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“Classical” Robust Optimization (RO)

Only information about unknowns z: they belong to an uncertainty set U

Solve the following optimization problem:

pPq

inf
x

sup
zPU

Cpx, zq

s.t. fi px, zq ď 0,@ z P U, @ i P I

This model has infinitely many constraints

W.l.o.g., we can consider uncertainty only in the constraints

Each and every constraint must satisfied: fi px, zq ď 0,@ z P U

How to reformulate this as a finite-dimensional, tractable optimization problem,
a.k.a. the robust counterpart?
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RC for Linear Optimization Problems with “Classical” Uncertainty Sets

The robust counterpart for pā ` Pzq⊺x ď b, @ z P U is:

U-set U Robust Counterpart Tractability
Box }z}8 ď ρ ā⊺x ` ρ}P⊺x}1 ď b LO
Ellipsoidal }z}2 ď ρ ā⊺x ` ρ}P⊺x}2 ď b CQO

Polyhedral Dz ď d Dy :

$

’

&

’

%

ā⊺x ` d⊺y ď b

D⊺y “ P⊺x

y ě 0

LO

Budget

#

}z}8 ď ρ

}z}1 ď Γ
Dy : ā⊺x ` ρ}y}1 ` Γ}P⊺x ´ y}8 ď b LO

Convex hkpzq ď 0

$

’

&

’

%

a⊺x `
ř

k ukh
˚
k

´

wk

uk

¯

ď b
ř

k wk “ P⊺x

u ě 0

Conv. Opt.
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Several extensions

Robust counterparts can be handled by large-scale modern solvers

Already a lot of mileage in many practical problems:
logistics and supply chain management, radiation therapy, scheduling, ...
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How to pick parameters like ρ, Γ?

How to build uncertainty sets (from data)?
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How to Calibrate Uncertainty Sets?

For “structured” uncertainty sets, how should we pick parameters like ρ, Γ?

Let’s take a probabilistic view for a moment:
Suppose zi are really random, and we seek ρ, Γ to ensure P

“

pā ` Pzq⊺x ď bs is “large”, @P

Theorem (High Probability of Constraint Satisfaction)

Suppose zi are independent r.v. with mean 0 and support on r´1, 1s. Then:

if x feasible for RC with Ubox
def
“ tz : ∥z∥8 ď 1u, then P

“

pā ` Pzq⊺x ď bs “ 1.
(no need for independence or 0-mean)

if x feasible for RC with Uellipsoid
def
“ tz : ∥z∥2 ď

a

2 lnp1{ϵqu, then

P
“

pā ` Pzq⊺x ď bs ě 1 ´ ϵ.

if x feasible for RC with Uellipsoid-box
def
“ tz : ∥z∥2 ď

a

2 lnp1{ϵq,∥z∥8 ď 1 u, then

P
“

pā ` Pzq⊺x ď bs ě 1 ´ ϵ.

if x feasible for RC with Ubudget “ tz P RL : ∥z∥8 ď 1, ∥z∥1 ď Γ “
a

2 lnp1{ϵq
?
Lu,

P
“

pā ` Pzq⊺x ď bs ě 1 ´ ϵ.

Some probabilistic information allows controlling conservatism: very useful in applications

The budget Γ depends on the dimension of z (L), whereas ρ does not!

Proofs based on concentration inequalities
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pā ` Pzq⊺x ď bs ě 1 ´ ϵ.

if x feasible for RC with Ubudget “ tz P RL : ∥z∥8 ď 1, ∥z∥1 ď Γ “
a

2 lnp1{ϵq
?
Lu,

P
“
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Another Quick Example: A Portfolio Problem (Ben-Tal and Nemirovski)

200 risky assets; asset # 200 is cash, with yearly return r200 “ 5% and zero risk

Yearly returns ri are independent r.v. with values in rµi ´ σi,µi ` σis and means µi:

µi “ 1.05 ` 0.3
p200 ´ iq

199
, σi “ 0.05 ` 0.6

p200 ´ iq

199
, i “ 1, ..., 199.

Goal: distribute $1 so as to maximize worst-case value-at-risk at level ϵ “ 0.5%:

max
x,t

"

t : P
„ 199
ÿ

i“1

rixi ` r200x200 ě t

ȷ

ě 1 ´ ϵ, @P,
200
ÿ

i“1

xi “ 1, x ě 0

*

,

With zi
def
“ pri ´ µiq{σi, let’s consider 3 uncertainty sets:

1 Ubox “ tz : }z}8 ď 1u

2 Uellipsoid-box “ tz : }z}8 ď 1, }z}2 ď ρu, with ρ “
a

2 lnp1{ϵq “ 3.255

3 Ubudget “ tz : }z}8 ď 1, }z}1 ď Γu with Γ “
a

2 lnp1{ϵq
?
199 “ 45.921.

Results:
§ Ubox: worst-case returns ri “ µi ´ σi yield less than risk-free return of 5%, so

optimal to keep all money in cash; robust optimal return 1.05, risk 0

§ Uellipsoid-box: robust optimal value is 1.12, risk 0.5%

§ Ubudget: robust optimal value is 1.10, risk 0.5%

Ubox can be quite conservative, a tiny bit of risk can go a long way...
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Using Concentration Results to Model Uncertainty Sets

Bertsimas & Bandi: let’s use the implications of the Central Limit Theorem
“All epistemological value of the theory of probability is based on this: that large-scale random phenomena in their

collective action create strict, non-random regularity” (Gnedenko and Kolmogorov, 1954)

Suppose we have uncertainties tXiu
n
i“1, each with mean µ, standard deviation σ

UCLT
def
“

"

px1, . . . , xnq :

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

xi ´ nµ

ˇ

ˇ

ˇ

ˇ

ď Γσ
?
n

*

.

§ If n large and CLT premises hold, Γ “ 2 (3) would give 95% (99%) coverage

Many extensions possible

§ Modeling correlations through a factor model:

Ucorr
def
“

!

x : x “ Pz ` ϵ,
ˇ

ˇ

ˇ

řm
i“1 zi ´ mµy

ˇ

ˇ

ˇ
ď Γσz

?
m,

ˇ

ˇ

ˇ

řn
i“1 ϵi

ˇ

ˇ

ˇ
ď Γσϵ

?
n,

)

.

§ Using stable laws to model heavy-tailed cases where variance is undefined:

UHT
def
“

!

px1, . . . ,xnq :
ˇ

ˇ

ˇ

řn
i“1 xi ´ nµ

ˇ

ˇ

ˇ
ď Γn1{α

)

.

§ Constructing typical sets: if Hf is the (Shannon) entropy of f,

(i) Prz̃ P Utypicals Ñ 1, (ii)
ˇ

ˇ

ˇ

1
n log f

`

z̃|z̃ P Utypical
˘

` Hf

ˇ

ˇ

ˇ
ď εn

Bertsimas & Bandi used these to derive robust equivalents for several classical
queueing theory and information theory results
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ˇ
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.

§ Constructing typical sets: if Hf is the (Shannon) entropy of f,

(i) Prz̃ P Utypicals Ñ 1, (ii)
ˇ

ˇ

ˇ

1
n log f

`

z̃|z̃ P Utypical
˘

` Hf

ˇ

ˇ

ˇ
ď εn

Bertsimas & Bandi used these to derive robust equivalents for several classical
queueing theory and information theory results
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Using Concentration Results to Model Uncertainty Sets

Bertsimas & Bandi: let’s use the implications of the Central Limit Theorem
“All epistemological value of the theory of probability is based on this: that large-scale random phenomena in their

collective action create strict, non-random regularity” (Gnedenko and Kolmogorov, 1954)
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Using Hypothesis Tests to Model Uncertainty Sets

Another powerful idea: derive data-driven uncertainty sets from hypothesis tests

From Bertsimas, Gupta, Kallus (2017):
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Distributionally Robust Modeling

We saw that embedding some more probabilistic information can help

Let’s change the paradigm slightly:
§ we know the probability distribution for z̃ belongs to an ambiguity set: P P P

§ we model P, and are interested in robust expected constraint satisfaction:

sup
PPP

EPrfpx, z̃qs ď b

Now, the adversary is choosing P, instead of z
§ Advantage: EPrfpx, z̃qs as an expression of P is always linear, so much of our earlier

machinery (e.g., convex duality) can be applied if the set P is “well-behaved”

§ Disadvantage: Maximizing over continuous P: -dimensional optimization

Very old idea, dating to the 1950s (Scarf 1958, Zackova 1966)

Kuhn, Shafiee, Wiesemann (2024): tutorial on state-of-the-art. Can model:
§ known (bounds on) moments, e.g., means, covariance matrix, higher order
§ known (bounds on) quantiles (e.g., median) or spread statistics
§ multiple confidence regions
§ distance from a nominal distribution (Kullback-Leibler, Wasserstein, etc.)
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Two Important Caveats When Working With Robust Models
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An Example: A Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

max
X,I,Z,P

ÿ

τPT

ÿ

iPF

ÿ

jPN

pp ´ cs
ijqXijτ ´

ÿ

τPT

ÿ

iPF

ciPiτ ´
ÿ

iPF

pCiZi ` KiIiq

s.t.
ÿ

iPF

Xijτ ď Djτ, j P N, τ P T,

ÿ

jPN

Xijτ ď Piτ, i P F, τ P T,

Xijτ ě 0, i P F, j P N, τ P T

Piτ ď Zi, Zi ď M ¨ Ii, i P F, τ P T

I P t0, 1u|F|, pwhere M is a large enough constant.q
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Xijτ ě 0, i P F, j P N, τ P T

Piτ ď Zi, Zi ď M ¨ Ii, i P F, τ P T

I P t0, 1u|F|, pwhere M is a large enough constant.q

Parameters:
T: discrete planning horizon, indexed by τ
F: potential facility locations, indexed by i
N: demand node locations, indexed by j
p: unit price of goods
ci: cost per unit of production at facility i
Ci: cost per unit of capacity for facility i
Ki: cost of opening a facility at location i
csij: cost of shipping units from location i to j

Djτ: demand in period τ at location j.

Decision variables:
Xijτ: how much of demand j in period τ satisfied by i
Piτ: quantity produced at facility i in period τ
Ii: whether facility i is open (0/1)
Zi: capacity of facility i if open.
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Piτ ď Zi, Zi ď M ¨ Ii, i P F, τ P T

I P t0, 1u|F|, pwhere M is a large enough constant.q

Step 2. Identify all uncertain parameters and model the uncertainty set U.

Baron et al. 2011 captured uncertain demands:

U “

$

&

%

D P R|N|¨|T|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPN

ÿ

tPT

ˆ

Djt ´ D̄jt

ϵtD̄jt

˙2

ď ρ2

,

.

-

,

tD̄jtujPN;tPT are “nominal” demands, ϵt is allowed deviation (%), ρ is the size of the ellipsoid.
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ÿ

tPT

ˆ

Djt ´ D̄jt

ϵtD̄jt

˙2

ď ρ2

,

.

-

,

Equivalently, can write Djt “ D̄jtp1 ` εt ¨ zjtq, where z P U “ tz P R|N|¨|T| : }z}2 ď ρu
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Step 3. Derive robust counterpart for the problem. Here, this will be a Conic Quadratic program.
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Compare Two Models

Our initial model, with decisions for quantities X:

max
X,I,Z,P

ÿ

τPT

ÿ

iPF

ÿ

jPN

pp ´ csijqXijτ ´
ÿ

τPT

ÿ

iPF

ciPiτ ´
ÿ

iPF

pCiZi ´ KiIiq

s.t.
ÿ

iPF

Xijτ ď Djτ, j P N, τ P T,

ÿ

jPN

Xijτ ď Piτ, i P F, τ P T,

Xijτ ě 0, i P F, j P N, τ P T

Piτ ď Zi, Zi ď M ¨ Ii, i P F, τ P T

I P t0, 1u|F|, pwhere M is a large enough constant.q

Another model, with decisions for fractions of demands Y:

max
Y,I,Z,P

ÿ

τPT

ÿ

iPF

ÿ

jPN

pp ´ csijqYijτDjτ ´
ÿ

τPT

ÿ

iPF

ciPiτ ´
ÿ

iPF

pCiZi ´ KiIiq

s.t.
ÿ

iPF

Yijτ ď 1, j P N, τ P T,

ÿ

jPN

YijτDjτ ď Piτ, i P F, τ P T,

Yijτ ě 0, i P F, j P N, τ P T

Piτ ď Zi, Zi ď M ¨ Ii, i P F, τ P T

I P t0, 1u|F|, pwhere M is a large enough constant.q

For fixed D, are these deterministic/nominal models equivalent?
Are their robust counterparts equivalent?
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An equivalent deterministic model, with decisions for fractions of demands Y:

max
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jPN
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The second formulation implements ordering quantities that depend on demand!
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The robust counterparts of equivalent deterministic models
may be different!

You should always try to allow your formulation
to be as flexible as possible!
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Another Caveat...
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Are Robust Solutions Pareto-Efficient?

max
xPX

min
uPU

u⊺x

Feasible set of solutions X “
␣

x P Rn : Ax ď b
(

Uncertainty set of objective coefficients U “ tu P Rn : Du ě du

Classical RO framework results in

§ Optimal value J‹
RO

§ Set of robustly optimal solutions

XRO “ tx P X : Dy ě 0 such that D⊺y “ x, y⊺d ě J‹
ROu
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Set of Robustly Optimal Solutions

XRO “ tx P X : Dy ě 0 such that D⊺y “ x, y⊺d ě J‹
ROu

x P XRO guarantees that no other solution exists with higher worst-case objective
value u⊺x

What if an uncertainty scenario materializes that does not correspond to the
worst-case?

Are there any guarantees that no other solution x̄ exists that, apart from protecting
us from worst-case scenarios, also performs better overall, under all possible
uncertainty realizations?
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Pareto Robustly Optimal solutions (Iancu & Trichakis 2014)

max
xPX

min
uPU

u⊺x (1)

Definition

A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (1) if

(a) it is robustly optimal, i.e., x P XRO, and

(b) there is no x̄ P X such that

u⊺x̄ ě u⊺x, @u P U, and

ū⊺x̄ ą ū⊺x, for some ū P U.

XPRO Ď XRO: set of all PRO solutions
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Some questions

Given a RO solution, is it also PRO?

How can one find a PRO solution?

Can we optimize over XPRO?

Can we characterize XPRO?

§ Is it non-empty?

§ Is it convex?

§ When is XPRO “ XRO?

How does the notion generalize in other RO formulations?
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Finding PRO solutions

Theorem

Given a solution x P XRO and an arbitrary point p̄ P ripUq, consider the following linear
optimization problem:

maximize p̄⊺y

subject to y P U˚

x ` y P X.

Then, either

the optimal value is zero and x P XPRO, or

the optimal value is strictly positive and x̄ “ x ` y‹ P XPRO, for any optimal y‹.

U˚ def
“ ty P Rn : y⊺u ě 0, @u P Uu is the dual of U
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Remarks

Finding a point ū P ripUq can be done efficiently using LP techniques

Testing whether x P XRO is no harder than solving the classical RO problem in this
setting

Finding a PRO solution x P XPRO is no harder than solving the classical RO problem
in this setting
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Corollaries

If ū P ripUq, all optimal solutions to the problem below are PRO:

maximize ū⊺x

subject to x P XRO

If 0 P ripUq, then XPRO “ XRO

If ū P ripUq, then XPRO “ XRO if and only if the optimal value of this LP is zero:

maximize ū⊺y

subject to x P XRO

y P U˚

x ` y P X
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Optimizing over / Understanding XPRO

Secondary objective r: can we solve

maximize r⊺x

subject to x P XPRO?

Interesting case: XRO ‰ XPRO
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Optimizing over / Understanding XPRO

Secondary objective r: can we solve

maximize r⊺x

subject to x P XPRO?

Proposition

XPRO is not necessarily convex.

X “ tx P R4
` : x1 ď 1, x2 ` x3 ď 6, x3 ` x4 ď 5, x2 ` x4 ď 5u

U “ conv
´

␣

ei, i P t1, . . . , 4u
(

¯

J‹
RO “ 1, and XRO “ tx P X : x ě 1u

x1 “
“

1 2 4 1
‰⊺
, x2 “

“

1 4 2 1
‰⊺

P XPRO

0.5 x1 ` 0.5 x2 is Pareto dominated by
“

1 3 3 2
‰⊺

P XRO.
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Optimizing over / Understanding XPRO

Secondary objective r: can we solve

maximize r⊺x

subject to x P XPRO?

Proposition

If XRO ‰ XPRO, then XPRO X ripXROq “ H.

Whether solution to nominal RO is PRO depends on algorithm used for solving LP

Simplex better for RO problems than interior point methods
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What Are The Gains?

Example (Portfolio)

n ` 1 assets, with returns ri

ri “ µi ` σi ζi, i “ 1, . . . ,n, rn`1 “ µn`1

ζ unknown, U “ tζ P Rn : ´1 ď ζ ď 1, 1⊺ζ “ 0u

Objective: select weights x to maximize worst-case portfolio return

Example (Inventory)

One warehouse, N retailers where uncertain demand is realized

Transportation, holding costs and profit margins differ for each retailer

Demand driven by market factors di “ d0
i ` q⊺

i z, i “ 1, . . . ,N

Market factors z are uncertain

z P U “ tz P RN : ´b ¨ 1 ď z ď b ¨ 1, ´B ď 1⊺z ď Bu
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Numerical experiments

Example (Project management)

A PERT diagram given by directed, acyclic graph G “ pN,Eq

N are project events, E are project activities / tasks

S C

A

B

F

c

a

b

d

e g

f

S 4

3

2

5

6

7

8
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Numerical experiments

Example (Project management)

A PERT diagram given by directed, acyclic graph G “ pN,Eq

N are project events, E are project activities / tasks

Task e P E has uncertain duration τe “ τ0e ` δe

δ P U :“
␣

δ P R|E|

` : δ ď b ¨ 1, 1⊺δe ď B
(

Task e P E can be expedited by allocating a budgeted resource xe

τe “ τ0e ` δe ´ xe

1⊺x ď C

Goal: find resource allocation x to minimize worst-case completion time
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Results – finance and inventory examples (10K instances)

Figure: TOP: portfolio example. BOTTOM: inventory example. LEFT: performance gains in
nominal scenario. RIGHT: maximal performance gains.
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Results – two project management networks (10K instances)

Careful To Avoid Näıve Inefficiencies In Robust Models!
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Dynamic Robust Optimization

x chosen ÞÑ z revealed ÞÑ ypx, zq chosen

Stochastic model:

min
x

Ez

„

min
ypx,zq

fpx,y, zq

ȷ

Robust model:

min
x

max
zPU

min
ypx,zq

fpx,y, zq

Solve problems via Dynamic Programming:

§ Given x,z Ñ find y‹px,zq Ñ find x‹

§ Bellman principle: y‹ optimal for any given x,z

Outline...

1. Properly writing a robust DP

2. Tractable approximations with decision rules

3. A subtle point: is Bellman optimality really necessary?
‚ If not, what to replace it with?
‚ Why is this relevant?

4. Applications
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A simple motivating example

Consider the following deterministic inventory management problem:

minimize
txtu

⊺
t“1

⊺
ÿ

t“1

¨

˚

˝

ordering cost
hkkikkj

ctxt `

holding cost
hkkkkkikkkkkj

htpyt`1q` `

backlog cost
hkkkkkkikkkkkkj

btp´yt`1q`

˛

‹

‚

s.t. yt`1 “ yt ` xt ´ dt, @ t, (Stock balance)

Lt ď xt ď Ht, @ t, (Min/max order size)

y1 “ a , (Initial stock level)
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‚

s.t. yt`1 “ yt ` xt ´ dt, @ t, (Stock balance)

Lt ď xt ď Ht, @ t, (Min/max order size)

y1 “ a , (Initial stock level)

where

xt is number of goods ordered at time t and received at t ` 1

yt is number of goods in stock at beginning of time t

dt is demand during period t

a is the initial inventory
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¨

˚

˝

ordering cost
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holding cost
hkkkkkikkkkkj

htpyt`1q` `

backlog cost
hkkkkkkikkkkkkj

btp´yt`1q`

˛

‹

‚

s.t. yt`1 “ yt ` xt ´ dt, @ t, (Stock balance)

Lt ď xt ď Ht, @ t, (Min/max order size)

y1 “ a , (Initial stock level)

What if future demands known to reside in uncertainty set U?

d :“ pd1,d2, . . . ,dT q P U Ď R⊺

Ordering policies can depend on revealed demands:

xtpdrt´1sq, where drt´1s :“ pd1,d2, . . . ,dt´1q P Rt´1.
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Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:

min
L1ďx1ďH1

„

c1x1 ` max
d1PU1pHq

„

h1py2q` ` b1p´y2q`

` min
L2ďx2ďH2

”

c2x2 ` max
d2PU2pd1q

”

h2py3q` ` b2p´y3q` ` . . .

` min
LT ďxT ďHT

”

cTxT ` max
dT PUT pdrT´1sq

rhT pyT`1q` ` bT p´yT`1q`s

ı

. . .

ȷ

where:

yt`1 :“ yt ` xt ´ dt

Utpdrt´1sq :“
!

d P R : D ξ P RT´t such that rdrt´1s; d ; ξs P U
)

1 Nested min-max problems

2 Explicit rule for “conditioning”: projection of uncertainty set
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Bellman Principle; Robust DP Recursions

The state of the system at time t:

St :“
“

yt; drt´1s

‰

“
“

yt; d1 d2; . . . ;dt´1

‰

P R⊺

Value function J‹
tpStq given by:

J‹
tpStq “ min

LtďxtďHt

”

ctxt ` max
dtPUtpdrt´1sq

“

htpyt`1q` ` btp´yt`1q` ` J‹
t`1pSt`1q

‰

ı

Observations:

1 General U −Ñ high-dimensional St −Ñ curse of dimensionality

2 When U has special structure, can reduce state space
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htpyt`1q` ` btp´yt`1q` ` J‹
t`1pSt`1q

‰

ı

Observations:

1 General U −Ñ high-dimensional St −Ñ curse of dimensionality

2 When U has special structure, can reduce state space

Ubox “

!

d : dt ď dt ď d̄ts

)

Ñ St “ yt

Ubudget “

!

d : D z, }z}8 ď 1, }z}1 ď Γ ,dt “ d̄t ` d̂tzt

)

Ñ St “
“

yt,
t´1
ÿ

τ“1

|zτ|
‰⊺
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Bellman Principle; Robust DP Recursions

The state of the system at time t:

St :“
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“
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”

ctxt ` max
dtPUtpdrt´1sq

“

htpyt`1q` ` btp´yt`1q` ` J‹
t`1pSt`1q

‰

ı

Observations:

1 General U −Ñ high-dimensional St −Ñ curse of dimensionality

2 When U has special structure, can reduce state space

Reduce computational burden

Prove structural results, comparative statics

x‹
tpyq “ min

`

Ht, maxpLt, θt ´ yq
˘

(modified) base-stock policy
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Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

min
x

max
zPU

min
ypzq

fpx,y, zq

Finding Bellman-optimal rules y‹pzq generally intractable

Pragmatic idea: let’s focus on some “simple” decision rules that we can compute

For instance, with a static ypzq “ y, could just apply all our previous machinery

Ben-Tal et. al: Linear Decision Rules

§ Suppose we have a constraint

pā ` Pzq⊺x ` d⊺ypzq ď b, @z P U

where ypzq is dynamically adjustable

§ A linear (affine) form y “ u ` Vz would lead to the problem:

ā⊺x ` d⊺u ` pP⊺x ` V⊺dq⊺z ď b, @z P U.

Constraint linear in decisions x,u,V and uncertainty z, so all previous results apply!

So how to apply these static or linear rules in a real problem?
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Implementation and Potential Pitfalls

Recall our inventory problem. The deterministic version can be reformulated as an LP:

minimize
xt,yt,s

`
t ,s´

t

⊺
ÿ

t“1

`

ctxt ` hts
`
t ` bts

´
t

˘

s.t. s`
t ě 0, s´

t ě 0 , @ t,

s`
t ě yt`1 , @ t,

s´
t ě ´yt`1 , @ t,

yt`1 “ yt ` xt ´ dt , @ t,

Lt ď xt ď Ht , @ t,

where

s`
t : physical inventory held at end of period t

s´
t : backlogged customer demand at end of period t

What if demand known to reside in an uncertainty set U?

d :“ pd1,d2, . . . ,dT q P U Ď R⊺
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Näıve Robustification

Consider a näıve robust optimization model:

minimize
xt,yt,s

`
t ,s´

t

⊺
ÿ

t“1

`

ctxt ` hts
`
t ` bts

´
t

˘

s.t. s`
t ě 0, s´

t ě 0 , @ t

s`
t ě yt`1 , @ t

s´
t ě ´yt`1 , @ t

yt`1 “ yt ` xt ´ dt , @ t, @d P U

Lt ď xt ď Ht , @ t

Unfortunately, this is infeasible even when U “ tdp1q,dp2q
u:

#

yt`1 “ yt ` xt ´ d
p1q

t

yt`1 “ yt ` xt ´ d
p2q

t

+

ñ d
p1q

t “ d
p2q

t

Problem arises due to ““” constraint!
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A less näıve robustification

Robustify an alternate linear programming formulation:

minimize
xt,s

`
t ,s´

t

ÿ

t

`

ctxt ` hts
`
t ` bts

´
t

˘

s.t. s`
t ě 0, s´

t ě 0, @t,

s`
t ě y1 `

⊺
ÿ

t1“1

pxt1 ´ dt1 q, @t,

s´
t ě ´y1 `

⊺
ÿ

t1“1

pdt1 ´ xt1 q, @t,

Lt ď xt ď Ht, @t ,

where we simply replace yt`1 :“ y1 `
ř⊺

t1“1pxt1 ´ dt1 q.
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Lt ď xt ď Ht,@ t .

Q: If orders xt are static (i.e., fixed t “ 0), should ps`
t , s

´
t q also be static?

A: No, that would be unnecessarily conservative!
Auxiliary (i.e., “reformulation”) variables should be fully adjustable, even under

static “implementable” decisions.
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Linear Decision Rules

Take both ordering policies and auxiliary variables to depend linearly on demands

xt
`

drt´1s

˘

“ x0t ` Xtdrt´1s

s`
t

`

drt´1s

˘

“ s`
t ` S`

t drt´1s

s´
t

`

drt´1s

˘

“ s´
t ` S´

t drt´1s

The Robust Counterpart problem becomes:

min
X

max
dPU

⊺
ÿ

t“1

ct ¨ px0t ` Xtdq ` ht ¨ ps`
t ` S`

t dq ` bt ¨ ps´
t ` S´

t dq

s.t. s`
t ` S`

t d ě 0, s´
t ` S´

t d ě 0, @d P U

s`
t ` S`

t d ě y1 `

⊺
ÿ

τ“1

px0τ ` Xτdrτ´1s ´ dτq, @d P U,

s´
t ` S´

t d ě ´y1 ´

⊺
ÿ

τ“1

px0τ ` Xτdrτ´1s ´ dτq, @d P U,

Lt ď xt ` Xtd ď Ht , @d P U,

Decision variables: coefficients X “
␣

x0t,Xt, s
`
t ,S

`
t , s

´
t ,S

´
t

(⊺

t“1

Two layers of sub-optimality: policies and auxiliary variables; any good?
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Empirical Performance: Ben-Tal et al. (’04, ’09), with box uncertainty

ρ (%) OPT Linear (Gap) Static (Gap)
10 13531.8 13531.8 (+0.0%) 15033.4 (+11.1%)
20 15063.5 15063.5 (+0.0%) 18066.7 (+19.9%)
30 16595.3 16595.3 (+0.0%) 21100.0 (+27.1%)
40 18127.0 18127.0 (+0.0%) 24300.0 (+34.1%)
50 19658.7 19658.7 (+0.0%) 27500.0 (+39.9%)
60 21190.5 21190.5 (+0.0%) 30700.0 (+44.9%)
70 22722.2 22722.2 (+0.0%) 33960.0 (+49.5%)

Theorem ( Bertsimas, I., Parrilo 2010, I., Sharma & Sviridenko 2013 )

For any convex order costs ctp¨q and inventory costs htp¨q, affine orders xtpdrt´1sq and
affine auxiliary variables s`,´

t pdrt´1sq generate the optimal worst-case cost.

Why is this relevant?

1. Insight: orders only depend on backlogged demand

2. Computational: if ct,ht piecewise affine (m pieces), must solve an LP of Opm ¨ T 2q.

3. Extensions: can embed decisions at t “ 0 (e.g., capacities, order pre-commitments)

4. Robust dynamic critically different from stochastic dynamic
§ Stochastic model with complete P requires “complex” policies; affine very suboptimal
§ Robust model admits a very “simple” class of optimal policies
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A Critical Difference: Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z ÞÑ DM chooses ypzq

Stochastic model:

J‹
sto “ Ez

”

min
ypzq

fpy, zq

ı

Robust model:

J‹
rob “ max

zPU
min
ypzq

fpy, zq

Solve problems via Dynamic Programming:
§ Given z, find y‹pzq P argminy fpy,zq

§ Bellman principle: y‹pzq optimal for any z

Question: Is Bellman optimality for y really necessary?

For stochastic model, Bellman-optimally necessary to obtain J‹
sto

For robust model, Bellman-optimally sufficient, but not necessary to obtain J‹
rob

§ Any policy ywc from the set

Ywc :“
␣

y : U Ñ Rm : f
`

ypzq,z
˘

ď J‹
rob, @z P U

(

.

will be “optimal” in the robust problem, i.e., maxzPU fpywcpzq,zq “ J‹
rob

The set of worst-case optimal policies Ywc is non-empty and degenerate
§ There are infinitely many worst-case optimal policies
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Implications for Robust Dynamic Models

1 Bellman optimality not necessary; worst-case optimality necessary
§ Introduces degeneracy in policies/decisions

2 This degeneracy is typical for robust multi-stage problems
(“If adversary does not play optimally, you don’t have to, either...”)

3 Critically different from stochastic problems

4 A blessing: may allow finding policies with simple structure
§ e.g., affine...

5 A curse: may yield Pareto inefficiencies in the decision process
§ I. and Trichakis [2014] discuss a potential fix

6 Worst-case optimal policies must be implemented with resolving
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A Monitoring Problem

Disease Monitoring Debt Monitoring

Significant uncertainty
§ limited data to calibrate dynamic evolution

System can be monitored at finite number of times
§ e.g., healthcare: testing requires office visit, expensive/invasive procedures
§ e.g., (micro-)lending: on-site visits, costly appraisals of collateral, etc.
§ monitoring times must be chosen judiciously

Complex, high-dimensional decision problem
§ processes influence each other; monitoring / learning adds complexity
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Robust Monitoring and Stopping [I., Trichakis, Yoon]

Consider a system evolving over continuous time r0, T s

State characterized by d processes, denoted xptq P Rd

A decision maker (DM) starts with initial information xp0q

Can monitor the system at most n times, at 0 ď t1 ď ¨ ¨ ¨ ď tn ď T . (let

t0
def
“ 0, tn`1

def
“ T)

At each time tp, the DM:

§ Observes the state xp
def
“ xptpq

§ Updates information about possible future state values

§ Decides whether to stop or not

When stopping at t, collect gpt, xptqq
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Uncertainty Sets and Information Updating

An observation xp at tp imposes restrictions on future state values xptq (for t ą tp)
summarized through m constraints:

fptp, t, xp, xptqq ď 0

xptq consistent with all restrictions from observations before t
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summarized through m constraints:

fptp, t, xp, xptqq ď 0

xptq consistent with all restrictions from observations before t

Timet0 Tt1 t

x0

x1

{x(t) ∈ R : f(t0, t, x0, x(t)) ≤ 0}
{x(t) ∈ R : f(tp, t, xp, x(t)) ≤ 0, p = 0, 1}

Case d “ 1. Information about xptq acquired at t0 and t1.
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Uncertainty Sets and Information (Updating)

Suppose DM committed to r monitoring times: ttru “ rt0, t1, . . . , trs

DM made k ď r observations so far: xtku “ rx0, x1, . . . , xks.

The future possible process values at times tk`1, . . . , tr, T lie in:

U
`

ttru, xtku
˘

“

!

rxk`1, . . . , xr, xn`1s P Rdˆpr´k`1q :

fptp, tq, xp, xqq ď 0,@p,q P t0, 1, . . . , r,n ` 1u,p ă q
)

,

where ttru “ rt0, t1, . . . , trs and

Notation. Let Uk`1 = set of possible values for xk`1 (by projecting U above)
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DM’s Monitoring and Stopping Problem

Goal: Find monitoring and stopping policy to maximize worst-case reward

§ Two versions, depending on choice of monitoring times

Static: pick all times t1, . . . , tn at time t0 “ 0
§ At time tk, DM solves the problem:

Vkpttn`1u, xtkuq “ max
´

g
`

tk, xk

˘

loooomoooon

stop

, min
xk`1PUk`1pttn`1u,xtkuq

Vk`1

`

ttn`1u, xtk`1u
˘

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

continue

¯

,

§ At time t0, DM solves: tS P argmaxttn`1u V0pttn`1u,xt0uq.

Dynamic: at time tk, only pick next monitoring time tk`1

§ At time tk, DM solves the problem:

Jkpttku,xtkuq “ max
´

g
`

tk,xk

˘

,

max
tk`1Pptk,Ts

min
xk`1PUk`1pttk`1u,xtkuq

Jk`1pttk`1u,xtk`1uq

¯

,

§ DM seeks a monitoring policy: τD
k pttku,xtkuq.
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´

g
`

tk, xk

˘

loooomoooon
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, min
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Vk`1

`

ttn`1u, xtk`1u
˘

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
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¯
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Assumptions

Assumption (Monotonic Rewards)

gpt, xq component-wise monotonic in x.

Each state is either “good” or “bad”

Assumption (U-set Structure)

For any 0 ď k ď r ď n and given ttru and xtku,

i. (Lattice) U
`

ttru, xtku
˘

is a lattice;

ii. (Monotonicity) U
`

ttru, xtku
˘

is increasing in xtku;

iii. (Consistency) Uk`1pttru, xtkuq “ Uk`1pttr1u, xtkuq.

Lattice: technical requirement

Monotonicity: better past Ñ better future

Consistency: future monitoring times tk`2, . . . , tr do not impact possible values for
xk`1
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Examples

Example (Lattice with Cross-Constraints)

For M Ď t1, . . . ,du2, ℓ : R2 Ñ R´ decreasing in its second argument, and u : R2 Ñ R`

increasing in its second argument:

U
`

ttru, xtku
˘

“

!

rxk`1, . . . , xr, xn`1s P Rdˆpr´k`1q :

xmp ` ℓptp, tq ´ tpq ď xm
1

q ď xmp ` uptp, tq ´ tpq,

@ pm,m 1q P M, @p,q P t0, 1, . . . , r,n ` 1u, p ă q
)

.

Example (CLT-Budgeted Uncertainty Sets)

For Γ ą 0, σ ą 0, and µ,

Upttru, xtkuq “

!

rxk`1, . . . , xr, xn`1s P Rr´k`1 :

´ Γ ď
xq ´ xp ´ ptq ´ tpqµ

?
tq ´ tpσ

ď Γ ,@p,q P t0, . . . , r,n ` 1u, p ă q
)

.
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Finding the Dynamic Monitoring Policy

Theorem (I., Trichakis, Yoon ’18)

Under Assumption 1 and Assumption 2, static monitoring achieves the same worst-case
optimal reward as dynamic monitoring.

Can recover dynamic policy by repeatedly resolving for static policies

Result extends to more general decision problem

§ When monitoring, DM can extract or inject values into processes

Theorem (Solving Static Problem)

The worst-case optimal value under static monitoring can be obtained as:

max
ttn`1u

max
kPtn,n`1u

g
`

tk, xkpttn`1uq
˘

.

Without loss, can choose times to either stop at tn or at T

xkpttn`1uq is the worst-case scenario (smallest state under ttn`1u)
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Stationary Uncertainty Sets

Consider uncertainty sets with ℓpt, δq “ ℓpδq.

`(δ) convex

`(δ) concave

Worst-case optimal to stop at t1
§ t2, . . . , tn redundant

Find t1: solve 1D optimization

Worst-case optimal to either:
§ Stop at T ; monitor at t‹

k “ kT
n`1

or
§ Stop at tn; monitor at t‹

k
ktn
n

Find tn: solve 1D optimization

Uniform-interval monitoring optimal!

Paper also has additional results on general case ...

... and a case study in Cardiac Allograft Vasculopathy
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Conclusions

Robust decision making: a very relevant/realistic framework
§ “When do we really have complete probabilistic descriptions?”

A powerful framework

§ Flexible: allows embedded various levels of information

§ Tractable: can solve many classes of problems (if suitable formulated)

§ Not necessarily conservative (if suitable formulated)

Very useful (theory and practice)

§ theory: can be used to rationalize simple rules that work well

Has a few “quirks”

§ Careful with formulating nominal model

§ Careful to avoid inefficiencies

Specific areas in OM where it could be used more:

§ contracting in complex value chains (developing world, disruption risk, ...)

§ behavioral operations
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