
Optimization Under Uncertainty

(but really, just Robust Optimization)

Lecture 18

December 2, 2024
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Quick Announcements

Homework 5 due on Tuesday (Dec 3)

Office Hours this week - extended schedule (Ed Announcement coming up)

Final exam topics

Any questions?
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Outline for Today

1 Introduction
§ Some Motivating Examples
§ A History Detour
§ Pros and Cons of Probabilistic Models

2 Robust Optimization
§ Basic Premises
§ Modeling with Basic Uncertainty Sets
§ Reformulating and Solving Robust Models
§ Extensions
§ Some Applications
§ Calibrating Uncertainty Sets
§ Distributionally Robust Optimization
§ Connections with Other Areas

3 Dynamic Robust Optimization
§ Properly Writing a Robust DP
§ An Inventory Example
§ Tractable Approximations with Decision Rules
§ Some Practical Issues
§ Bellman Optimality
§ An Application in Monitoring
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The Flaw of Averages

Optimization based on nominal values can lead to severe issues...

Taken from “Flaw of averages” Sam Savage (2009, 2012)
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How Robust Are Optimal Solutions? (Ben-Tal & Nemirovski)

Consider a real-world scheduling problem problem (PILOT4) in NETLIB Library

§ One of the constraints is the following linear constraint āTx ě b :

´15.79081 ¨ x826 ´ 8.598819 ¨ x827 ´ 1.88789 ¨ x828 ´ 1.362417 ¨ x829

´1.526049 ¨ x830 ´ 0.031883 ¨ x849 ´ 28.725555 ¨ x850 ´ 10.792065 ¨ x851

´0.19004 ¨ x852 ´ 2.757176 ¨ x853 ´ 12.290832 ¨ x854 ` 717.562256 ¨ x855

´0.057865x ¨ x856 ´ 3.785417 ¨ x857 ´ 78.30661 ¨ x858 ´ 122.163055 ¨ x859

´6.46609 ¨ x860 ´ 0.48371 ¨ x861 ´ 0.615264 ¨ x862 ´ 1.353783 ¨ x863

´84.644257 ¨ x864 ´ 122.459045 ¨ x865 ´ 43.15593 ¨ x866 ´ 1.712592 ¨ x870

´0.401597 ¨ x871 ` x880 ´ 0.946049 ¨ x898 ´ 0.946049 ¨ x916 ě 23.387405

§ Coefficients like 8.598819 are estimated and potentially inaccurate

What if these coefficients are just 0.1% inaccurate?
§ i.e., suppose the true a is not ā, but |ai ´ āi| ď 0.001|āi|?

Will the optimal solution to the problem still be feasible?

How can we test?
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How Robust Are Optimal Solutions? (Ben-Tal & Nemirovski)

Original constraint: āTx ě b, optimal solution x‹

Suppose true a satisfies |ai ´ āi| ď 0.001|āi|, @ i

How to determine if the constraint is violated?

min
a

aTx‹ ´ b

s.t. |ai ´ āi| ď 0.001|āi|, @ i

§ For PILOT4, this comes to ´128.8 « ´4.5b, so 450% violation!

OK, but perhaps we’re too conservative?

§ Suppose ai “ āi ` εi|āi|, where εi „ Uniformr´0.001, 0.001s

§ Using Monte-Carlo simulation with 1,000 samples:

‹ P(infeasible) = 50%, Ppviolation ą 150%q “ 18%, E[violation] = 125%

Disturbing that nominal solutions are likely highly infeasible

Turns out to be the case for many NETLIB problems

We should capture uncertainty more explicitly apriori!
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How to determine if the constraint is violated?

min
a

aTx‹ ´ b
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Decisions Under Uncertainty

Decision Maker (DM) must chose x, without knowing z

DM incurs a cost Cpx, zq

How to model z? How to properly formalize the decision problem?

“Standard” probabilistic model:

§ There is a unique probability distribution P for z

§ DM considers an objective: minx Ez„P
“

Cpx,zq
‰
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Classical Probabilistic Model: DM knows P, solves minx Ez„P
“

Cpx, zq
‰

What if there are constraints?

fi px, zq ě 0, @ i P I

Need to be a bit more precise in which sense we want to satisfy them!
§ expectation constraint: EPr fi

`

x,z
˘

s ě 0, @ i

§ chance constraint:

individual: Pr fi
`

x, z
˘

ě 0 s ě 1 ´ ϵ, @ i

joint: Pr fi
`

x, z
˘

ě 0, @ is ě 1 ´ ϵ

§ robust (a.s.) constraint: F
`

x,z
˘

ě 0,@z

Which of these are “easy” to check / enforce?

Even if f is “well-behaved,” may need some assumptions on P
§ e.g., f convex in x, concave in z
§ log-concave density for chance constraints
§ convex support
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Classical Probabilistic Model: DM knows P, solves minx Ez„P
“

Cpx, zq
‰

‚ Where is P coming from?

‚ When is this reasonable?

‚ What if P is not the actual distribution?

‚ What if P is not exogenous?

Perhaps we have historical samples z1, . . . , zN

Use empirical distribution P “
řN

i“1
1
N
δpziq?

Future like the past...

...
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Classical Probabilistic Model: DM knows P, solves minx Ez„P
“

Cpx, zq
‰

‚ What if there are constraints?
fi px, zq ě 0, @ i P I

‚ Where is P coming from?

‚ When is this reasonable?

‚ What if P is not the actual distribution?

‚ What if P is not exogenous?

Very popular modeling framework, but...

Theory unable to analyze complex, real-world phenomena
§ poor data, changing environments (future ‰ past), many agents, ...

Framework not geared towards computing decisions
§ Limited computational tractability, particularly in higher dimensions

With C “ ´up¨q (u utility function), unclear if this is a good behavioral model
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An Alternative Model of Uncertainty

Let’s admit explicitly that our model of reality is incorrect

From classical view: “we know distribution P for z, and solve: min
x

EP
“

Cpx, zq
‰

”

to robust view: “we only know that P P P, and solve: min
x

max
PPP

EP
“

Cpx, zq
‰

”
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‰

”

to robust view: “we only know that P P P, and solve: min
x

max
PPP

EP
“

Cpx, zq
‰

”

Long history of robust decision-making and model misspecification:

Economics:
§ Frank Knight (1921) - risk vs. Knightian uncertainty, Abraham Wald (1939), John von

Neumann (1944) zero-sum games
§ Savage (1951): minimax regret, Scarf (1958): robust Newsvendor model
§ Schmeidler, Gilboa (1980s): axiomatic frameworks, Ben-Haim (1980s): info-gap theory
§ Hansen & Sargent (2008): “Robustness” - robust control in macroeconomics
§ Bergemann & Morris (2012): “Robust mechanism design” book, Carroll (2015), ...

Engineering and robust control: Bertsekas (1970s), Doyle (1980s), etc.

Computer science: complexity analysis; adversarial training (modern!)

Statistics: M-estimators Huber (1981)

Operations Research:
§ Early work by Soyster (1973), Libura (1980), Bard (1984), Kouvelis (1997)
§ Robust Optimization: Ben-Tal, Nemirovski, El-Ghaoui (’90s), Bertsimas, Sim (’00s)
§ Two books: Ben-Tal, El-Ghaoui, Nemirovski (2009), Bertsimas, den Hertog (2020)
§ Many tutorials!
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An Alternative Model of Uncertainty

Let’s admit explicitly that our model of reality is incorrect

From classical view: “we know distribution P for z, and solve: min
x

EP
“

Cpx, zq
‰

”

to robust view: “we only know that P P P, and solve: min
x

max
PPP

EP
“

Cpx, zq
‰

”

Why robust optimization? (in my view)

1. Very sensible

2. Modest modeling requirements

3. Modest in its premise: “always under-promises, and over-delivers”

4. Tractable: quickly becoming “technology”

5. Very sensible results: can rationalize simple rules in complex problems
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“Classical” Robust Optimization (RO)

Robust Optimization: the values of z belong to an uncertainty set U

DM reformulates the original optimization problem as:

pPq

inf
x

sup
zPU

Cpx, zq

s.t. fi px, zq ď 0,@ z P U, @ i P I

12 / 21



“Classical” Robust Optimization (RO)

Robust Optimization: the values of z belong to an uncertainty set U

DM reformulates the original optimization problem as:

pPq

inf
x

sup
zPU

Cpx, zq

s.t. fi px, zq ď 0,@ z P U, @ i P I

Remarks.

1 Objective: worst-case performance supzPU Cpx, zq

§ Other options possible, based on notions of regret

Conservative?

§ Not necessarily!

§ U directly trades off robustness and conservatism, and is ultimately a modeling choice

Is there a probabilistic interpretation?

§ Objective “ sup
PPP

Ez„PrCpx,zqs where P is the set of all measures with support U

§ So we are assuming that the only information about P is the support U
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s.t. fi px, zq ď 0,@ z P U, @ i P I

Remarks.

1 Objective: worst-case performance supzPU Cpx, zq

2 Each constraint is “hard”: must be satisfied robustly, for any realization of z

What is the optimal value of the following robust LP?

min
x

max
aPU

´ px1 ` x2q

such that x1 ď a1

x2 ď a2 where U “
␣

pa1,a2q P r0, 1s2 : a1 ` a2 ď 1
(

x1 ` x2 ď 1.

Optimal value 0. In RO, each constraint must be satisfied separately, robustly.
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Remarks.

1 Objective: worst-case performance supzPU Cpx, zq

2 Each constraint is “hard”: must be satisfied robustly, for any realization of z

3 Each constraint can be re-written as an optimization problem

4 Without loss, we can consider a problem where z only appears in constraints

(P) is equivalent to the following problem:

inf
x,t

t

s.t. t ě Cpx,zq,@z P U

fi px,zq ď 0,@z P U, @ i P I

Many RO models are in this epigraph reformulation, and focus on constraints
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“Classical” Robust Optimization (RO)

Robust Optimization: the values of z belong to an uncertainty set U

DM reformulates the original optimization problem as:

pPq

inf
x

sup
zPU

Cpx, zq

s.t. fi px, zq ď 0,@ z P U, @ i P I

Remarks.

1 Objective: worst-case performance supzPU Cpx, zq

2 Each constraint is “hard”: must be satisfied robustly, for any realization of z

3 Each constraint can be re-written as an optimization problem

4 Without loss, we can consider a problem where z only appears in constraints

5 DM only responsible for objective and constraints when z P U

§ If z R U actually occurs, all bets are off

§ Can extend framework to ensure gradual degradation of performance:

Globalized robust counterparts (Ben-Tal & Nemirovski)
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2 Each constraint is “hard”: must be satisfied robustly, for any realization of z

3 Each constraint can be re-written as an optimization problem

4 Without loss, we can consider a problem where z only appears in constraints

5 DM only responsible for objective and constraints when z P U

6 Robust model seems to lead to a difficult optimization problem

§ For any given x, checking constraints/solving the “adversary” problem may be tough
§ We must also solve our original problem of finding x!
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Robust Optimization: the values of z belong to an uncertainty set U

DM reformulates the original optimization problem as:

pPq

inf
x

sup
zPU

Cpx, zq

s.t. fi px, zq ď 0,@ z P U, @ i P I

1. How to model U

2. How to formulate and solve the robust counterpart

3. Why is this useful, in theory and in practice
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Intuition for Some Basic Uncertainty Sets

Recall PILOT4; how to build some “safety buffers” for constraint like #372:

´15.79081 ¨ x826 ´ 8.598819 ¨ x827 ´ 1.88789 ¨ x828 ´ 1.362417 ¨ x829

´1.526049 ¨ x830 ´ 0.031883 ¨ x849 ´ 28.725555 ¨ x850 ´ 10.792065 ¨ x851

´0.19004 ¨ x852 ´ 2.757176 ¨ x853 ´ 12.290832 ¨ x854 ` 717.562256 ¨ x855

´0.057865x ¨ x856 ´ 3.785417 ¨ x857 ´ 78.30661 ¨ x858 ´ 122.163055 ¨ x859

´6.46609 ¨ x860 ´ 0.48371 ¨ x861 ´ 0.615264 ¨ x862 ´ 1.353783 ¨ x863

´84.644257 ¨ x864 ´ 122.459045 ¨ x865 ´ 43.15593 ¨ x866 ´ 1.712592 ¨ x870

´0.401597 ¨ x871 ` x880 ´ 0.946049 ¨ x898 ´ 0.946049 ¨ x916 ě 23.387405

Consider a linear constraint in x with coefficients that depend linearly on z

pā ` PzqTx ď b, @ z P U
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´0.401597 ¨ x871 ` x880 ´ 0.946049 ¨ x898 ´ 0.946049 ¨ x916 ě 23.387405

Consider a linear constraint in x with coefficients that depend linearly on z

pā ` PzqTx ď b, @ z P U

P is a known matrix; z is primitive uncertainty

Q: Why this more general form?

A: For modeling flexibility:
§ Suppose the same physical quantity (i.e., coefficient) appears in multiple constraints

§ Can capture “correlations”, e.g., with a factor model
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Consider a linear constraint in x with coefficients that depend linearly on z

pā ` PzqTx ď b, @ z P U

How about a box uncertainty set? For some confidence level ρ:

Ubox :“ tz : ´ρ ď zi ď ρu “ tz : ∥z∥8 ď ρu

“Too conservative?”

In PILOT4, robust solution is within 1% of x˚ for objective

Recall that x˚ would violate this constraint by 450%

Sometimes not much is sacrificed for robustness!
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Or maybe an ellipsoid would be less conservative:

Uellipsoid :“ tz : ∥z∥2 ď ρu
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Or maybe an ellipsoid would be less conservative:

Uellipsoid :“ tz : ∥z∥2 ď ρu

Or what if we gave “nature” a budget on how many coefficients it could change:

Ubudget :“ tz : ∥z∥8 ď ρ, ∥z∥1 ď Γρu
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Or maybe an ellipsoid would be less conservative:

Uellipsoid :“ tz : ∥z∥2 ď ρu

Or what if we gave “nature” a budget on how many coefficients it could change:

Ubudget :“ tz : ∥z∥8 ď ρ, ∥z∥1 ď Γρu

How to formulate the robust counterpart? How to set ρ, Γ? How to use in practice?
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Formulating the Robust Counterpart (RC) for Box Uncertainty Set

Consider a linear constraint in x with coefficients that depend linearly on z

pā ` PzqTx ď b, @ z P U

For Ubox “ tz : ∥z∥8 ď ρu, satisfying the constraint robustly is equivalent to:

max
z:}z}8ďρ

pā ` PzqTx ď b,

or
āTx ` max

z:}z}8ďρ
pPTxqTz ď b,

or
āTx ` max

z:|zi|ďρ

ÿ

i

pPTxqi zi ď b,

or
āTx ` ρ

ÿ

i

|pPTxqi| ď b,

or
āTx ` ρ}PTx}1 ď b.

14 / 21



Formulating the Robust Counterpart (RC) for Box Uncertainty Set

Consider a linear constraint in x with coefficients that depend linearly on z
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pā ` PzqTx ď b,

or
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Formulating the Robust Counterpart (RC) for Polyhedral Uncertainty Set

Consider a linear constraint in x with coefficients that depend linearly on z

pā ` PzqTx ď b, @ z P U

For Upolyhedral “ tz : Dz ď du, satisfying the constraint robustly is equivalent to:

āTx ` max
z :Dzďd

pPTxqTz ď b. (1)

By strong LP duality, when the left-hand-side in (1) is finite, we must have:

maxtpPTxqTz : Dz ď du “ mintdTy : DTy “ PTx, y ě 0u.

Hence (1) is equivalent to

āTx ` min
y

tdTy : DTy “ PTx, y ě 0u ď b,

or

Dy : āTx ` dTy ď b, DTy “ PTx, y ě 0.
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Formulating the Robust Counterpart for Polyhedral Uncertainty Set

Consider a linear constraint in x with coefficients that depend linearly on z

pā ` PzqTx ď b, @ z P U (2)

For Upolyhedral “ tz : Dz ď du, satisfying the constraint robustly is equivalent to:

Dy : āTx ` dTy ď b, DTy “ PTx, y ě 0.

Remarks.

To formulate the RC for (2), we must introduce a set of auxiliary decision variables y
§ these are decision variables, chosen together with x

How many auxiliary variables are needed to derive the RC for (2)?

§ # rows of D, i.e., as many as the constraints defining Upolyhedral

How many constraints are needed to derive the RC for (2)?

§ 1 ` p#columns of Dq ` p#rows of Dq

Suppose we were solving minxtcTx : Ax ď bu, with A P Rmˆn being uncertain. Under
Upolyhedral and D P Rpˆq, what kind of problem is the RC of this LO, and how large is it?

§ the RC of a linear optimization with Upolyhedral is still a linear optimization
§ n ` m ¨ p variables, m ¨ p1 ` p ` qq constraints
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Formulating the Robust Counterpart (RC) for Ellipsoidal Uncertainty Set

Consider a linear constraint in x with coefficients that depend linearly on z

pā ` PzqTx ď b, @ z P U

For Uellipsoid “ tz : ∥z∥2 ď ρu, satisfying the constraint robustly is equivalent to:

āTx ` max
z:}z}2ďρ

pPTxqTz ď b.

Intermezzo: max tqTz : }z}2 ď ρu or max tqTz : zTz ď ρ2u

Lagrange: z “ q{λ, and λ “ }q}2{ρ.

Optimal objective value: qTq
λ

“ ρ}q}2.

Hence robust counterpart (RC) is:

āTx ` ρ}PTx}2 ď b.
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āTx ` max
z:}z}2ďρ

pPTxqTz ď b.

Intermezzo: max tqTz : }z}2 ď ρu or max tqTz : zTz ď ρ2u

Lagrange: z “ q{λ, and λ “ }q}2{ρ.

Optimal objective value: qTq
λ

“ ρ}q}2.

Hence robust counterpart (RC) is:

āTx ` ρ}PTx}2 ď b.

17 / 21



Formulating the Robust Counterpart (RC) for Ellipsoidal Uncertainty Set

Consider a linear constraint in x with coefficients that depend linearly on z
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RC for Linear Optimization Problems with Classical Sets

The robust counterpart for pā ` PzqTx ď b, @ z P U is:

U-set U Robust Counterpart Tractability
Box }z}8 ď ρ āTx ` ρ}PTx}1 ď b LO

Ellipsoidal }z}2 ď ρ āTx ` ρ}PTx}2 ď b CQO

Polyhedral Dz ď d Dy :

$

’

&

’

%

āTx ` dTy ď b

DTy “ PTx

y ě 0

LO

Budget

#

}z}8 ď ρ

}z}1 ď Γ
Dy : āTx ` ρ}y}1 ` Γ}PTx ´ y}8 ď b LO
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Dy : āTx ` ρ}y}1 ` Γ}PTx ´ y}8 ď b LO

Problems above can be handled by large-scale modern solvers: CPLEX, Gurobi, etc.

Some software now also handling automatic problem re-formulation

If some of the decisions x are integer, problems above become MI-LO/CQO

Already a lot of mileage in many practical problems:
logistics and supply chain management, radiation therapy, scheduling, ...
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The robust counterpart for pā ` PzqTx ď b, @ z P U is:

U-set U Robust Counterpart Tractability
Box }z}8 ď ρ āTx ` ρ}PTx}1 ď b LO

Ellipsoidal }z}2 ď ρ āTx ` ρ}PTx}2 ď b CQO

Polyhedral Dz ď d Dy :

$

’

&

’

%

āTx ` dTy ď b

DTy “ PTx

y ě 0

LO

Budget

#

}z}8 ď ρ

}z}1 ď Γ
Dy : āTx ` ρ}y}1 ` Γ}PTx ´ y}8 ď b LO

Uncertainty in the right-hand side: pā ` PzqTx ď b ` pTz, @z P U

ô āTx ` pPTx ´ pqTz ď b, @z P U, so can use base model

General convex uncertainty set: U “ tz : hkpzq ď 0, k P Ku, hkp¨q convex?

RC is D twk,ukukPK : āTx `
ř

k ukh‹
kpwk{ukq ď b,

ř

k wk “ PTx, u ě 0. h‹
k is convex conjugate of hk

Constraint LHS general in x, linear in z: pPzqTgpxq ď b, @z P U

To calculate RC, take ā “ 0 and replace x with gpxq in our base-case model

Constraint LHS linear in x ě 0, concave in z: xTgpā ` Pzq ď b, @z P U, gipyq concave

ô dTx ď b, @pz,dq P U` :“
␣

pz,dq | Da : a “ ā ` Pz, d ď fpaq, z P U
(

; now linear in pz,dq, and U` convex

Constraint LHS convex in x and convex in z: fpx,zq ď b, f jointly convex

Tractable if f has “easy” piece-wise description: fpx,zq “ maxkPK fkpx,zq, where fk are cases that “worked”
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Used in many applications

inventory management e.g., [Ben-Tal et al., 2005, Bertsimas and Thiele, 2006, Bienstock and Özbay, 2008, ...]

facility location and transportation [Baron et al., 2011, ...]

scheduling [Lin et al., 2004, Yamashita et al., 2007, Mittal et al., 2014, ...]

revenue management [Perakis and Roels, 2010, Adida and Perakis, 2006, ...]

project management [Wiesemann et al., 2012, Ben-Tal et al., 2009, ...]

energy generation and distribution [Zhao et al., 2013, Lorca and Sun, 2015, ...]

portfolio optimization [Goldfarb and Iyengar, 2003, Tütüncü and Koenig, 2004, Ceria and Stubbs, 2006, Pinar

and Tütüncü, 2005, Bertsimas and Pachamanova, 2008, ...]

healthcare [Borfeld et al., 2008, Hanne et al., 2009, Chen et al., 2011, I., Trichakis, Yoon (2018), ...]

humanitarian [Uichano 2017, den Hertog et al., 2019, ...]
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A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming. MPS / SIAM Series on Optimization. SIAM, 2009.
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