*)d > 0 for any d € M*
where M* 1= {d | d"Vfi(x*) =0, Vi€ I(x*), d"Vh(x*)=0,j=1,...,s}.
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Second Order Sufficient Conditions

Second Order Sufficient Local Optimality Conditions

x* feasible for Problem (£?) and regular, fy, fi, ..., fm, h1,..., hs twice continuously
differentiable in neighborhood of x*. Define the Lagrangian function of the problem:

K
L(x; A\, p) = f(x —|—Z)\g, —|—Z,ujhj(x)
j=1

Assume there exist Lagrange multipliers A¥ > 0 and 7 such that
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Assume there exist Lagrange multipliers A¥ > 0 and 7 such that
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® The Hessian V2L (x*; \*, u*) of L in x is positive definite on the orthogonal
complement M** to the set of gradients of equality constraints and the active

inequality constraints at x* associated with positive Lagrange multipliers
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Second Order Sufficient Conditions
Second Order Sufficient Local Optimality Conditions

x* feasible for Problem (£?) and regular, fy, fi, ..., fm, h1,..., hs twice continuously
differentiable in neighborhood of x*. Define the Lagrangian function of the problem:

k
L(x; A, 1) = F(x +ZAg, )+ nihi(x)
j=1

Assume there exist Lagrange multipliers A¥ > 0 and 7 such that
® (A\*, u*) certify that x* satisfies KKT conditions;

® The Hessian V2L (x*; \*, u*) of L in x is positive definite on the orthogonal
complement M** to the set of gradients of equality constraints and the active
inequality constraints at x* associated with positive Lagrange multipliers

A%
dTV2L(x*; \*, *)d > 0 for any d € M**
where M*™ :={d | dTV£(x*) =0, Vi e I(x*): A\f > 0 and
d"Vhi(x*)=0,j=1,...,s}.
Then x* is locally optimal for (£2).




A Consumer’s Constrained Consumption Problem

Second Order Sufficient Local Optimality Conditions

Consider a consumer trying to maximize his utility function u(x) by choosing which
bundle of goods x € R} to purchase. The goods have prices p > 0 and the consumer
has a budget B > 0. The consumer’s problem can be stated as:

maximize u(x)
such that pTx < B
x>0,

where u(x) is a concave utility function.

® Write down the first-order KKT conditions and try to interpret them.
® Are these conditions necessary for optimality?

® Are these conditions sufficient for optimality?
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A Consumer’s Constrained Consumption Problem

minimize — u(x)
(A=) p'™x<B
(n—) —x<0,
With A € Ry, u € R denoting the Lagrange multipliers, the Lagrangian becomes:
L(x, A\, 1) =—u(x)+A(p"x — B) — x"p.
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A Consumer’s Constrained Consumption Problem

minimize — u(x)
(A=) p'™x<B
(n—) —x<0,
With A € Ry, u € R denoting the Lagrange multipliers, the Lagrangian becomes:
L(x, A\, 1) =—u(x)+A(p"x — B) — x"p.

0= —g: +Api—pi, i=1,....n (“Stationarity”)

p'x<B, x>0 (“Primal Feasibility”)

A>0, u>0 (“Dual Feasibility”)

A (p'™x—B)=0 (“Complementary Slackness” 1)
wi-xi=0 (“Complementary Slackness” 2).

Case 1. If the budget constraint is not binding, pTx < B

® A\=0and pj =0,Vi:x >0 (complementary slackness)

® For any x; > 0, we must have: % = — Ui
® The consumer purchases the unconstrained optimal amount of each good i.
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A Consumer’s Constrained Consumption Problem

ou

0= ~ 9% + Api—pi, i=1,...,n (“Stationarity”)
pTx<B, x>0 (“Primal Feasibility")
A>0, p>0 (“Dual Feasibility”)
A (p™x—B)=0 ("Complementary Slackness” 1)
wi-xi =0 (“Complementary Slackness” 2).
Case 2.
® pTx = B, then can have A=0or A > 0.
® Case A > 0:
ou
0 D
x>0 = L_ap e Py
aX,' Pi
du Ou
iix;>0,j:x=0 = 6)?' )\>%—/\f,uj
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A Consumer’s Constrained Consumption Problem

ou

0= ~ 9% + Api—pi, i=1,...,n (“Stationarity”)
pTx<B, x>0 (“Primal Feasibility")
A>0, u>0 (“Dual Feasibility”)
A (p™x—B)=0 ("Complementary Slackness” 1)
wi-xi =0 (“Complementary Slackness” 2).
Case 2.
® pTx = B, then can have A=0or A > 0.
® Case A > 0:
ou
0 D
x>0 = L_ap e Py
Oxi pi
du Ou
x>0, j:x=0 = %:)\>%:/\f,uj
Xj Xj

Ou
® Bang-for-the-buck %X/ for all consumed goods (x; > 0) must be the same, and

larger than for unconsumed goods
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Fenchel Duality

® Elegant and concise theory of optimization duality
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Fenchel Duality

® FElegant and concise theory of optimization duality

Conjugate of a function

Let f : R” — R. The conjugate of f is the function f* : R” — R defined as:

f*(y) = sup {y"™x—f(x)}
xE€dom(f)

AT W) = inf o+ @)

X

® |s f* convex or concave?
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Fenchel Duality

® FElegant and concise theory of optimization duality

Conjugate of a function

Let f : R” — R. The conjugate of f is the function f* : R” — R defined as:

f*(y) = sup {y"™x—f(x)}
x€dom(f)

AT W) = inf o+ @)

X

® f* convex. When f closed and convex, f* provides a description of f in terms of
supporting hyperplanes!
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Conjugates - Examples

The zero function.

For f(x) = 0, the conjugate will depend on the relevant domain:
If f:R — R, then

If f:R, — R, then

If f:[-1,1] — R, then

If f:[0,1] — R, then
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Conjugates - Examples

The zero function.

For f(x) = 0, the conjugate will depend on the relevant domain:
If f:R — R, then f*: {0} — R and *(y) = 0.

If f:Ry — R, then f*: (—00,0] = R and f*(y) = 0.

If f:[-1,1] = R, then f*: R — R and *(y) = |y|.

If £:[0,1] — R, then f*: R — R and f*(y) = y*.

Affine functions.

For f : R — R with f(x) = aTx+ b, f*:{a} - R and f*(a) = —b.

What are the conjugates of the following functions?

® f:(0,00),f(x)=—logx
° f:R—R, f(x)=e
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Conjugate - Examples

Negative logarithm.
f:(0,00) — R with f(x) = —log x.

yx + log x is unbounded above if y > 0 and reaches its maximum at x = —1/y
otherwise. Therefore, f* : (—00,0) — R and f*(y) = —log(—y) — 1 for y < 0.
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Conjugate - Examples

Negative logarithm.

f:(0,00) — R with f(x) = —log x.

yx + log x is unbounded above if y > 0 and reaches its maximum at x = —1/y
otherwise. Therefore, f* : (—00,0) — R and f*(y) = —log(—y) — 1 for y < 0.

Exponential.
f:R—R,f(x)=¢€".

yx —e* is unbounded if y < 0. For y > 0, yx — e~ reaches its maximum at x = log y,
so we have f*(y) = ylogy —y. For y =0,

f*(y) =sup —e* =0.

In summary, f*: Ry — R and

. ylogy—y y>0
f(y)={0 =0 (1)
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Double Conjugate and Convex Envelope

Consider the conjugate of the conjugate (a.k.a. the double conjugate) f**:

F*(x) = sup{y"x — f*(y)}, x€R"
yEeRn
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Double Conjugate and Convex Envelope

Consider the conjugate of the conjugate (a.k.a. the double conjugate) f**:

F(x) = sup{y'x — f*(y)}, x€R"
yeR?

Conjugacy Theorem.

Let f : R” — R be such that epi(f) is closed and let f** be the double-conjugate.
a) f(x) > **(x), forall x € R".
b) If fis convex, f(x) = **(x), Vx € R".
c) f**(x) is the convex envelope of f, i.e., epi(f**) is the smallest closed, convex

set containing epi(f).
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Double Conjugate and Convex Envelope
Consider the conjugate of the conjugate (a.k.a. the double conjugate) f**:

F(x) = sup{y x — f*(y)}, x€eR"
yeR?

Conjugacy Theorem.

Let £ : R” — R be such that epi(f) is closed and let f** be the double-conjugate.
a) f(x) > **(x), forall x € R".
b) If f is convex, f(x) = f**(x), Vx € R".
c) **(x) is the convex envelope of f, i.e., epi(f**) is the smallest closed, convex

set containing epi(f).

f(z)

()

18 /20



Double Conjugate and Convex Envelope

Consider the conjugate of the conjugate (a.k.a. the double conjugate) f**:

F(x) = sup{y x — f*(y)}, x€R"
yeR?

Conjugacy Theorem.

Let f : R” — R be such that epi(f) is closed and let f** be the double-conjugate.
a) f(x) > **(x), forall x € R".
b) If f is convex, f(x) = f**(x), Vx € R".

c) **(x) is the convex envelope of f, i.e., epi(f**) is the smallest closed, convex
set containing epi(f).

® The optimal value when minimizing an arbitrary f (if finite) equals the optimal
value when minimizing the convex envelope of f

® |F we had access to f**, we could solve a convex optimization problem to
determine the optimal value of any function f

e Key caveat: Gaining access to f** is extremely difficult for general f!
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Fenchel Duality

Starting Problem.
Consider f; : R” — R and X; C R" for i = 1,2 and the problem:

minimize fi(x) + f(x)

subject to x € X; N Xz

® Assume optimal value is finite, p*. Problem can be converted into:
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Fenchel Duality

Starting Problem.
Consider f; : R” — R and X; C R" for i = 1,2 and the problem:

minimize fi(x) + f(x)

subject to x € X; N Xz

® Assume optimal value is finite, p*. Problem can be converted into:
minimize fi(y) + ~(z)
subjectto z=y, z€ Xi, y € NXa.

® Can dualize the constraint z = y. For A € R", define the following functions:

) = _jinf_ {A() +£(2) + (2= )N}

ye
=—sup{y"TA\—f(y)} + inf {zTA+ ~(2)}
YEXy zeXp
= —sup{y"A — fi(y)} — sup{—z"A — £(2)}
yeXy zeXp

=—a1(}) —&(=N),
® What are g1()\) and g»(\) here?
® gi(\) is the conjugate of fi(x),i =1,2
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Fenchel Duality

Starting Problem.
Consider f; : R" — R and X; C R” for i = 1,2 and the problem:

minimize fi(x) + f(x)

subject to x € X1 N X,

® Dual objective is: g(A) = —g1(A\) — g2(—))
® The dual problem can be rewritten as:

Te%{*gl(/\) —g(=A)} A A%Qn{gl()\) + (=M}
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Fenchel Duality

Starting Problem.
Consider f; : R" — R and X; C R” for i = 1,2 and the problem:

minimize f;(x) + f2(x)

subject to x € X1 N X,

® Dual objective is: g(A) = —g1(A\) — g2(—))
® The dual problem can be rewritten as:

Teaﬂé{*gl(/\) —g(=A)} A A”glgn{gl()\) + (=M}

Fenchel Duality

Suppose f; and f, are convex and either

(i) the relative interiors of their domains intersect, i.e., rel int(dom(f)) N
rel int(dom(#) # 0 or

(ii) dom(f;) is polyhedral and f; can be extended to R-valued convex function over R"
fori=1,2.

Then, there exists A* € R” such that p* = g(\*) and strong duality holds.
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