
Lecture 12: KKT Optimality Conditions

Conjugacy and Fenchel Duality

Nov 4, 2024
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Quick Announcements

• Assignment 4 will be posted later today
– Covers convex optimization
– Due on Wednesday, Nov 13

• There will be only one more homework

• My office hours this week: Wednesday, 4-5pm (instead of 3-4pm)
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Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minx f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , s

x ∈ X .

• Will not assume convexity unless explicitly stated...

• Key Q: “We have a feasible x. What are the conditions (necessary, sufficient,

necessary and sufficient) for x to be optimal?”

• What to hope for?

– necessary conditions for the optimality of x⋆

– sufficient conditions for the local optimality of x⋆

• Cannot expect global optimality of x⋆ without some “global” requirement on

{fi}mi=0, {hi}si=0 (e.g., convexity)
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Optimality Conditions
Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minx f0(x)

(λj →) fi (x) ≤ 0, i = 1, . . . ,m

(νj →) hi (x) = 0, i = 1, . . . , s

x ∈ X .

• If we had strong duality and x⋆ optimal for (P) and λ⋆, ν⋆ optimal for (D):

f0(x
⋆) = g(λ⋆, ν⋆)

= inf
x∈X

[
f0(x) +

m∑
j=1

λ⋆
j fj(x) +

s∑
j=1

ν⋆j hj(x)
]

≤ f0(x
⋆) +

m∑
j=1

λ⋆
j fj(x

⋆)

≤ f0(x
⋆)

• This implies complementary slackness: λ⋆
j · fj(x⋆j ) = 0, or equivalently,

λ⋆
j > 0 ⇒ fj(x

⋆
j ) = 0 , fj(x

⋆
j ) < 0 ⇒ λ⋆

j = 0
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Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minx f0(x)

(λj →) fj(x) ≤ 0, j = 1, . . . ,m

(νj →) hj(x) = 0, j = 1, . . . , s

x ∈ X .

• x⋆ ∈ X , λ⋆ ∈ Rm and ν⋆ dual variables

• The Karush-Kuhn-Tucker (KKT) conditions at x⋆ are given by:

KKT Conditions

0 = ∇f0(x
⋆) +

m∑
i=1

λ⋆
i · ∇fi (x

⋆) +

p∑
i=1

ν⋆i · ∇hi (x
⋆), (“Stationarity”)

fi (x
⋆) ≤ 0, i = 1, . . . ,m; hi (x

⋆) = 0, i = 1, . . . , s, (“Primal Feasibility”)

λ⋆ ≥ 0 (“Dual Feasibility”)

λ⋆
i fi (x

⋆) = 0, i = 1, . . . ,m (“Complementary Slackness”).
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Geometry Behind KKT Conditions: Inequality Case
KKT Conditions For Case Without Equality Constraints

0 = ∇f0(x
⋆) +

m∑
i=1

λ⋆
i · ∇fi (x

⋆) (“Stationarity”)

λ⋆
i fi (x

⋆) = 0, i = 1, . . . ,m (“Complementary Slackness”).

• Consider all active constraints at x⋆, i.e., {i : fi (x
⋆) = 0}

• Stationarity: −∇f0(x
⋆) is conic combination of gradients ∇fi (x

⋆) of active constraints

• (Complementary slackness: only active constraints have λi > 0)

• FYI: NC (x
⋆) := {

∑m
i=1 λi∇fi (x

⋆) : λ ≥ 0} is the normal cone at x⋆
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Failure of KKT Conditions

• In some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing

min
x∈R

x

x3 ≥ 0.

• f0(x) = x and f1(x) = −x3

• Feasible set is (−∞, 0], the optimal solution is x⋆ = 0.

• KKT condition fails because ∇f0(x
⋆) = 1 while ∇f1(x

⋆) = 0

• There is no λ ≥ 0 such that −∇f0(x
⋆) = λ∇f1(x

⋆).

• Note: not a convex optimization problem!
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Failure of KKT Conditions - More Subtle

KKT Conditions Failing

min
x,y∈R

− x

y − (1− x)3 ≤ 0

x , y ≥ 0

• f0(x , y) := −x , f1(x , y) := y − (1− x)3, f2(x , y) := −x and f3(x , y) := −y .

• Gradients of objective and binding constraints f1 and f3 at (x⋆, y⋆) := (1, 0):

∇f0(x
⋆, y⋆) =

(
−1

0

)
, ∇f1(x

⋆, y⋆) =

(
0

1

)
, ∇f3(x

⋆, y⋆) =

(
0

−1

)
.

• No λ1, λ3 ≥ 0 satisfy −∇f0(x
⋆, y⋆) = λ1∇f1(x

⋆, y⋆) + λ3∇f3(x
⋆, y⋆)

• Reason for failing: the linearization of constraint f1 ≤ 0 around (1, 0) is y ≤ 0,

which is parallel to the existing constraint f3(x , y) := −y ≥ 0
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Constraint Qualification Conditions

Setup: x⋆ feasible. Active inequality constraints: I (x⋆) = {i ∈ {1, . . . ,m} : fi (x
⋆) = 0}.

If one of the following holds, KKT conditions are necessary for x⋆ to be optimal:

1. Affine Active Constraints
• all active constraints are affine functions

2. Slater Conditions

• equality constraints {hi}ri=1 are affine

• convex active inequality constraints: {fj : j ∈ I (x)} are convex

• ∃x̄ ∈ rel int(X ) : fj(x̄) < 0 for all j ∈ I (x⋆)

3. Regular Point (Linearly Independent Gradients)

• x⋆ is a regular point: gradients of active constraints

{∇hi (x)}si=1 ∪ {∇fj(x) : j ∈ I (x⋆)} are linearly independent

4. Mangasarian-Fromovitz

• the gradients of equality constraints are linearly independent

• ∃v ∈ Rn : v⊺∇fj(x
⋆) < 0 for j ∈ I (x⋆) and v⊺∇hi (x

⋆) = 0, i = 1, . . . , s

9 / 20
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Second Order Necessary Conditions

Second Order Necessary Optimality Conditions

x⋆ feasible for Problem (P) and regular, f0, f1, . . . , fm, h1, . . . , hs twice continuously

differentiable in neighborhood of x⋆. Define the Lagrangian function of the problem:

L(x ;λ, µ) = f (x) +
m∑
i=1

λi fi (x) +
s∑

j=1

µjhj(x).

If x⋆ is locally optimal, then there exist unique λ⋆
i ≥ 0 and µ⋆

j such that:

• (λ⋆, µ⋆) certify that x⋆ satisfies KKT conditions:

λ⋆
i fi (x

⋆) = 0, i = 1, . . . ,m

∇xL(x⋆;λ⋆, µ⋆) = ∇f (x⋆) +
m∑
i=1

λ⋆
i ∇fi (x

⋆) +
s∑

j=1

µ⋆
j ∇hj(x

⋆) = 0.

• The Hessian ∇2
xL(x⋆;λ⋆, µ⋆) of L in x is positive semidefinite on the

orthogonal complement M⋆ to the set of gradients of active constraints at x⋆:

dT ∇2
xL(x⋆;λ⋆, µ⋆) d ≥ 0 for any d ∈ M⋆

where M⋆ := {d | dT∇fi (x
⋆) = 0, ∀ i ∈ I (x⋆), dT∇hj(x

⋆) = 0, j = 1, . . . , s}.
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Second Order Sufficient Conditions
Second Order Sufficient Local Optimality Conditions

x⋆ feasible for Problem (P) and regular, f0, f1, . . . , fm, h1, . . . , hs twice continuously

differentiable in neighborhood of x⋆. Define the Lagrangian function of the problem:

L(x ;λ, µ) = f (x) +
m∑
i=1

λigi (x) +
k∑

j=1

µjhj(x).

Assume there exist Lagrange multipliers λ⋆
i ≥ 0 and µ⋆

j such that

• (λ⋆, µ⋆) certify that x⋆ satisfies KKT conditions;

• The Hessian ∇2
xL(x⋆;λ⋆, µ⋆) of L in x is positive definite on the orthogonal

complement M∗∗ to the set of gradients of equality constraints and the active

inequality constraints at x⋆ associated with positive Lagrange multipliers

λ⋆
i :

d⊺∇2
xL(x⋆;λ⋆, µ⋆)d > 0 for any d ∈ M⋆⋆

where M⋆⋆ := {d | d⊺∇fi (x
⋆) = 0, ∀ i ∈ I (x⋆) : λ⋆

i > 0 and

d⊺∇hj(x
⋆) = 0, j = 1, . . . , s}.

Then x⋆ is locally optimal for (P).
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A Consumer’s Constrained Consumption Problem

Second Order Sufficient Local Optimality Conditions

Consider a consumer trying to maximize his utility function u(x) by choosing which

bundle of goods x ∈ R+
n to purchase. The goods have prices p > 0 and the consumer

has a budget B > 0. The consumer’s problem can be stated as:

maximize u(x)

such that p⊺x ≤ B

x ≥ 0,

where u(x) is a concave utility function.

• Write down the first-order KKT conditions and try to interpret them.

• Are these conditions necessary for optimality?

• Are these conditions sufficient for optimality?

12 / 20



A Consumer’s Constrained Consumption Problem

minimize − u(x)

(λ →) p⊺x ≤ B

(µ →) − x ≤ 0,

With λ ∈ R+, µ ∈ Rn
+ denoting the Lagrange multipliers, the Lagrangian becomes:

L(x , λ, µ) = −u(x) + λ(p⊺x − B)− x⊺µ.

0 = − ∂u

∂xi
+ λpi − µi , i = 1, . . . , n (“Stationarity”)

p⊺x ≤ B, x ≥ 0 (“Primal Feasibility”)

λ ≥ 0, µ ≥ 0 (“Dual Feasibility”)

λ · (p⊺x − B) = 0 (“Complementary Slackness” 1)

µi · xi = 0 (“Complementary Slackness” 2).

Case 1. If the budget constraint is not binding, p⊺x < B

• λ = 0 and µi = 0,∀ i : xi > 0 (complementary slackness)

• For any xi > 0, we must have: ∂u
∂xi

= −µi

• The consumer purchases the unconstrained optimal amount of each good i .
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A Consumer’s Constrained Consumption Problem

0 = − ∂u

∂xi
+ λpi − µi , i = 1, . . . , n (“Stationarity”)

p⊺x ≤ B, x ≥ 0 (“Primal Feasibility”)

λ ≥ 0, µ ≥ 0 (“Dual Feasibility”)

λ · (p⊺x − B) = 0 (“Complementary Slackness” 1)

µi · xi = 0 (“Complementary Slackness” 2).

Case 2.

• p⊺x = B, then can have λ = 0 or λ > 0.
• Case λ > 0:

i : xi > 0 ⇒ ∂u

∂xi
= λpi ⇔

∂u
∂xi

pi
= λ

i : xi > 0, j : xj = 0 ⇒
∂u
∂xi

xi
= λ >

∂u
∂xj

xj
= λ− µj

• Bang-for-the-buck
∂u
∂xi

xi
for all consumed goods (xi > 0) must be the same, and

larger than for unconsumed goods
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Fenchel Duality
• Elegant and concise theory of optimization duality

Conjugate of a function

Let f : Rn → R. The conjugate of f is the function f ∗ : Rn → R defined as:

f ∗(y) = sup
x∈dom(f )

{
y⊺x − f (x)

}
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• Is f ∗ convex or concave?
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Fenchel Duality
• Elegant and concise theory of optimization duality

Conjugate of a function

Let f : Rn → R. The conjugate of f is the function f ∗ : Rn → R defined as:

f ∗(y) = sup
x∈dom(f )

{
y⊺x − f (x)

}

• f ∗ convex. When f closed and convex, f ∗ provides a description of f in terms of

supporting hyperplanes! 15 / 20



Conjugates - Examples

The zero function.

For f (x) = 0, the conjugate will depend on the relevant domain:

• If f : R → R, then

f ∗ : {0} → R and f ∗(y) = 0.

• If f : R+ → R, then

f ∗ : (−∞, 0] → R and f ∗(y) = 0.

• If f : [−1, 1] → R, then

f ∗ : R → R and f ∗(y) = |y |.

• If f : [0, 1] → R, then

f ∗ : R → R and f ∗(y) = y+.

Affine functions.

For f : R → R with f (x) = a⊺x + b, f ∗ : {a} → R and f ∗(a) = −b.

What are the conjugates of the following functions?

• f : (0,∞), f (x) = − log x

• f : R → R, f (x) = ex
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Conjugate - Examples

Negative logarithm.

f : (0,∞) → R with f (x) = − log x .

yx + log x is unbounded above if y ≥ 0 and reaches its maximum at x = −1/y

otherwise. Therefore, f ∗ : (−∞, 0) → R and f ∗(y) = − log(−y)− 1 for y < 0.

Exponential.

f : R → R, f (x) = ex .

yx − ex is unbounded if y < 0. For y > 0, yx − ex reaches its maximum at x = log y ,

so we have f ∗(y) = y log y − y . For y = 0,

f ∗(y) = sup
x

−ex = 0.

In summary, f ∗ : R+ → R and

f ∗(y) =

{
y log y − y y > 0

0 y = 0.
(1)
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Double Conjugate and Convex Envelope

Consider the conjugate of the conjugate (a.k.a. the double conjugate) f ∗∗:

f ∗∗(x) = sup
y∈Rn

{yT x − f ∗(y)}, x ∈ Rn.

Conjugacy Theorem.

Let f : Rn → R be such that epi(f ) is closed and let f ∗∗ be the double-conjugate.

a) f (x) ≥ f ∗∗(x), forall x ∈ Rn.

b) If f is convex, f (x) = f ∗∗(x), ∀ x ∈ Rn.

c) f ∗∗(x) is the convex envelope of f , i.e., epi(f ∗∗) is the smallest closed, convex

set containing epi(f ).
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a) f (x) ≥ f ∗∗(x), forall x ∈ Rn.

b) If f is convex, f (x) = f ∗∗(x), ∀ x ∈ Rn.

c) f ∗∗(x) is the convex envelope of f , i.e., epi(f ∗∗) is the smallest closed, convex

set containing epi(f ).

• The optimal value when minimizing an arbitrary f (if finite) equals the optimal

value when minimizing the convex envelope of f

• IF we had access to f ∗∗, we could solve a convex optimization problem to

determine the optimal value of any function f

• Key caveat: Gaining access to f ∗∗ is extremely difficult for general f !
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Fenchel Duality
Starting Problem.

Consider fi : Rn → R and Xi ⊆ Rn for i = 1, 2 and the problem:

minimize f1(x) + f2(x)

subject to x ∈ X1 ∩ X2

• Assume optimal value is finite, p⋆. Problem can be converted into:

minimize f1(y) + f2(z)

subject to z = y , z ∈ X1, y ∈ ∩X2.

• Can dualize the constraint z = y . For λ ∈ Rn, define the following functions:

g(λ) = inf
y∈X1,z∈X2

{f1(y) + f2(z) + (z − y)⊺λ}

= − sup
y∈X1

{y⊺λ− f1(y)}+ inf
z∈X2

{z⊺λ+ f2(z)}

= − sup
y∈X1

{y⊺λ− f1(y)} − sup
z∈X2

{−z⊺λ− f2(z)}

:= −g1(λ)− g2(−λ),

• What are g1(λ) and g2(λ) here?

• gi (λ) is the conjugate of fi (x), i = 1, 2
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Fenchel Duality
Starting Problem.

Consider fi : Rn → R and Xi ⊆ Rn for i = 1, 2 and the problem:

minimize f1(x) + f2(x)

subject to x ∈ X1 ∩ X2

• Dual objective is: g(λ) = −g1(λ)− g2(−λ)

• The dual problem can be rewritten as:

max
λ∈Rn

{−g1(λ)− g2(−λ)} ⇔ min
λ∈Rn

{g1(λ) + g2(−λ)}.

Fenchel Duality

Suppose f1 and f2 are convex and either

(i) the relative interiors of their domains intersect, i.e., rel int(dom(f1)) ∩
rel int(dom(f2) ̸= ∅ or

(ii) dom(fi ) is polyhedral and fi can be extended to R-valued convex function over Rn

for i = 1, 2.

Then, there exists λ⋆ ∈ Rn such that p⋆ = g(λ⋆) and strong duality holds.
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