Dan lancu

December 4, 2024

1/51

Outline for Today

@ Robust Optimization

» Quick Recap

» Calibrating Uncertainty Sets

» Distributionally Robust Optimization

» Connections with Other Areas

> Some Important Caveats When Applying Robust Optimization

@ Dynamic Robust Optimization

Properly Writing a Robust DP

An Inventory Example

Tractable Approximations with Decision Rules
Some Practical Issues

Bellman Optimality

An Application in Monitoring

v

v

v

v

v

v

2/51

“Classical” Robust Optimization (RO)

@ Only information about unknowns z: they belong to an uncertainty set U

Solve the following optimization problem:

inf sup C(x,z)
P x zeu

sit. fi(x,2) <0,VzelU, Viel

@ This model has infinitely many constraints

@ W.l.o.g., we can consider uncertainty only in the constraints

Each and every constraint must satisfied: f; (x,z) <0,Vze U

How to reformulate this as a finite-dimensional, tractable optimization problem,
a.k.a. the robust counterpart?

3/51

RC for Linear Optimization Problems with “Classical” Uncertainty Sets

The robust counterpart for ‘ (@+Pz)™x<b, Vzellis:

4/51

RC for Linear Optimization Problems with “Classical” Uncertainty Sets

The robust counterpart for ‘ (@+Pz)™x<b, Vzellis:

U-set u Robust Counterpart Tractability
Box Iz[o < P aTx + p[PTx[1 < b LO
Ellipsoidal Izlo<p aTx + p[PTx[2<Db CQO
aTx+dTy<b
Polyhedral Dz<d Jy : { DTy =PTx LO
y=0
< _
Budget 1zl < o Jy : aT™x +plly[i + T|P™x —yllo < b LO
Izl <T
a™x + Y ughf ("L‘:—:) <b
Convex hk(z) <0 Sewk = PTx Conv. Opt.
uz=0

4/51

RC for Linear Optimization Problems with “Classical” Uncertainty Sets

The robust counterpart for ‘ (@+Pz)™x<b, Vzellis:

U-set u Robust Counterpart Tractability
Box Iz[o < P aTx + p[PTx[1 < b LO
Ellipsoidal Izlo<p aTx + p[PTx[2<Db CQO
aTx+dTy<b
Polyhedral Dz <d Jy : { DTy =PTx LO
y=0
< _
Budget 1zl < o Jy : aT™x +plly[i + T|P™x —yllo < b LO
Izl <T
k
a™x + Y ughf ("L‘:—k) <b
Convex hk(z) <0 Sewk = PTx Conv. Opt.
uz=0

@ Several extensions

@ Robust counterparts can be handled by large-scale modern solvers

@ Already a lot of mileage in many practical problems:
logistics and supply chain management, radiation therapy, scheduling, ...

4/51

RC for Linear Optimization Problems with “Classical” Uncertainty Sets

The robust counterpart for ‘ (@+Pz)™x<b, Vzellis:

U-set u Robust Counterpart Tractability
Box Iz[o < P aTx + p[PTx[1 < b LO
Ellipsoidal Izlo<p aTx + p[PTx[2<Db CQO
aTx+dTy<b
Polyhedral Dz<d Jy : { DTy =PTx LO
y=0
< _
Budget 1zl < o Jy : aT™x +plly[i + T|P™x —yllo < b LO
Izl <T
a™x + Y ughf ("L‘:—:) <b
Convex hk(z) <0 Sewk = PTx Conv. Opt.
uz=0

@ How to pick parameters like p, T'?

o How to build uncertainty sets (from data)?

4/51

How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like p, I'?

5/51

How to Calibrate Uncertainty Sets?
For “structured” uncertainty sets, how should we pick parameters like p, I'?

Let's take a probabilistic view for a moment:
Suppose z; are really random, and we seek p,T" to ensure IP[((_J. + Pz)Tx < b] is “large”, VP

5/51

How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like p, I'?

Let's take a probabilistic view for a moment:
Suppose z; are really random, and we seek p,T" to ensure P[(& + Pz)Tx < b] is “large”, VP

Theorem (High Probability of Constraint Satisfaction)

Suppose z; are independent r.v. with mean 0 and support on [—1,1]. Then:

5/51

How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like p, I'?

Let's take a probabilistic view for a moment:
Suppose z; are really random, and we seek p,T to ensure P[(G + Pz)Tx < b] is “large”, VPP

Theorem (High Probability of Constraint Satisfaction)

Suppose z; are independent r.v. with mean 0 and support on [—1,1]. Then:

o ifx feasible for RC with Upox & {z : |20 < 1}, then P[(@ + Pz)Tx < b] = 1.

(no need for independence or 0-mean)

5/51

How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like p, I'?
Let's take a probabilistic view for a moment:
Suppose z; are really random, and we seek p,T" to ensure IP[((_J. + Pz)Tx < b] is “large”, VP
Theorem (High Probability of Constraint Satisfaction)
Suppose z; are independent r.v. with mean 0 and support on [—1,1]. Then:

e ifx feasible for RC with Upex = {2 : ||Z|le < 1}, then P[(@+ Pz)Tx < b] =1.

(no need for independence or 0-mean)
o ifx feasible for RC with Ugtipsoid = {z : ||z]l2 < v/2In(1/€)}, then
P[(@+Pz)Tx<b]>1—€.

5/51

How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like p, I'?

Let's take a probabilistic view for a moment:
Suppose z; are really random, and we seek p,T" to ensure IP[((_]. + Pz)Tx < b] is “large”, VP

Theorem (High Probability of Constraint Satisfaction)
Suppose z; are independent r.v. with mean 0 and support on [—1,1]. Then:

{z : ||zllc <1}, thenP[(@ + Pz)Tx < b] = 1.

def

@ if x feasible for RC with Upex =

(no need for independence or 0-mean)

def

o if x feasible for RC with Ueliipsoid = {Z : ||Z]|2 < +/2In(1/€)}, then
P[(@+Pz)Tx<b]>1—€.

def

@ if x feasible for RC with Ueiipsoid-box = 12 : [|Z|l2 < +/2In(1/€), ||Z]|c0 < 1}, then
P[(@+Pz)Tx<b]>1—e.

5/51

How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like p, I'?

Let's take a probabilistic view for a moment:
Suppose z; are really random, and we seek p,T" to ensure IP[((_]. + Pz)Tx < b] is “large”, VP

Theorem (High Probability of Constraint Satisfaction)
Suppose z; are independent r.v. with mean 0 and support on [—1,1]. Then:

{z : ||zllc <1}, thenP[(@ + Pz)Tx < b] = 1.

def

@ if x feasible for RC with Upex =

(no need for independence or 0-mean)

def

o if x feasible for RC with Ueliipsoid = {Z : ||Z]|2 < +/2In(1/€)}, then
P[(@+Pz)Tx<b]>1—€.

def

@ if x feasible for RC with Ueiipsoid-box = 12 : [|Z|l2 < +/2In(1/€), ||Z]|c0 < 1}, then
P[(@+Pz)Tx<b]>1—e.

o if x feasible for RC with Upydger = {z € R" : ||2]|oo < 1, ||2]|1 < T =+/2In(1/e)VL},
P[(@a+Pz)™x<b]>1-

5/51

How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like p, I'?

Let's take a probabilistic view for a moment:

Suppose z; are really random, and we seek p,T" to ensure P[(ﬁ. + Pz)Tx < b] is “large”,

Theorem (High Probability of Constraint Satisfaction)

Suppose z; are independent r.v. with mean 0 and support on [—1,1]. Then:

def

o ifx feasible for RC with Upox = {z : ||Z]|w < 1}, then P[(a + Pz)Tx <

(no need for independence or 0-mean)

def

o if x feasible for RC with Ueliipsoid = {Z : ||Z]|2 < +/2In(1/€)}, then
P[(@+Pz)Tx<b]>1—€.

def

@ if x feasible for RC with Ueiipsoid-box = 12 : [|Z|l2 < ~/2In(1/€), ||Z]|0 <

P[(@+Pz)Tx<b]>1—e.
@ ifx feasible for RC with Upydget = {Z € RE: ||z]|o < 1
P[(@a+Pz)™x<b]>1-

b]=1.

1}, then

 llzlls < T = 4/2In(1/€)VL},

VP

@ Some probabilistic information allows controlling conservatism: very useful in applications

The budget T depends on the dimension of z (L), whereas p does not!
@ Proofs based on concentration inequalities

5/51

Another Quick Example: A Portfolio Problem (Ben-Tal and Nemirovski)

@ 200 risky assets; asset # 200 is cash, with yearly return 1509 = 5% and zero risk

@ Yearly returns 1 are independent r.v. with values in [l — 0y, i + 0] and means p;:
(200 — 1) (200 — 1)

oy =0.05+0.6 =1,..,199.

@ Goal: distribute $1 so as to maximize worst-case value-at-risk at level € = 0.5%:

199 200
rT;(IiX{t : HD|:Z TiXi + T200X200 = t] >1—¢, VP, Z xi=1 x= 0},

i=1 i=1

6/51

Another Quick Example: A Portfolio Problem (Ben-Tal and Nemirovski)

@ 200 risky assets; asset # 200 is cash, with yearly return 1509 = 5% and zero risk
@ Yearly returns 1 are independent r.v. with values in [l — 0y, i + 0] and means p;:
(200 — 1) (200 — 1)
=1 33— i =0. 6———= =1,...,199.
i 05+ 0.3 190 o; =0.05+0.6 109 , 199

@ Goal: distribute $1 so as to maximize worst-case value-at-risk at level € = 0.5%:
199 200
max{t : TiXi + T200X 1—¢€,VP, xi=1 x>0
na { Lz:l i 200X200 =] ;1 i

@ With z; &f (ri — wi)/0o4, let's consider 3 uncertainty sets:
Q Upox ={z: |z <1}

Q UWellipsoid-box = {Z : |Zz[l0 < 1,]z[2 < p}, with p = /2In(1/€e) = 3.255
Q Upudget = {z : |z[lo <1,z < T} with T'=,/2In(1/€)+/199 = 45.921.

6/51

Another Quick Example: A Portfolio Problem (Ben-Tal and Nemirovski)

@ 200 risky assets; asset # 200 is cash, with yearly return 1509 = 5% and zero risk

@ Yearly returns 1 are independent r.v. with values in [l — 0y, i + 0] and means p;:

@00=1) 005406301

=1,...,199.

@ Goal: distribute $1 so as to maximize worst-case value-at-risk at level € = 0.5%:
199 200
max{t : TiXi + T200X 1—¢€,VP, xi=1 x>0
na { Lz]l i 200X200 =] 1211 i

@ With z; &f (ri — wi)/0o4, let's consider 3 uncertainty sets:
Q Upox ={z: |z <1}

Q UWellipsoid-box = {Z : |Zz[l0 < 1,]z[2 < p}, with p = /2In(1/€e) = 3.255
Q Upudget = {z : |z[lo <1,z < T} with T'=,/2In(1/€)+/199 = 45.921.

@ Results:
» Upey: worst-case returns Ty = 1y — 0y yield less than risk-free return of 5%, so
optimal to keep all money in cash; robust optimal return 1.05, risk 0
> Uellipsoid-box: robust optimal value is 1.12, risk 0.5%
> Upudget: robust optimal value is 1.10, risk 0.5%
@ Upox can be quite conservative, a tiny bit of risk can go a long way...

6/51

Using Concentration Results to Model Uncertainty Sets

o Bertsimas & Bandi: let's use the implications of the Central Limit Theorem
“All epistemological value of the theory of probability is based on this: that large-scale random phenomena in their

collective action create strict, non-random regularity” (Gnedenko and Kolmogorov, 1954)

7/51

Using Concentration Results to Model Uncertainty Sets

o Bertsimas & Bandi: let's use the implications of the Central Limit Theorem
“All epistemological value of the theory of probability is based on this: that large-scale random phenomena in their

collective action create strict, non-random regularity” (Gnedenko and Kolmogorov, 1954)

@ Suppose we have uncertainties {X;}I*,, each with mean p, standard deviation o

U & {(xl, .. Z X —np| < FG\/E}.

> If n large and CLT premises hold, T" = 2 (3) would give 95% (99%) coverage

7/51

Using Concentration Results to Model Uncertainty Sets

o Bertsimas & Bandi: let's use the implications of the Central Limit Theorem
“All epistemological value of the theory of probability is based on this: that large-scale random phenomena in their

collective action create strict, non-random regularity” (Gnedenko and Kolmogorov, 1954)

@ Suppose we have uncertainties {X;}I*,, each with mean p, standard deviation o

U & {(xl, .. Z X —np| < FG\/E}.

> If n large and CLT premises hold, T" = 2 (3) would give 95% (99%) coverage

@ Many extensions possible

» Modeling correlations through a factor model:
def
Ueorr = {x :x=Pz+e, ‘ZI‘ll zi — muy‘ <

» Using stable laws to model heavy-tailed cases where variance is undefined:
def
UnTt = {(xl, coXn) ‘Z?:l Xi — nu‘ < Fnl/"‘}.

» Constructing typical sets: if H¢ is the (Shannon) entropy of f,
(i) PLZ € Ugypicarl > 1 (i) | log F(Z]Z € Upypical) + Hi| < en

< ro—e\/ﬁr }

7/51

Using Concentration Results to Model Uncertainty Sets

o Bertsimas & Bandi: let's use the implications of the Central Limit Theorem
“All epistemological value of the theory of probability is based on this: that large-scale random phenomena in their

collective action create strict, non-random regularity” (Gnedenko and Kolmogorov, 1954)

@ Suppose we have uncertainties {X;}I*,, each with mean p, standard deviation o

U & {(xl, .. Z X —np| < FG\/E}.

> If n large and CLT premises hold, T" = 2 (3) would give 95% (99%) coverage

@ Many extensions possible

» Modeling correlations through a factor model:
def
Ueorr = {x :x=Pz+e, ‘Z?ll zi — muy‘ <

» Using stable laws to model heavy-tailed cases where variance is undefined:
def
UnTt = {(xl, coXn) ‘Z?:l Xi — nu‘ < Fnl/"‘}.

» Constructing typical sets: if H¢ is the (Shannon) entropy of f,

(i) P2 € Upypical] = 1, |4 10g (212 € Upypical) + He| < en

@ Bertsimas & Bandi used these to derive robust equivalents for several classical
queueing theory and information theory results

< ro—e\/ﬁr }

7/51

Using Hypothesis Tests to Model Uncertainty Sets

Another powerful idea: derive data-driven uncertainty sets from hypothesis tests

From Bertsimas, Gupta, Kallus (2017):

Table 1 Summary of data-driven uncertainty sets proposed in this paper. SOC, EC and LMI denote
second-order cone representable sets, exponential cone representable sets, and linear matrix inequalities,

respectively
Assumptions on P* Hypothesis test Geometric description Egs. Inner problem
Discrete support x2-test SoC (13, 15)
Discrete support G-test Polyhedral* (13, 16)
Independent marginals KS Test Polyhedral* 210 Line search
Independent marginals K Test Polyhedral* (76) Line search
Independent marginals CvM Test SOC* (76, 69)
Independent marginals W Test SOC* (76, 70)
Independent marginals AD Test EC (76,71)
Independent marginals Chen et al. [23] Nele 27) Closed-form
None Marginal Samples Box [€1))] Closed-form
None Linear Convex Polyhedron (34)
Ordering
None Shawe-Taylor and SoC 39) Closed-form
Cristianini [46]
None Delage and Ye LMI (41)

[25]

The additional “*” notation indicates a set of the above type with one additional, relative entropy constraint.
KS, K, CoM, W, and AD denote the Kolmogorov-Smirnov, Kuiper, Cramer-von Mises, Watson and
Anderson-Darling goodness of fit tests, respectively. In some cases, we can identify a worst-case realization
of uin (1) for bi-affine f and a candidate x with a specialized algorithm. In these cases, the column “Inner
Problem” roughly describes this algorithm

8/51

Distributionally Robust Modeling

o We saw that embedding some more probabilistic information can help

9/51

Distributionally Robust Modeling

o We saw that embedding some more probabilistic information can help

@ Let's change the paradigm slightly:
> we know the probability distribution for Z belongs to an ambiguity set: P € P
> we model P, and are interested in robust expected constraint satisfaction:

supEp[f(x,2)] < b
PeP

o Now, the adversary is choosing P, instead of z

» Advantage: Ep[f(x, Z)] as an expression of P is always linear, so much of our earlier
machinery (e.g., convex duality) can be applied if the set P is “well-behaved”

» Disadvantage: Maximizing over continuous P: -dimensional optimization

9/51

Distributionally Robust Modeling

We saw that embedding some more probabilistic information can help

@ Let's change the paradigm slightly:
> we know the probability distribution for Z belongs to an ambiguity set: P € P
> we model P, and are interested in robust expected constraint satisfaction:

supEp[f(x,2)] < b
PeP

@ Now, the adversary is choosing P, instead of z

» Advantage: Ep[f(x, Z)] as an expression of P is always linear, so much of our earlier
machinery (e.g., convex duality) can be applied if the set P is “well-behaved”

» Disadvantage: Maximizing over continuous P: -dimensional optimization

Very old idea, dating to the 1950s (Scarf 1958, Zackova 1966)

Kuhn, Shafiee, Wiesemann (2024): tutorial on state-of-the-art. Can model:
» known (bounds on) moments, e.g., means, covariance matrix, higher order
> known (bounds on) quantiles (e.g., median) or spread statistics
» multiple confidence regions
» distance from a nominal distribution (Kullback-Leibler, Wasserstein, etc.)

9/51

Two Important Caveats When Working With Robust Models I

10/51

An Example: A Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

11/51

An Example: A Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

11/51

An Example: A Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

max
X,I,Z,p

s.t.

Parameters:

T discrete planning horizon, indexed by T
F: potential facility locations, indexed by i
N: demand node locations, indexed by j
P: unit price of goods

D2 P i) Xr — 2 D, ciPic —) (CiZi + Kily)

TeTieF jeN TeTieF iedF
D Xijr<Djr, JEN, TET,

iedF

injTSPiT, ieJ, teT,

jeN

Xijr 20, ieF, jeN, teT
Pie<Zi, Zi<M-1I;, ieTF, 1eT
Ie {0, 1}‘:{‘, (where M is a large enough constant.)

Decision variables:

Xijr: how much of demand j in period T satisfied by i
Pi~: quantity produced at facility i in period T

Ii: whether facility i is open (0/1)

Z;: capacity of facility i if open.

ci: cost per unit of production at facility i
Cy: cost per unit of capacity for facility i

Ky:

s

cij

cost of opening a facility at location i
: cost of shipping units from location i to j

Dj<: demand in period T at location j.

11/51

An Example: A Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

Jnax, DY (P —ci)Xijr — D, . ciPie — Y, (CiZi + Kil)

TeTieF jeN TeTieF iedF
s.t. D Xijr<Djr, JEN, TET,

ied

D Xiyjr < Pir, i€F, TeT,

jeN

Xijr =0, ieF, jeN, teT

Pie<Zi, Zi<M-1;, ieT, 1eT

Ie {0, l}m, (where M is a large enough constant.)
Step 2. Identify all uncertain parameters and model the uncertainty set U.
Baron et al. 2011 captured uncertain demands:

2
U={DeRMT | Z(“__ > <p?),
JEN teT etDji

{Djt}jeg\meey are "nominal” demands, € is allowed deviation (%), p is the size of the ellipsoid.

11/51

An Example: A Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

Jnax, DY (P —ci)Xijr — D, . ciPie — Y, (CiZi + Kil)

TeTieF jeN TeTieF iedF
s.t. D Xijr<Djr, JEN, TET,

ied

D Xiyjr < Pir, i€F, TeT,

jeN

Xijr =0, ieF, jeN, teT

Pir<Zi, Zi<M-1;, ie€eF, 1eT

Ie {0, l}m, (where M is a large enough constant.)
Step 2. Identify all uncertain parameters and model the uncertainty set U.
Baron et al. 2011 captured uncertain demands:

U =1{DeRMTI ZZ(Dje — Dje >2<p2 ,

JEN teT etDje

Equivalently, can write Dy = Dj¢(1 + €1 - zj¢), where z € U = {z e RNMTL |z, <

P}

11/51

An Example: A Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

Jnax, DY (P —ci)Xijr — D, . ciPie — Y, (CiZi + Kil)

TeTieF jeN TeTieF iedF
s.t. D Xijr<Djr, JEN, TET,

ied

D Xiyjr < Pir, i€F, TeT,

jeN

Xijr =0, ieF, jeN, teT

Pir<Zi, Zi<M-1;, ie€eF, 1eT

Ie{o 1}7, (where M is a large enough constant.)
Step 2. Identify all uncertain parameters and model the uncertainty set U.
Baron et al. 2011 captured uncertain demands:

U =1{DeRMTI ZZ(Dje — Dje >2<p2 ,

JEN teT etDje

Step 3. Derive robust counterpart for the problem. Here, this will be a Conic Quadratic program.

11/51

Compare Two Models

Our initial model, with decisions for quantities X:

X1, DD Y =i Xigr— 2 2 ciPic— 2 (CiZi —Kily)

TeTieTF jeN TeT ieF iedF
s.t. D Xijr <Djr, JEN, TET,

ied

D Xijr <Pir, i€F, TET,

jeN

Xijr =20, 1€F jeN teT
Pic <Zi, Zi<M-1;, ieTF, teT

1€ {0, 1}‘:”, (where M is a large enough constant.)

12 /51

Compare Two Models

Our initial model, with decisions for quantities X:

DD Y =i Xigr— 2 2 ciPic— 2 (CiZi —Kily)

max
X,1,Z,P

s.t.

TeTieTF jeN TeT ieF iedF
D Xijr <Djr, JEN, TET,

ied

D Xijr <Pir, i€F, TET,

jeN

Xijr =20, 1€F jeN teT
Pic <Zi, Zi<M-1;, ieTF, teT

1€ {0, 1}‘:”, (where M is a large enough constant.)

Another model, with decisions for fractions of demands Y:

max
Y,1,Z,P

s.t.

D2 X P—ci)YijeDjr— D) D) ciPix—) (CiZs

TeT ieF jeN TeT iedF ied
Dl VYije <1, jeN, TeT,

iedF

> YijDjc < Pir, i€F, TET,

JEN

Yi; it ieJF, jeN, teT

>0,
Pic<Zi, Zi<M-1;, ied, teT

1€ {0, 1}‘?‘, (where M is a large enough constant.)

—Kily)

12 /51

Compare Two Models

Our initial model, with decisions for quantities X:

X1, DD Y =i Xigr— 2 2 ciPic— 2 (CiZi —Kily)

TeTieTF jeN TeT ieF iedF
s.t. D Xijr <Djr, JEN, TET,

ied

D Xijr <Pir, i€F, TET,

jeN

Xijr =20, 1€F jeN teT
Pic <Zi, Zi<M-1;, ieTF, teT

1€ {0, 1}‘:”, (where M is a large enough constant.)

Another model, with decisions for fractions of demands Y:

ymax D2 X P—ci)YijeDje— D) D) ciPix—) (CiZi —KiIy)

TeT ieF jeN TeT iedF ied
st Dl VYije <1, jeN, TeT,

iedF

> YijDjc < Pir, i€F, TET,

JEN

Yijx iedF, jeN, teT

>0
Pic<Zi, Zi<M-1;, ied, teT

1€ {0, 1}‘?‘, (where M is a large enough constant.)

For fixed D, are these deterministic/nominal models equivalent?
Are their robust counterparts equivalent?

12 /51

Compare Two Models

Our initial model, with decisions for quantities X:

T DY (P —c§j)Xijc — DD eiPir — Y (CiZi —Kily)

TeTieT jeN TeT ieT ied
s.t. D Xijr <Djr, JEN, TET,

iedF

D Xijr <Pir, i€F, TET,

jEN

Xijr =20, 1€F jeN teT
Pic <Zi, Zi<M-1;, ieTF, teT

1€ {0, I}K’r', (where M is a large enough constant.)

An equivalent deterministic model, with decisions for fractions of demands Y:

ymax, D2 2P —c)YijeDijr— X D ciPic—) (CiZi —KiLy)

TeTieF jeN TeT ieF ied
st D VYije <1, jeN, TeT,

ieF

D) YijxDjr < Pir, i€F, TET,

JEN

Yijr =0, ieF, jeN, 1eT
Pir<Zi, Zi <M1, iedF, teT

1€ {0, 1}‘1”, (where M is a large enough constant.)

The second formulation implements ordering quantities that depend on demand!

13 /51

The robust counterparts of equivalent deterministic models
may be different!

You should always try to allow your formulation
to be as flexible as possible!

14 /51

Another Caveat... '

15 /51

Are Robust Solutions Pareto-Efficient?

max min uTx
xeX uel

@ Feasible set of solutions X = {X eR™: Ax < b}

@ Uncertainty set of objective coefficients U = {u € R™ : Du > d}

16 /51

Are Robust Solutions Pareto-Efficient?

max min uTx
xeX uel

@ Feasible set of solutions X = {x eR™: Ax < b}

@ Uncertainty set of objective coefficients U = {u € R™ : Du > d}

@ Classical RO framework results in

> Optimal value Jgq

» Set of robustly optimal solutions

XRO — (xeX:3y>0suchthat DTy =x, yTdz=Jko}

16 /51

Set of Robustly Optimal Solutions

o XRO = {xeX:3y=0suchthat DTy =%, yTd=Jxo}

@ x € XRO guarantees that no other solution exists with higher worst-case objective
value uTx

17 /51

Set of Robustly Optimal Solutions

o XRO = {xeX:3y=0suchthat DTy =%, yTd=Jxo}

@ x € XRO guarantees that no other solution exists with higher worst-case objective
value uTx

o What if an uncertainty scenario materializes that does not correspond to the
worst-case?

@ Are there any guarantees that no other solution X exists that, apart from protecting
us from worst-case scenarios, also performs better overall, under all possible
uncertainty realizations?

17 /51

Pareto Robustly Optimal solutions (lancu & Trichakis 2014)

max min uTx (1)
xeX ueld

Definition

A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (1) if
(a) it is robustly optimal, i.e., x € XR°, and
(b) there is no X € X such that

u™>ux, Vuel, and

uTx > uTx, for some it € U.

18 /51

Pareto Robustly Optimal solutions (lancu & Trichakis 2014)

max min uTx (1)
xeX ueld

Definition

A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (1) if
(a) it is robustly optimal, i.e., x € XR°, and
(b) there is no X € X such that

u™>ux, Vuel, and

uTx > uTx, for some it € U.

@ XPRO c XRO: get of all PRO solutions

18 /51

Some questions

Given a RO solution, is it also PRO?

@ How can one find a PRO solution?
e Can we optimize over XPRO?

Can we characterize XPRO?

> Is it non-empty?
> Is it convex?

» When is XPRO = xRO?

@ How does the notion generalize in other RO formulations?

19/51

Finding PRO solutions

Theorem

Given a solution x € XR® and an arbitrary point p € ri(ll), consider the following linear
optimization problem:

maximize pTy
subject to ye U*
x+yeX.
Then, either

o U* = {yeR™:yTu >0, Yue U} is the dual of U

20/51

Finding PRO solutions

Theorem

Given a solution x € XR® and an arbitrary point p € ri(ll), consider the following linear
optimization problem:

maximize pTy
subject to ye U*
x+yeX.
Then, either

@ the optimal value is zero and x € XPRO, or

o U* = {yeR™:yTu >0, Yue U} is the dual of U

20/51

Finding PRO solutions

Theorem

Given a solution x € XR® and an arbitrary point p € ri(ll), consider the following linear
optimization problem:

maximize pTy
subject to ye U*
x+yeX.
Then, either
@ the optimal value is zero and x € XPRO, or

@ the optimal value is strictly positive and X = x +y* € X"RO, for any optimal y*.

o U* = {yeR™:yTu =0, Yue U} is the dual of U

20/51

Remarks

@ Finding a point @ € ri(U) can be done efficiently using LP techniques

o Testing whether x € XR© is no harder than solving the classical RO problem in this
setting

@ Finding a PRO solution x € XPRO is no harder than solving the classical RO problem
in this setting

21/51

Corollaries

o If e ri(U), all optimal solutions to the problem below are PRO:

maximize UTx
subject to x € XRO

o If 0 e ri(U), then XPRO — xRO

o If e ri(U), then XPRO = XRO if and only if the optimal value of this LP is zero:

maximize UTy

subject to x € XRO
yeu*
x+yeX

22/51

Optimizing over / Understanding X”RO

@ Secondary objective T: can we solve
maximize 1Tx

subject to x € XPRO?

@ Interesting case: XRO s XPRO

23/51

Optimizing over / Understanding X”RO

@ Secondary objective 1: can we solve

maximize 1Tx
subject to x € XPRO?

Proposition J

XPRO s not necessarily convex.

o X={xeRY :x; <1, x+x3<6, x3+x4 <5, X2 + x4 <5}
o U= conv({ei, ie {14}})

0 Jio=1and XRO = {xe X : x> 1}
oxt=[1241"x2=[14 2 1]TeXxPR

e 0.5x! +0.5%2 is Pareto dominated by [1 3 3 2]" e XR°.

23/51

Optimizing over / Understanding X”RO

@ Secondary objective T: can we solve

maximize 17X
subject to x € XPRO?

Proposition J

If XRO 2 XPRO then XPRO ri(XRO) = ¢

@ Whether solution to nominal RO is PRO depends on algorithm used for solving LP

@ Simplex better for RO problems than interior point methods

23/51

What Are The Gains?

Example (Portfolio)
@ n + 1 assets, with returns 1;
oTi =W +0iC,i=1...,Mn Thi1 = Unt1
o (unknown, U={CeR":-1<(<1,17¢C=0}

@ Objective: select weights x to maximize worst-case portfolio return

24 /51

What Are The Gains?

Example (Portfolio)
@ n + 1 assets, with returns 1;
oTi =W +0iC,i=1...,Mn Thi1 = Unt1
o (unknown, U={CeR":-1<(<1,17¢C=0}

@ Objective: select weights x to maximize worst-case portfolio return

24 /51

What Are The Gains?

Example (Portfolio)
@ n + 1 assets, with returns 1;
eTi=p+0;G,i=1...,n Thi1 = HUnt1
o (unknown, U={CeR":-1<(<1,17¢C=0}

@ Objective: select weights x to maximize worst-case portfolio return

Example (Inventory)
@ One warehouse, N retailers where uncertain demand is realized
@ Transportation, holding costs and profit margins differ for each retailer
o Demand driven by market factors d; = d? + qfz, i=1,...,N

@ Market factors z are uncertain

zeU={zeRN:-b-1<z<b-1, -B<17z< B}

24 /51

Numerical experiments

Example (Project management)
o A PERT diagram given by directed, acyclic graph G = (N, &)

o N are project events, & are project activities / tasks

25/51

Numerical experiments

Example (Project management)
o A PERT diagram given by directed, acyclic graph G = (N, &)
o N are project events, & are project activities / tasks

o Task e € € has uncertain duration T, = 12 + &,

seU:={6eRf:56<b-1, 175, <B}

Task e € € can be expedited by allocating a budgeted resource x.

Te =10 + 8¢ — Xe
1"™x < C

@ Goal: find resource allocation x to minimize worst-case completion time

25/51

Results — finance and inventory examples (10K instances)

occurrences # occurrences
[N} > () [N} > ()
(en) (en) (en) (en) (en) (en)
o o o o o o

..

10 20 30 40 50

10 20 30 40 50
nominal gain (%)

600
400
200

Q

10 20 30 40 50

600
400
200

Q

10 20 30 40 50
maximum gain (%)

Figure: TOP: portfolio example. BOTTOM: inventory example. LEFT: performance gains in
nominal scenario. RIGHT: maximal performance gains.

26 /51

Results — two project management networks (10K instances)

()

S
o
)}
o

Ce:

n
—
ot
o

100

occurre
ot
[e=]

2

10 20 30

>

[l

o
—
o
—

w
o
o

—
o
o

occurrences
[\~
o
o

2

10 20 30
nominal gain (in %)

40

200

(a)

150

100
50 Ih

G 10

400

20 30 40

(b)

300
200
100

G 10

20 30 40

maximum gain (in %)

Careful To Avoid Naive Inefficiencies In Robust Models!

27/51

Dynamic Robust Optimization

x chosen +— zrevealed +— Yy(x,z) chosen

28/51

Dynamic Robust Optimization

x chosen +— zrevealed +— Yy(x,z) chosen

Stochastic model: Robust model:

min]EZ[min f(x,y,z)

min max min f(x,y, z)
x y(x,z

x zel y(x,z)

28/51

Dynamic Robust Optimization

x chosen +— zrevealed +— Yy(x,z) chosen

Stochastic model: Robust model:
mxin]EZ[min f(x,y,z)] min ?eaﬁ(yr&l,g) f(x,y,2)
y(x,z

@ Solve problems via Dynamic Programming:
» Given X,z — find y*(x,z) — find x*

> Bellman principle: y* optimal for any given x, z

28/51

Dynamic Robust Optimization

x chosen +— zrevealed +— Yy(x,z) chosen

Stochastic model: Robust model:

} min max min f(x,y, z)
x zel y(x,z)

min EZ[min f(x,y,z)
x y(x,z)
@ Solve problems via Dynamic Programming:

» Given X,z — find y*(x,z) — find x*

> Bellman principle: y* optimal for any given x, z

Outline...

1. Properly writing a robust DP
2. Tractable approximations with decision rules
3. A subtle point: is Bellman optimality really necessary?

e |f not, what to replace it with?
e Why is this relevant?

4. Applications

28 /51

A simple motivating example

Consider the following deterministic inventory management problem:

ordering cost holding cost backlog cost

——~—
—
minimize Z coxe +hi(yer) T +be(—yegn)T

{xe}ioy

st. Yir1 =Yy¢ +x —di, Vi, (Stock balance)
L < x¢ < Hg, Vi, (Min/max order size)

Yy1=a, (Initial stock level)

29/51

A simple motivating example

Consider the following deterministic inventory management problem:

ordering cost holding cost backlog cost

——~—
—
r'rglnl}mlze Z coxe s A he(Yern) T +be(—yes)t
Xtri=1
st. Yir1 =Yy¢ +x —di, Vi, (Stock balance)
Ly <x¢ < Hg, VH, (Min/max order size)

Yy1=a, (Initial stock level)

where
@ X is number of goods ordered at time t and received at t + 1
@ Y is number of goods in stock at beginning of time t
@ d; is demand during period t

@ a is the initial inventory

29/51

A simple motivating example

Consider the following deterministic inventory management problem:

ordering cost holding cost backlog cost

——~—
—
minimize Z coxe s A he(Yern) T +be(—yes)t

{Xt}[1

st. Yir1 =Yy¢ +x —di, Vi, (Stock balance)
Ly <x¢ < Hg, VH, (Min/max order size)

Yy1=a, (Initial stock level)

What if future demands known to reside in an uncertainty set U?

d:=(d;,dy,...,dr) e UCRT

29 /51

A simple motivating example

Consider the following deterministic inventory management problem:

ordering cost holding cost backlog cost

——~—
—
minimize Z coxe s A he(Yern) T +be(—yes)t

{Xt}[1

st. Yir1 =Yy¢ +x —di, Vi, (Stock balance)
Ly <x¢ < Hg, VH, (Min/max order size)

Yy1=a, (Initial stock level)

What if future demands known to reside in uncertainty set U?

d:=(d;,dy,...,dr) e UCRT

Ordering policies can depend on revealed demands:
Xt(d“,”), where d|[71| = (dl, d2 dtfl) € Rt_l.

29 /51

Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:
min [clxl + max [‘nl(yZ)+ +bi(—y2)*t

Li<x;<H; d1€U (D)

+ min [C2X2+ max [hg(y3)++b2(—g3)++...

Ly<xp<H, drells(dy)

+ min [CTXT +
Lr<xt<Hr

[hT(yT+1)+ + bT(*yT+1)+]] .. :|

max
drely(diT—1)

where:
Yeq1i= Yt +x¢ — dy
Ue(die 1) = {de R : 3£ € R such that [dc1j; d;&] e U}

30/51

Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:

min [clxl—l— max |:h1(y2)++b1(—y2)+

Li<x;<H; d1€U (D)

+ min [02x2+ max [hQ(y3)++b2(—y3)++...

Ly<xp<H, drells(dy)

+ min [CTXT +
Lr<xt<Hr

[hT(yT+1)+ + bT(*yT+1)+]] .. :|

max
dreUr(dir_1))

where:
Yeq1i= Yt +x¢ — dy
Ue(die 1) = {de R : 3£ € R such that [dc1j; d;&] e U}

@ Nested min-max problems

@ Explicit rule for “conditioning”: projection of uncertainty set

30/51

Bellman Principle; Robust DP Recursions

o The state of the system at time t:

Sy = [Ut; d|t—1]] = [yt; d; do; ... ;dt—l] eRT

31/51

Bellman Principle; Robust DP Recursions
o The state of the system at time t:

Sy = [Ut§ d|t—1]] = [yt; d; do; ... ;dt—l] eRT

@ Value function J;(S¢) given by:
Ji(St) = min " [Ctxt + max [ht(yt+1)+ +be(—yes) T+]Z+1(St+1)]}
t

Le<xt< deeUe(dpg_1)

31/51

Bellman Principle; Robust DP Recursions

o The state of the system at time t:

Sy = [yt; d|t—1]] = [yt; d; do; ... ;dt—l] eRT

@ Value function J;(S¢) given by:
Ji(St) = min " [ctxt + max [ht(yt+1)+ +be(—yes) T+]Z+1(St+1)]}
t

Le<xt< deeUe(dpg_1)

Observations:

@ General U — high-dimensional S; — curse of dimensionality

31/51

Bellman Principle; Robust DP Recursions

o The state of the system at time t:

Sy = [yt; d|t—1]] = [yt; d; do; ... ;dt—l] eRT

@ Value function J;(S¢) given by:
Ji(St) = min " [ctxt + max [ht(yt+1)+ +be(—yes) T+]Z+1(St+1)]}
t

Le<xt< deeUe(dpg_1)

Observations:

@ General U — high-dimensional S; — curse of dimensionality

@ When U has special structure, can reduce state space

31/51

Bellman Principle; Robust DP Recursions

o The state of the system at time t:

Sy = [yt; d|t—1]] = [yt; d; do; ... ;dt—l] eRT

@ Value function J;(S¢) given by:
Ji(St) = min " [ctxt + max [ht(yt+1)+ +be(—yes) T+]Z+1(St+1)]}
t

Le<xt< deeUe(dpg_1)

Observations:

@ General U — high-dimensional S; — curse of dimensionality

@ When U has special structure, can reduce state space

ubox={d:gt<dt<at]} = S

t—1

ZHI < r, dt = (_it + atzt} g St = [ytv Z |ZT|]T

T=1

ubudget = {d : EI Zv |

z[o <1,

31/51

Bellman Principle; Robust DP Recursions

o The state of the system at time t:

Sy = [Ut§ d|t—1]] = [yt; d; do; ... ;dt—l] eRT

@ Value function J;(S¢) given by:
Ji(St) = min " [ctxt + max [he(Yep) ™ +be(—ye) ' +]:+1(St+1)]}
t

Le<xt< deeUe(dpg_1)

Observations:

@ General U — high-dimensional S; — curse of dimensionality

@ When U has special structure, can reduce state space
@ Reduce computational burden

@ Prove structural results, comparative statics

x;(y) = min(H¢, max(Ly, 6 —y)) (modified) base-stock policy

31/51

Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

min maxmin f(x,y, z)
x zel y(z)

o Finding Bellman-optimal rules y*(z) generally intractable

32/51

Tractable Approximations Via Decision Rules
Back to our basic dynamic robust model:
R fewe®)
o Finding Bellman-optimal rules y*(z) generally intractable

@ Pragmatic idea: let's focus on some “simple” decision rules that we can compute

o For instance, with a static y(z) = y, could just apply all our previous machinery

32/51

Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

min maxmin f(x,y,z)
x zel y(z)

o Finding Bellman-optimal rules y*(z) generally intractable

@ Pragmatic idea: let's focus on some “simple” decision rules that we can compute

For instance, with a static y(z) =y, could just apply all our previous machinery

Ben-Tal et. al: Linear Decision Rules

» Suppose we have a constraint
(@+Pz)Tx+dTy(z) <b, Vzel
where y(z) is dynamically adjustable

> A linear (affine) form y = 1 + Vz would lead to the problem:
aTx + dTu+ (PTx+ VTd)Tz<b, Vzell.

Constraint linear in decisions x, u, V' and uncertainty z, so all previous results apply!

32/51

Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

min maxmin f(x,y,z)
x zel y(z)

o Finding Bellman-optimal rules y*(z) generally intractable

@ Pragmatic idea: let's focus on some “simple” decision rules that we can compute

For instance, with a static y(z) =y, could just apply all our previous machinery

Ben-Tal et. al: Linear Decision Rules

» Suppose we have a constraint
(@+Pz)Tx+dTy(z) <b, Vzel
where y(z) is dynamically adjustable

> A linear (affine) form y = 1 + Vz would lead to the problem:
aTx + dTu+ (PTx+ VTd)Tz<b, Vzell.

Constraint linear in decisions x, u, V' and uncertainty z, so all previous results apply!

@ So how to apply these static or linear rules in a real problem?

32/51

Implementation and Potential Pitfalls

Recall our inventory problem. The deterministic version can be reformulated as an LP:

T
minimize Z (cexe + hest + bysy)
xeyestsy t=1
s.t. sy =0,s7 =0, Vt,
ST = Y1, Y,
St Z —VYiq1, VL,

Yer1 =Ye +x¢ — di, VE,
Ly <x¢ < Hg, Vt,

where
o s : physical inventory held at end of period t

@ s : backlogged customer demand at end of period t

33/51

Implementation and Potential Pitfalls

Recall our inventory problem. The deterministic version can be reformulated as an LP:

T
minimize Z (ctxt + hysy + bts;)
xeyest sy t=1
s.t. s; >0,s7 =0, Vt,
s§ =Yg, Vi,
St = —Yit1, Vi,

yt+1=yt+xt—dt,Vt,
Ly <x¢ < Hg, Vt,

where
o s : physical inventory held at end of period t

@ s : backlogged customer demand at end of period t

What if demand known to reside in an uncertainty set U?

d:=(d;,dy,...,d7) e UCRT

33/51

Naive Robustification

Consider a naive robust optimization model:

:
minimize Z (cexe + hest + bysy)
xeyesi sy t=1
s.t. sf =057 =0,Vt
s¢ =Y, Vit
S¢ Z —Yr41, Vi

yt+1=yt+Xt—dt,Vt,Vd€U
Ly <x¢ < Hg, YVt

34/51

Naive Robustification

Consider a naive robust optimization model:

:
minimize Z (cexe + hest + bysy)
xeyesi sy t=1
s.t. sf =057 =0,Vt
s¢ =Y, Vit
S¢ Z —Yr41, Vi

Yit1 =Yt +x¢ —de, ¥V, Vdel
Ly <x¢ < Hg, YVt

Unfortunately, this is infeasible even when U = {d(l), d(2>}:

- _ 4@
{ Et+1 : 3t i:t gb) } - dil) _ df)
t+1 = Y + X — dy

"

Problem arises due to “=" constraint!

34/51

A less naive robustification

Robustify an alternate linear programming formulation:

minimize Z (cexe + s + bysy)

Xt,S¢ St t

sit. sf >0, s;

st =yt) (de —xu), Y,

t'=1
Lt<xt<Ht, Vt,

where we simply replace Y1 := Y1 + > 0/_; (x¢/ — dir).

35/51

A less naive robustification
Robustify an alternate linear programming formulation:

.
m|n|m|z Z ctXtJrhtst+ +btsf)

Xt, st St

s.t. 320, sy =0, Vt,

.
>yi+), (xe —du), Vt, Ydel

t/=1

ST = -y + Z (A —x¢r), Vt, Vdel

t/=1

Ly <x¢ < Hg, Vt.

36/51

A less naive robustification
Robustify an alternate linear programming formulation:

.
m|n|m|z Z ctxtJrhtst+ +btsf)

Xt, st St

s.t. s:’ >0,s; =0, Vt,
T

st =y + (x¢r —dy), Vt, Vdell

t'=1

;
st =yt). (de —x), Vt, Ydel
t/=1

L <x¢ < Hg, Vt.

Q: If orders x, are static (i.e., fixed t = 0), should (s;, s{) also be static?

36/51

A less naive robustification
Robustify an alternate linear programming formulation:

.
m|n|m|z Z ctxtJrhtst+ +btsf)

Xt, st St

s.t. s:’ >0,s; =0, Vt,
T

st >y + Y (xe —dy), Y, Vdel

t/'=1

.
st =yt). (de —x), Vt, Ydel

t/=1

Ly <x¢ < Hg, Vt.

Q: If orders x, are static (i.e., fixed t = 0), should (s;, s{) also be static?

A: No, that would be unnecessarily conservative!
Auxiliary (i.e., “reformulation”) variables should be fully adjustable, even under
static “implementable” decisions.

36/51

Linear Decision Rules

@ Take both ordering policies and auxiliary variables to depend linearly on demands
xe(dpeo1y) =Y+ Xedpey)
s (dpe—y) = s + S dpy
st (dre—1)) = s¢ + S¢ de_1g

37/51

Linear Decision Rules

@ Take both ordering policies and auxiliary variables to depend linearly on demands

xe(dpeo1y) =Y+ Xedpey)
St+ (d[t—l]) = St+ + de[t—l]
si (dpe-ny) =s¢ + Sy dpey

@ The Robust Counterpart problem becomes:
T

min Tea%;lct (0 + Xed) + - (57 +SFd) by (sp +Spd)

st. s +SFfd>0, sy +S;d>0, VdelU

.
st +8Fd=yr+ D)8 + Xedproyy — do), Vd e,
T=1

.
st +S7d >~y — D, (8 + Xedpr_yy — do), Vd € 1L,

T=1

Lt<Xt+Xtd<Ht,Vd€U,

.. . .. e T
o Decision variables: coefficients X = {x?, X;, s{", S{, sy, Sy }1_,

@ Two layers of sub-optimality: policies and auxiliary variables; any good?

37/51

Empirical Performance: Ben-Tal et al. ('04, '09), with box uncertainty

p (%) | OPT Linear (Gap) Static (Gap)

10 13531.8 | 13531.8 (+0.0%) | 15033.4 (+11.1%)
20 15063.5 | 15063.5 (+0.0%) | 18066.7 (4+19.9%)
30 165953 | 16595.3 (+0.0%) | 21100.0 (+27.1%)
20 18127.0 | 18127.0 (10.0%) | 24300.0 (+34.1%)
50 19658.7 | 19658.7 (+0.0%) | 27500.0 (4+39.9%)
60 211905 | 21190.5 (10.0%) | 30700.0 (+44.9%)
70 22722.2 | 22722.2 (10.0%) | 33960.0 (+49.5%)

38/51

Empirical Performance: Ben-Tal et al. ('04, '09), with box uncertainty

p (%) | OPT Linear (Gap) Static (Gap)

10 13531.8 | 13531.8 (+0.0%) | 15033.4 (+11.1%)
20 15063.5 | 15063.5 (+0.0%) | 18066.7 (4+19.9%)
30 165953 | 16595.3 (+0.0%) | 21100.0 (+27.1%)
40 18127.0 | 18127.0 (10.0%) | 24300.0 (+34.1%)
50 19658.7 | 19658.7 (+0.0%) | 27500.0 (4+39.9%)
60 211905 | 21190.5 (10.0%) | 30700.0 (+44.9%)
70 22722.2 | 22722.2 (10.0%) | 33960.0 (+49.5%)

Theorem (Bertsimas, |., Parrilo 2010, I., Sharma & Sviridenko 2013)

For any convex order costs c.(-) and inventory costs h(-), affine orders xi(d._1)) and

affine auxiliary variables s "~ (d[t—1)) generate the optimal worst-case cost.

38/51

Empirical Performance: Ben-Tal et al. ('04, '09), with box uncertainty

p (%) | OPT Linear (Gap) Static (Gap)

10 13531.8 | 13531.8 (+0.0%) | 15033.4 (+11.1%)
20 15063.5 | 15063.5 (+0.0%) | 18066.7 (4+19.9%)
30 165953 | 16595.3 (+0.0%) | 21100.0 (+27.1%)
40 18127.0 | 18127.0 (10.0%) | 24300.0 (+34.1%)
50 19658.7 | 19658.7 (+0.0%) | 27500.0 (4+39.9%)
60 211905 | 21190.5 (10.0%) | 30700.0 (+44.9%)
70 22722.2 | 22722.2 (10.0%) | 33960.0 (+49.5%)

Theorem (Bertsimas, |., Parrilo 2010, I., Sharma & Sviridenko 2013)

For any convex order costs c.(-) and inventory costs h(-), affine orders xi(d._1)) and
affine auxiliary variables s "~ (d[t—1)) generate the optimal worst-case cost.

Why is this relevant?

Insight: orders only depend on backlogged demand

Computational- if ¢, h, piecewise affine (m pieces), must solve an LP of O(m - T?).
Extensions: can embed decisions at t = 0 (e.g., capacities, order pre-commitments)

Robust dynamic critically different from stochastic dynamic
» Stochastic model with complete P requires “complex” policies; affine very suboptimal
> Robust model admits a very “simple” class of optimal policies

Lol A

38/51

A Critical Difference: Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
:ozEz[minf ,z] b = maxmin f(y,z
Ja min f(y. 2) Jiop = maxmin f(y, z)

39/51

A Critical Difference: Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
:ozEz[minf ,z] b = maxmin f(y,z
Ja min f(y. 2) Jiop = maxmin f(y, z)

@ Solve problems via Dynamic Programming:
> Given z, find y*(z) € argminy f(y, z)

» Bellman principle: y*(z) optimal for any z

39/51

A Critical Difference: Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
Joo = Ez[min f(y,z)] Jrop = maxmin f(y, z)
y(2) zell y(z)

@ Solve problems via Dynamic Programming:
> Given z, find y*(z) € argminy f(y, z)

» Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? '

39/51

A Critical Difference: Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
Joo = Ez[min f(y,z)] Jrop = maxmin f(y, z)
y(2) zell y(z)

@ Solve problems via Dynamic Programming:
> Given z, find y*(z) € argminy f(y, z)

» Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? '

o For stochastic model, Bellman-optimally necessary to obtain JZ,

o For robust model, Bellman-optimally sufficient, but not necessary to obtain J},,

39/51

A Critical Difference: Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
Joo = Ez[min f(y,z)] Jrop = maxmin f(y, z)
y(2) zell y(z)

@ Solve problems via Dynamic Programming:
> Given z, find y*(z) € argminy f(y, z)

» Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? '

o For stochastic model, Bellman-optimally necessary to obtain JZ,

o For robust model, Bellman-optimally sufficient, but not necessary to obtain J},,
> Any policy y"¢ from the set

Y= {y:U—>R™ : f(y(z),z) < Jhp YzeU}.

will be “optimal” in the robust problem, i.e., max,cy f(y“(z), z) = J,,

39/51

A Critical Difference: Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
Joo = Ez[min f(y,z)] Jrop = maxmin f(y, z)
y(2) zell y(z)

Solve problems via Dynamic Programming:
> Given z, find y*(z) € argminy f(y, z)

» Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? '

o For stochastic model, Bellman-optimally necessary to obtain JZ,

For robust model, Bellman-optimally sufficient, but not necessary to obtain J,
> Any policy y"¢ from the set

Y= {y:U—>R™ : f(y(z),z) < Jhp YzeU}.

will be “optimal” in the robust problem, i.e., max,cy f(y“(z), z) = J,,

@ The set of worst-case optimal policies Y*¢ is non-empty and degenerate
> There are infinitely many worst-case optimal policies

39/51

Implications for Robust Dynamic Models

@ Bellman optimality not necessary; worst-case optimality necessary
» Introduces degeneracy in policies/decisions

@ This degeneracy is typical for robust multi-stage problems

(“If adversary does not play optimally, you don't have to, either...")
@ Critically different from stochastic problems

@ A blessing: may allow finding policies with simple structure
> e.g., affine...

© A curse: may yield Pareto inefficiencies in the decision process
> I. and Trichakis [2014] discuss a potential fix

@ Worst-case optimal policies must be implemented with resolving

40/51

A Monitoring Problem

Disease Monitoring Debt Monitoring

o Significant uncertainty
» limited data to calibrate dynamic evolution

@ System can be monitored at finite number of times

> e.g., healthcare: testing requires office visit, expensive/invasive procedures
> e.g., (micro-)lending: on-site visits, costly appraisals of collateral, etc.
> monitoring times must be chosen judiciously

o Complex, high-dimensional decision problem
» processes influence each other; monitoring / learning adds complexity

41/51

Robust Monitoring and Stopping [l., Trichakis, Yoon]

Consider a system evolving over continuous time [0, T]

State characterized by d processes, denoted x(t) € R¢

A decision maker (DM) starts with initial information x(0)

@ Can monitor the system at most n times, at 0 <t; < --- <t < T. (let

def def
to = O,tn+1 = T)

o At each time t,, the DM:
> Observes the state xp & x(tp)
» Updates information about possible future state values

» Decides whether to stop or not

When stopping at t, collect g(t, x(t))

42/51

Uncertainty Sets and Information Updating
@ An observation x,, at t,, imposes restrictions on future state values x(t) (for t > t;,)

summarized through m constraints:

f(tp. t.%p, x(1)) <O

43/51

Uncertainty Sets and Information Updating

@ An observation x,, at t,, imposes restrictions on future state values x(t) (for t > t;,)
summarized through m constraints:

f(tp. t.%p, x(1)) <O

{z(t) e R: f(tp,t, xp, z(t)) <0}

tp t Time
Case d = 1. Information about x(t) acquired at tp < t.

43/51

Uncertainty Sets and Information Updating

@ An observation x,, at t,, imposes restrictions on future state values x(t) (for t > t;,)
summarized through m constraints:

f(tp. t.%p, x(1)) <O

@ x(t) consistent with all restrictions from observations before t

{z(t) e R: f(tp,t, xp, z(t)) <0}

tp t Time
Case d = 1. Information about x(t) acquired at tp < t.

43/51

Uncertainty Sets and Information Updating

@ An observation x,, at t,, imposes restrictions on future state values x(t) (for t > t;,)
summarized through m constraints:

f(tp. t.%p, x(1)) <O

@ x(t) consistent with all restrictions from observations before t

{z(t) e R: f(to,t, 0, x(t)) <0}
{z(t) e R: f(tp,t,xp,2(t)) <0,p=0,1}

»

to t1 t T Time

Case d = 1. Information about x(t) acquired at ty and tj.

43/51

Uncertainty Sets and Information (Updating)

@ Suppose DM committed to T monitoring times: t{"} = [to, t1, ..., tr]
o DM made k < 1 observations so far: x{* = [xg, %y, ..., %]
@ The future possible process values at times ty41,...,t., T lie in:

u(t{‘r}vx{k}) = {[x|<+1v e xxrrxn+1] € RdX(T_k+1) :

fltp, tq, Xp,Xq) <0, Vp,qe{0,1,..., 1, n+1},p< q},

where t{ = [to, t;,...,t,] and

o Notation. Let Uy ; = set of possible values for xy1 (by projecting U above)

44 /51

DM's Monitoring and Stopping Problem

o Goal: Find monitoring and stopping policy to maximize worst-case reward

» Two versions, depending on choice of monitoring times

45 /51

DM's Monitoring and Stopping Problem

o Goal: Find monitoring and stopping policy to maximize worst-case reward

» Two versions, depending on choice of monitoring times

@ Static: pick all times t1,...,t, at time to =0

45 /51

DM's Monitoring and Stopping Problem

o Goal: Find monitoring and stopping policy to maximize worst-case reward

» Two versions, depending on choice of monitoring times

@ Static: pick all times t1,...,t, at time to =0
» At time ty, DM solves the problem:

Vk(t{ﬂﬂ},x{k}) = max(g(tk,xk), min Vies1 (t{“H},X{k“})),
S X4 1€Wp o p (tEn 1} x i}y
stop

continue

> At time tog, DM solves: t5 € arg MaXx,(n 41} Vo(tint1} x {0}y,

45 /51

DM's Monitoring and Stopping Problem

o Goal: Find monitoring and stopping policy to maximize worst-case reward

» Two versions, depending on choice of monitoring times

@ Static: pick all times t1,...,t, at time to =0
» At time ty, DM solves the problem:

Vi (61 () = max(g(tk,xk), min Vk+l(t{n+l},x{k+1})>'
S X4 1€Wp o p (tEn 1} x i}y
stop

continue

> At time tog, DM solves: t5 € arg MaXx,(n 41} Vo(tint1} x {0}y,

o Dynamic: at time ty, only pick next monitoring time ty41

45 /51

DM's Monitoring and Stopping Problem

o Goal: Find monitoring and stopping policy to maximize worst-case reward

» Two versions, depending on choice of monitoring times

@ Static: pick all times t1,...,t, at time to =0
» At time ty, DM solves the problem:

Vk(t{ﬂﬂ},x{k}) = max(g(tk,xk), min Vies1 (t{“H},X{k“})),
S X4 1€Wp o p (tEn 1} x i}y
stop

continue

> At time tog, DM solves: t5 € arg MaXx,(n 41} Vo(tint1} x {0}y,

o Dynamic: at time ty, only pick next monitoring time ty41
» At time ty, DM solves the problem:

T (t0 xRy = max(g(tkvxk)'

max min Jk+1 t{k“},x{k“})
trp1€(ti Tlxy el g (eikH1) x (i +1()
» DM seeks a monitoring policy: TP (t{¢}, x{*}).

45 /51

Assumptions

Assumption (Monotonic Rewards)
g(t, x) component-wise monotonic in X. J

o Each state is either “good” or “bad”

46 /51

Assumptions

Assumption (Increasing Rewards)
g(t,x) component-wise increasing in x. J

46 /51

Assumptions

Assumption (Increasing Rewards)

g(t, x) component-wise increasing in x. J

Assumption (U-set Structure)
For any 0 < k <1 < n and given t{™} and x{¥},
i. (Lattice) U(t{,x{}) is a lattice;
i. (Monotonicity) U (t™, x{*}) is increasing in x;

iii. (Consistency) U1 (t(, x M) = Uy 4 (17, x4,

46 /51

Assumptions

Assumption (Increasing Rewards)

g(t, x) component-wise increasing in x.

Assumption (U-set Structure)
For any 0 < k <1 < n and given t{™} and x{¥},
i. (Lattice) U(t{,x{}) is a lattice;
i. (Monotonicity) U (t™, x{*}) is increasing in x;

iii. (Consistency) U1 (t(, x M) = Uy 4 (17, x4,

o Lattice: technical requirement

@ Monotonicity: better past — better future

o Consistency: future monitoring times ty 2, ..., t, do not impact possible values for

Xk+1

46 /51

Examples

Example (Lattice with Cross-Constraints)

For M c {1,...,d}? €:R? — R_ decreasing in its second argument, and u: R> —» R,
increasing in its second argument:

u(t{r}xx{k}) = {[Xk+1, e Xy Xn1] € RAX(r=tD)
X Ut tg — tp) <XTY <X ultp, tg — tp),

V(m,m')eM Vp,qe{0,1,..., 1, n+ 1},p<q}.

47/51

Examples

Example (Lattice with Cross-Constraints)

For M c {1,...,d}? €:R? — R_ decreasing in its second argument, and u: R> —» R,
increasing in its second argument:

u(t{r}xx{k}) = {[Xk+1, e Xy Xn1] € RAX(r=tD)
X Ut tg — tp) <XTY <X ultp, tg — tp),

V(m,m')eM Vp,qe{0,1,..., 1, n+ 1},p<q}.

Example (CLT-Budgeted Uncertainty Sets)
ForT'>0, 0 >0, and y,

uE, x) = {[xk+1, e X, Xpy1] € RTTRAL

re g = % = (g = %)

u
— <F,Vp,qe{0,...,f,n+1}.p<q}-
Viq P

47/51

Finding the Dynamic Monitoring Policy

48 /51

Finding the Dynamic Monitoring Policy

Theorem (I., Trichakis, Yoon '18)

Under Assumption 1 and Assumption 2, static monitoring achieves the same worst-case
optimal reward as dynamic monitoring.

48 /51

Finding the Dynamic Monitoring Policy

Theorem (I., Trichakis, Yoon '18)

Under Assumption 1 and Assumption 2, static monitoring achieves the same worst-case
optimal reward as dynamic monitoring.

@ Can recover dynamic policy by repeatedly resolving for static policies

@ Result extends to more general decision problem

> When monitoring, DM can extract or inject values into processes

48 /51

Finding the Dynamic Monitoring Policy

Theorem (I., Trichakis, Yoon '18)

Under Assumption 1 and Assumption 2, static monitoring achieves the same worst-case
optimal reward as dynamic monitoring.

@ Can recover dynamic policy by repeatedly resolving for static policies

@ Result extends to more general decision problem

> When monitoring, DM can extract or inject values into processes
Theorem (Solving Static Problem)

The worst-case optimal value under static monitoring can be obtained as:

t, x, ().
max max . g(ti X, (tD))

@ Without loss, can choose times to either stop at t, or at T

o x, (t"*1}) is the worst-case scenario (smallest state under t{n+1})

48 /51

Stationary Uncertainty Sets

Consider uncertainty sets with £(t, §) = £(5).

£(0) concave

£(0) convex

49 /51

Stationary Uncertainty Sets

Consider uncertainty sets with £(t, §) = £(5).

® . £(6) concave
®

£(8) convex
e

@ Worst-case optimal to stop at t;
oty ..., tn redundant

@ Find t;: solve 1D optimization

49 /51

Stationary Uncertainty Sets

Consider uncertainty sets with £(t, §) = £(5).

Py . £(6) concave
®.

£(8) convex

e
@ Worst-case optimal to stop at t; @ Worst-case optimal to either:
* t2,..., tn redundant > Stop at T; monitor at t} = £T
or o
e Find t;: solve 1D optimization » Stop at tn; monitor at tf =™

@ Find t,: solve 1D optimization

o Uniform-interval monitoring optimal!

49 /51

Stationary Uncertainty Sets

Consider uncertainty sets with £(t, §) = £(5).

Py . £(6) concave
®.

£(8) convex

e
@ Worst-case optimal to stop at t; @ Worst-case optimal to either:
* t2,..., tn redundant > Stop at T; monitor at t} = £T
or o
e Find t;: solve 1D optimization » Stop at tn; monitor at tf =™

@ Find t,: solve 1D optimization

o Uniform-interval monitoring optimal!

@ Paper also has additional results on general case ...

@ ... and a case study in Cardiac Allograft Vasculopathy
49 /51

Conclusions

@ Robust decision making: a very relevant/realistic framework
> “When do we really have complete probabilistic descriptions?”

[

A powerful framework
> Flexible: allows embedded various levels of information
» Tractable: can solve many classes of problems (if suitable formulated)

> Not necessarily conservative (if suitable formulated)

Very useful (theory and practice)

> theory: can be used to rationalize simple rules that work well

Has a few “quirks”
» Careful with formulating nominal model

» Careful to avoid inefficiencies

@ Specific areas in OM where it could be used more:
» contracting in complex value chains (developing world, disruption risk, ...)

» behavioral operations
50 /51

References |

A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear programs. Mathematical Programming, 99(2):
351-376, 2004.

F. de Ruiter, A. Ben-Tal, R. Brekelmans, and D. den Hertog. Adjustable robust optimization with decision rules based on inexact revealed data. Center
discussion paper series no. 2014-003, CentER, 2014.

A. Shapiro, D. Dentcheva, and A. Ruszczyriski. Lectures on Stochastic Programming. MPS / SIAM Series on Optimization. SIAM, 2009.

51/51

	``Classical'' Robust Optimization
	Framework Extensions and Connections
	Dynamic Decisions and Robust Dynamic Programming (DP)
	An Example in Monitoring

	References

