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1 Constructing the Dual

Paralleling our developments for linear optimization,' the starting point will be the following
(primal) convex optimization problem:

Primal Problem

() min;  fo(x)
fi(z) <0, i=1,....,m (1)
r e X.

We henceforth call this the primal problem and concisely refer to as problem (£2).

Recall that in a convex optimization problem, the relevant domain X C R” on which
functions are defined must be a convex set and the functions fy, fi,..., fi, are real-valued
convex functions on X. Note that our formulation does not include any equality constraints.
In convex optimization, we can allow equality constraints only involving linear func-
tions, which without loss of generality, can be included in the definition of the convex do-
main X. So if there are equality constraints, say Az = b, you can think of the set X as the
affine subspace of R™ corresponding to these equality constraints, X = {x € R" : Az = b}.

Some of the results that we are going to state will make reference to the interior of X.
A point z is in the interior of X if B(z,r) := {y : ||y — z|| < r} C X for some r > 0.
However, in many cases it is helpful to work with sets X that are not full-dimensional (for
instance, in the example above where X includes equality constraints). For that purpose,
we need to define the following definition.

Definition 1 (Relative Interior). The relative interior of a set X is:

rel int(X) := {z € X : 3r >0 so that B(z,r) Naff(X) C X}. (2)

Recall that aff (X)) is the affine hull of X, i.e., the set of all affine combinations of points
in X, aff(X) := {1z + -+ Opxp : 2 € X, S0 0, = 1}. In words, the relative interior
of X is the interior defined relative to the affine hull of X. This gives a proper notion of
the interior even for sets that are not full-dimensional.

What is the relative interior of the following sets?

'Our discussion here is inspired by the lecture notes Ben-Tal and Nemirovski (2023) and by the treatment
in the books “Convex Optimization” (Boyd and Vandenberghe, 2004) and “Convex Optimization Theory”
(Bertsekas, 2009).



o {(z,y) € R? | (z,y) € [0,1]}
o {(z,y)eR? |z +y=1,2>0,y >0}
o {(z,y) eR* [2® +y° =1}

Throughout, we assume that the relative interior of X is non-empty. We also assume
that an optimal solution to () exists and denote it by x*, and we let p* = fy(«*) denote
the optimal value in (22).

Mirroring our developments in linear optimization, we want to examine questions like:
1. For z feasible for (), how to quantify the optimality gap fo(z) — p*?
2. How to certify that a specific z* is optimal in (Z)?

Duality theory will yet again help us answer such questions. We will formulate the dual
problem as a lower bound on the primal, discuss briefly weak duality, and derive sufficient
conditions under which strong duality holds.

To construct lower bounds on the optimal value p* of (), let us define the La-
grangean function. For any A > 0 (we will be using A\ to denote dual variables, to avoid
confusions with p), consider:

L(z,\) = fo(z) + Z Aifi(x). (3)

By construction, it can be immediately seen that
L(xz,\) < fo(x), for any x feasible in (£?), (4)

so L(x, ) is a lower bound for f(x). To derive a lower bound on the optimal value p* in
problem (%), we can minimize L£(x,\) over x € X. Therefore, let us define:

g(A) ==infrex L(x,\). (5)

We can immediately infer that g()\) is a valid lower bound, g(A) < p*, and therefore it is
natural to consider the problem of finding the best lower bound:

Dual Problem

(7)  sup g(A). (6)
A>0

Just like in linear optimization, this problem is called the dual of the primal prob-
lem (27) and for conciseness, we also refer to it as problem (2). Note that the dual problem
is a convex optimization problem because the function g(\) is concave. In fact, this would
be true even if the primal problem were non-convex!

The following weak duality result is immediate.



Theorem 1 (Weak Duality). If x is feasible for (Z?) and X\ > 0, then:

g(\) < f(x).

In particular, d* < p*.

We would obviously like to develop a strong duality result that would tell us that p* = d*.
However, the situation with (nonlinear) convex optimization is unfortunately more subtle
than with linear optimization: even when the primal (&) has a finite optimal solution,
there may be a non-zero duality gap. The following example shows how this can arise.

Example 1 (Non-zero duality gap). Consider the convex problem

minimize e~
(z,y)€X

2?/y <0

with variables x,y and domain X = {(z,y) |y > 1}. We have p* = 1. The Lagrangian
is L(z,y,\) = e~® 4+ \x?/y, and the dual function is

2 0 A>0
g(A) = inf (ew +>\x> = -
z,y>1 Y -0 A<O,

so we can write the dual problem as

d* = max 0
>0

with optimal value d* = 0. The optimal duality gap is p* — d* = 1.

.

Moreover, even when the primal problem admits a (finite) optimal solution, the dual may
not necessarily admit an optimal solution, as in the following example.

Example 2 (No dual optimal solution). Consider the optimization problem:

minimize x
z€R

2 >0
The optimal solution is trivially x* = 0, so p* = 0. The dual function is:

—& ifA>0,

A) = inf {x + \z?) =
9() = inf {z +Az?} {_m <

Thus d* = 0 (with A — o0) and p* = d*, but the dual does not admit an optimal
solution.




Thus, in the subsequent developments, our main goal is to provide sufficient conditions
under which strong duality holds. These conditions are sometimes called constraint
qualifications and several variations exist. Perhaps the most prominent and useful of
these is Slater’s condition, which we define next.

Definition 2 (Slater Condition). Let X C R™ and fi,..., fm be real-valued functions on
X. We say that f; satisfy the Slater condition on X if there exists x € rel int(X) such that

fj(56)<0, j=1,....,m.

This condition essentially asks that there exists a point x that is strictly feasible
because the inequality constraints hold strictly. The condition can actually be further
refined if some of the functions f; are affine: for instance, if fi,..., f, are affine, then we
only require fj(z) < 0 for ¢ = 1,...,7 and fi(z) < 0 for i = r+1,...,m, i.e., the strict
inequality is only required for non-linear functions.

As we will see, Slater’s condition implies that strong duality holds and also that the
dual optimal value is attained, i.e., that there exists a feasible z* in the primal and a A* > 0
such that f(z*) = g(\*).

1.1 A Geometric View of Duality

Before proving our main strong duality result, we provide a natural geometric interpretation
of the dual construction that will also make the proof more clear. The construction is
depicted in Figure 1. To introduce it, assume that there is only one inequality constraint
in (Z) (i.e., m = 1), and let

G :={(u,t) eR*: 32 € R", t = fo(z), u= fi(z)}

denote the set of values taken by the objective and constraint over the set x € X. The
optimal value of the primal is then expressed as:

p*:inf{t : (u,t)Eg,USO}a

and we can see that () is feasible if and only if G intersects the left-half plane. Note that
when evaluating the dual function, we are minimizing the affine function A - w4 1 - ¢ over
(u,t) € G, so we can write:

g() = min {0 1T(w,0) = (u,) € A},

If the minimum is finite, then the inequality (A, 1)T(u,t) > g()) defines a supporting hyper-
plane for the set G and the intersection between this hyperplane and the vertical axis u =0
gives the value of the dual, g()).

Nothing would change if we replaced G by its “upper extension” A =G+ R% = {(u, t):
dx € X, t > folz),u > fl(x)} because A includes all the points in G and points that
are strictly “worse” for the optimization that defines the dual value. In this case, because
(0,p*) € bd(A), we have p* > g(\) for any A > 0, so weak duality always holds.

If the problem is convex, then the set A will also be convex. And if Slater’s condition
holds, then the interior of A will intersect the left half-plane, and strong duality will hold.



* gA2) =Ag-u+t

Figure 1: Geometric interpretation of the dual function and lower bound g(A) < p* for
problem (&) with one inequality constraint. Given A > 0, to find g(\) we must minimize
t+X-u over (u,t) € G. This yields a supporting hyperplane for G who intersection with the
vertical axis u = 0 yields g(\). Here, strong duality does not hold because the optimal dual
solution A* yields a lower bound d* so that d* < p*. Note that nothing would change if we
replaced G by its upper extension A = G + Ri = {(u,t) drze X, t> folx),u> fl(x)}

2 Strong Duality

The following result formalizes the intuition above.

Theorem 2 (Strong Duality in Convex Optimization). Let X C R™ be convez, let
fo, f1, -+, fm be real-valued convex functions on X, and let fi,..., fm satisfy the
Slater condition on X. Then, p* = d* and the dual problem attains its optimal value.

Proof. We adopt a proof that leverages the geometric intuition developed above. For prob-
lem (£2), let use define the upper-extension A as:

A={(u,t) eR™" xR:3z € X, t> fo(z),w; > fi(z),i=1,...,m}. (7)
The set A is convex because it is the projection of the convex set {(z,u,t) : v € X,t >
fo(x),u; > fi(x),i=1,...,m} onto the (u,t) coordinates.
We next define a second convex set B as
B={(0,s) e R" xR |s<p}.

These sets are depicted in Figure 2. We claim that AN B = (). To see this, suppose
(u,t) € AN B. Because (u,t) € B, we have u = 0 and t < p*. But (u,t) € A, which implies
that there exists an z € X with fi(z) < wu; =0, 7= 1,...,m and with fo(z) < t < p*,
which contradicts p* being the optimal value of (£2).

By the separating hyperplane theorem, there exists (A, ) € R™*! #£ 0 and b with:
V(u,t) € A, ANu+ ut > b, (8a)
V(u,t) € B, Au+put<b. (8b)



Figure 2: Illustration for the strong duality proof. The set A is shaded and the set B is
the (red) vertical segment, not including the point (0, p*). The sets are convex and do not
intersect, so a separating hyperplane must exist. The Slater condition guarantees that the
separating hyperplane is non-vertical, because it must separate a point (u,t) = (f1(Z), fo(Z))
corresponding to a Slater point Z.

We claim that (8a) implies that A > 0 and g > 0. Otherwise, we would have

inf (ATu+ pt) = —
BLAOT ) = s

because the recession cone of A contains the rays e; (for i = 1,...,m + 1), which would
contradict (8a).

Moreover, condition (8b) simplifies to ut < b for all t < p*, and hence, up* < b. Together
with (8a), we conclude that we identified a A > 0 such that for any =z € X,

L(z,A) ==Y Nifi(x) + pfo(z) > b > pp*. (9)
=1

Case 1. Assume that p > 0. Then, we can divide inequality (9) by p to obtain
L(x, N\ p)>p,VreX,

from which it follows that g(A/u) > p*. By weak duality, g(A/u) < p*, so in fact g(A\/p) =
p*, which implies that strong duality holds and the dual optimum is attained.

Case 2. Now suppose = 0. From (9), we conclude that:
m
Z)\Zfl(l‘) > 0, Ve e X.
i=1
Applying this to the point Z that satisfies the Slater condition, we have
m
Z Aifi(Z) = 0.
i=1
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Because T satisfies the Slater condition, we have f;(z) < 0 for ¢ = 1,..., m, which together
with A > 0 implies that we must have A = 0. But this contradicts the separating hyperplane
assumption that (A, ) # 0. O

It should be noted that other versions of strong duality results are possible depending on
the constraint qualification conditions. Moreover, if we are solely interested in guaranteeing
strong duality and that the primal problem achieves is optimal value without insisting that
the dual should achieve its optimum, other conditions are possible.

Proposition 1 (Convex Programming Duality - Existence of Primal Optimal So-
lutions). Assume that () is feasible, that the convex functions f;,i = 0,...,m are
closed, and that the function

F(:E,O): {fO(l’) if fz(x)g(),z:l,,m,xEX,

400, otherwise,

has compact level sets. Then p* = d* and the set of optimal solutions of () is
nonempty and compact.

For a proof, the interested reader can refer to Proposition 5.3.7 of Bertsekas (2009). The
compactness requirement of this proposition is reasonable if either X is compact or if X is
closed and fy has compact level sets. For instance, the latter happens if fj is a continuous
and coercive function, i.e., limj,|_o0 fo(x) = +oo. However, this proposition does not
guarantee the existence of a dual optimal solution; Example 2 exactly illustrates this point.

2.1 Explicit Equality Constraints

The developments above assumed that any equality constraints are included in the definition
of the set X. In applications, it is often useful to write out the equality constraints explicitly,
so we now briefly extend the theory above to accommodate this. Consider a more general
convex optimization problem:

minimize fo(z)
subject to fi(z) <0, i=1,...,m,

10

Axr=10> (10)
reX.

where f;,i = 0,...,m are convex and without loss of generality, we assume the matrix

A € RP*™ has rank p. We define the Lagrangian £ : R” x R™ x RP — R associated with
problem (10) as

£($,)\, l/) = fO(x) + Z)\zfz(w) + VT(A'r - b)>
=1

where we use v € RP to denote the Lagrange multipliers associated with the linear con-
straints Az = b. The dual objective can be written as:

g\, v) :=infyex L(z,\,v),



and the dual problem becomes:

maximize g(\,v)
subject to A > 0.

(11)

The main thing to note is that the Lagrange multipliers v associated with equality con-
straints are not sign-constrained, so v can be both positive and negative values in the dual
problem. This is completely consistent with the developments in linear optimization and
should not come as a surprise.

2.2 Nonlinear Farkas Lemma

The previous developments also highlight that non-linear version of the Farkas Lemma is
readily available. Specifically, we have the following result.

Proposition 2 (Nonlinear Farkas Lemma). Let X C R"™ be convex, let fo, f1,..., fm
be real-valued conver functions on X, and assume f1,..., fm satisfy the Slater condi-
tion on X. Then, the following system of inequalities has a solution

dz @ folx) <z, fi(x)<0,j=1,....,m, z€X, (12)

if and only if the following system has no solution:

IA - inf f(x)+;Ajfj(x) >z, A >0,5=1,...,m.

i
B

The proof essentially mirrors the arguments used in the strong duality proof. As in the
linear case, the Farkas Lemma provides a very powerful certificate of feasibility and its role
is essentially equivalent to strong duality.

3 Applications of Convex Duality

3.1 Minimum Euclidean Distance Problem

Consider the problem of finding the minimum Euclidean distance from a given point y to
an affine set {z : Az = b}. This problem can be written as:

min ||z —y||3: Az = b,
z
where A € RP*" b € RP and we assume that A has rank p. With a change of variables
x := z —y and by letting b := b — Ay, this can be reformulated as:
min 2Tz : Ax = b.
x

The Lagrangian for this problem is

L(z,v) =aTx + vT(Az — b),



where v € RP is the dual variable associated with the constraint Ax = b. The dual function
is given by g(v) = infy L(z,v). Since L(z,v) is a convex quadratic function of z, we can
find the minimizing x from the optimality condition

1
Viol(z,v)=2x+ATv=0 & z= fiATV. (13)
Therefore, the dual function is
1 1
gv)=1L (—2AT1/, 1/> = —ZI/TAATI/ —bTy,

which is a concave quadratic function with domain RP.

Note that the primal problem trivially satisfies the Slater condition (provided that it is
feasible). Therefore, p* = d*. Moreover, to find the optimal value of the dual, which is an
unconstrained convex optimization problem, we can simply set the gradient equal to zero,
which leads to:

—%AATV =b.

Because A is assumed to have rank p, the matrix AAT is an invertible p X p matrix, so we
obtain the optimal dual solution v* = —2(AAT)~'b. Moreover, the optimal value of the
dual (and, by strong duality, the primal) is:

p*=d* = g(v*) = bT(AAT) b

Moreover, this also implies from (13) that the optimal primal solution is z* = —%ATV* =
AT(AAT)~1p! (Note that this point is feasible in the primal and it achieves the optimal
value p*!)

3.2 Quadratic Programs

The example above is a special instance of the problem of minimizing a quadratic function
subject to linear constraints — a problem that is generically called a quadratic program
(QP). When there are only equality constraints, this problem can be reformulated as:

min zTQx : Ax = b,
x

where @@ > 0 is a positive definite matrix. We can follow an identical line of reasoning as
above to form the Lagrangian and derive the dual and the optimal solution.
We now consider the case with inequality constraints, which we write more generally:

1
minimize §xTQx +cTx (14)
x
Az <b (15)

where @ € R™ "™ and @ > 0. The Langragian function is:

L(z,\) = %:cTQ:c +cTz + AT(Az — b)



and the dual function is:
1
g(A) = =ATb+ inmf {ixTQ$ +cTx + )\TAx}.
reR"

By taking the gradient, we can see that the infimum is achieved at = —Q~!(c + AT\).
Therefore, the fual function becomes:

g(\) = —%ATAQ*ATA —AT(b+AQ"¢) — %CTQAC-

Assuming the primal is feasible (i.e., Az < b is feasible), strong duality always holds for this
problem so we can solve either the primal or the dual. The dual problem entails maximizing
a concave quadratic function subject to the constraints A > 0 and in this case, it may be
simpler to solve than the primal because it is very easy to project onto the feasible set, so
we can apply a gradient descent algorithm with a correction step. (More on that later in
the course!)

3.3 Quadratically Constrained Quadratic Programs

Here, we consider a quadratically constrained quadratic program (QCQP):

1
minimize §xTP0:r + qlz + 1o
2 (16)
subject to §xTPix + qiTx +r; <0, 1=1,...,m,

where Py > 0 is an n X n positive definite matrix and P, = 0 are n X n positive semidefinite
matrices, ¢ = 1,...,m. The Lagrangian is:

Ll N) = %xTP()\)x +aN)Tz 4+ (N,

where

PN =R+ Y NP, g\ =g+ Xag, r(A)=ro+Y N\
i=1 i=1 i=1

It is possible to derive an expression for g(A) for general A\, but it is rather complicated.
However, because A > 0 in our case, we have P(\) > 0 and therefore:

1
9(\) = inf Lz, A) = =2a(N)TP(N)g() +r(A).
We can therefore express the dual problem as

1
maximize — §q()\)TP()\)_1q()\) +7r(A) (17)
subject to A > 0.

The Slater condition states that strong duality between (16) and (17) holds if the quadratic
inequality constraints are strictly feasible, i.e., there exists an x with

1
iprix—i—qiTac—i—n<0, i=1,...,m.

10



3.3.1 A nonconvex quadratic problem with strong duality

A special QCQP instance also provides one of the rare examples where strong duality holds
for a nonconvex problem. Specifically, consider the problem of minimizing a nonconvex
quadratic function over the unit ball,

minimize x2TAz + 2bTx (18)
subject to zTx <1,

where A € S™ is a symmetric matrix but A % 0 (i.e., A is not positive semidefinite) and
b € R™. Because A % 0, this is not a convex problem. This problem is sometimes called
the trust region problem and arises from minimizing a second-order approximation of a
(non-convex) function over the unit ball, which is the region in which the approximation is
assumed to be approximately valid.

The Lagrangian is
L(x,\)=2TAz +20Tx + ANzTx — 1) = 2T(A+ Az + 20Tz — A,

so the dual function is given by

o {—bT(AJr)\I)Tb—)\ A+ M =0, be R(A+ A,
g0 =

—00 otherwise,

where MT is the (Moore-Penrose) pseudo-inverse of M, i.e., (MTM)~'MT for a full-rank
matrix M. The Lagrange dual problem is thus

maximize — bT(A + X)Tb— A

19
subject to A+ A >0, be R(A+ \), (19)

with variable A € R. Although it is not readily obvious from the expression above, this is
a convex optimization problem. In fact, it is readily solved since it can be expressed as

. =~ (q]b)?
maximize — g L - A
oAt A

subject to A > —Anin(A4),

where \; and ¢; are the eigenvalues and corresponding (orthonormal) eigenvectors of A, and
we interpret (g]b)?/0 as 0 if ¢]b = 0 and as co otherwise.

The Slater condition is trivially satisfied in problem (18) and we actually have zero
optimal duality gap: the optimal values of (18) and (19) are always the same. In fact, a
more general result holds: strong duality holds for any optimization problem with quadratic
objective and a single quadratic inequality constraint, provided Slater’s condition holds.
And extensions are also possible for two-sided quadratic constraints, i.e., constraints of the
form ¢ < 2T Px < u, provided that the matrices P and A are simultaneously diagonalizable
(see Ben-Tal and Teboulle (1996) for details).

11



3.4 Entropy Maximization

Consider the problem of maximizing the entropy in a distribution. The entropy is given by
— > i, x;logx;, so this problem can be written as the following minimization:

minimize fo(z) = Z x; log x;
subject to Az < b,

1Tz = 1.

Here, z is typically a distribution and the constraints z > 0 are assumed to be embedded
in the constraints Az < b (so the matrix A € R™*™ has rank n < m.) The problem is a
convex optimization problem because the functions x log x are convex on the domain x > 0
(take the second derivative for a proof!) With A € R™ denoting the dual variables for the
inequality constraints and v € R denoting the dual variable for the equality constraint, the
Lagrangian can be written as:

Lz, \v) =) xiloga; + AT(Az —b) + v(1Tzx - 1). (21)
=1

The gradient with respect to the primal variable x; is:

gf =logx; + 1+ ATA; + v, (22)

where A; is the i-th column of the matrix A. The first-order optimality condition yields:
z; =exp(—1—ANT4; —v), (23)
and the dual function is given by:
n n
g\ v)==bTA—v— Z exp(—AJA—v—1)=—-bTA—v— e vl Z e AN,
i=1 i=1

3.5 Regularized Support Vector Machines

Consider a binary classification problem as shown in Figure 3. Given m data points x; € R™,
each of which is associated with a label y; € {—1,1}, the problem is to find a hyperplane
that separates, as much as possible, the two classes.

The two classes are separable by a hyperplane H(w,b) = {z : wTx + b = 0}, where
w € R™ w#0, and b € R, if and only if wTz; +b > 0 for y; = +1 and wTx; + b < 0 if
y; = —1. Thus, the following conditions on (w,b):

yi(wlz; +0) >0, i=1,...,m (24)

would ensure that the data set is separable by a linear classifier. In this case, the parameters
w and b allow us to predict the label associated with a new point z, via y = sign(wTz + b).

12



Figure 3: Two problem instances for the binary classification problem. The instance on
the left is separable: we can find a hyperplane that separates the blue squares from the
green circles. In contrast, the instance on the right is non-separable, so one typically seeks
a hyperplane that minimizes the total errors committed. With the hinge loss, the errors
correspond to the sum of the distances from the points to the hyperplane.

The feasibility problem — finding (w,b) that satisfy the above separability constraints — is
an LP. If the data set is strictly separable (i.e., every inequality in (24) holds strictly), then
we can rescale the constraints and transform them into

yi(wlz; +0) >1, i=1,...,m.

However, in practice the two classes may not be linearly separable. In this case, we would
like find a hyperplane that minimizes the total number of classification errors. Strictly
speaking, the objective function corresponding to the number of mistakes has the form:

m

> Ulyi(wTz; + b)),

i=1

where ¢(t) = 1if t < 0, and 0 otherwise. Unfortunately, this is non-convex and rather hard
to minimize (it would require solving an IP!) As an alternative, we can replace the objective
with an upper bound formed by using the hinge function, h(t) = (1—t)+ = max(0,1—t).
Our problem becomes one of minimizing a piecewise linear “loss” function:

)

i 1_ 7 T 7 .
mwlg;( yi(wTz; + b))y

At optimality, the value of the loss function can be read from Figure 3: it equals the sum of
the lengths of the dotted lines from data points that are wrongly classified to the hyperplane.

In practice, we often want to control the robustness of the resulting classifier and also
to guarantee that an optimal classifier is unique. It turns out that these objectives can be
achieved by solving the following regularized problem:

m
. 1
min C'- .E 1(1 = yi(wTi + b))y + 5wl
1=

13



where C' > 0 is a parameter that controls the trade-off between robustness and performance
on the training set (a greater C' encourages performance at the expense of robustness). This
problem can be written as a QP, by introducing slack variables:

1 m
glé% QHWH%JFC;W v 20, yi(wle+b) 21 —v, i=1,...,m,

or, more compactly:
.1 9
min S[lwl; +C1Tv ;' v >0, v+ ZTw+by > 1,
wbv 2

where ZT € R™*™ is the matrix with rows given by y; - x].

The corresponding Lagrangian is
1
L(w, b, \, ) = 5”10“% +CvT1+AT(1 —v—ZTw — by) — pTv,
where 1 € R™ corresponds to the sign constraints on v. The dual function is given by

9\ p) = min L{w, b, A, ).

We can readily solve for w by taking derivatives, which leads to w(\,u) = Z\. Taking
derivatives with respect to v yields the constraint C'- 1 = A + u, while taking derivatives
with respect to b leads to the dual constraint ATy = 0. We obtain

AL —YZN3 ATy =0, \+p=C-1,
g0 p) = { 21220 3 ATy -
400 otherwise.

We obtain the dual problem

1
* . —
d* = /\goliéog()\,p) = mixx)\Tl — §ATZTZ)\ 0 ALZC-1, ATy =0.
Strong duality holds, because the primal problem is a QP (note that we can always produce
an interior point with b sufficiently large). Importantly, the dual objective depends only
on the so-called kernel matrix K = ZT7Z € S, and the dual problem involves only m
variables and m + 1 constraints. Hence, the only dependence on the number of dimensions
(features) n is via the required computation of the kernel matrix, that is, on scalar products
zlzj, 1 <1i < j < m. Thus, duality allows a great reduction in the computational effort,
compared to solving the original QP in n variables and m constraints. This is known as the
“kernel trick.”

Duality also shows that the optimal value of the problem is a convex function of the
kernel matrix, which allows us to understand how the results depend on the data matrix
(and consider robust objectives related to that, as we will discuss later in the course).
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4 Saddle-point Theory

Our previous discussion may have made it seem like the primal and dual have slightly
different roles. In this section we give a different interpretation of Lagrange duality that
will appear more symmetric. To simplify the discussion, we consider again only the case
with inequality constraints, as in (1) (equality constraints can be readily accommodated).
First note that

sup L(z,\) = sup (fo(x) + Z)\ifi($)> = {fo(m) if fi(z) <0, i=1,...,m,
i=1

A>0 A>0 o) otherwise.

Indeed, if x is not feasible and f;(z) > 0 for some 4, then sup,>o L(z,\) = oo by taking
Ai = o0o. And if fi(z) < 0, ¢ = 1,...,m, then the optimal choice of X\ is A = 0, and
supy>o L(z,\) = fo(z). This means that we can express the optimal value of the
primal problem as

* = inf L(z,\).

P’ = jnf sup (z,\)

By the definition of the dual function, we also have

d* = sup inf L(x,\).
ek L

Thus, weak duality can be expressed as the inequality:

inf L(z,\) < inf sup L(z, A 25
P Jof Ele ) <l aup o) @)

whereas strong duality is equivalent to the equality:

sup inf L(x, A\) = inf sup L(zx, \). 26
AZIgmex( ) reszlg( ) (26)

It is worth putting these results into the context of the more general comparison of the
following two optimization problems:

sup inf f(w,z) wersus inf sup f(w,z). (27)
zez weEW weW ez
In this context, a weak duality relation (25) holds irrespective of the properties of f and
the feasible sets in question, so we have
sup inf f(w,z) < inf sup f(w,z
Zegwewf( , )_wewzegf( %)
for any f: R" x R”™ — R and any W C R™ and Z C R™. This general inequality is called
the max-min inequality. Strong duality means that the order of the minimization
over r and the maximization over A > 0 can be switched without affecting the result.
When equality holds, i.e.,

inf — inf 28
ilel%gwf(ww) u}gwiggf(w,@ (28)
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we say that f (and W and Z) satisfy the strong max-min property or the saddle-point
property. We refer to a pair w* € W, z* € Z as a saddle-point for f (and W and Z) if

fw”, 2) < f(w*, 2") < fw,2")

for all w € W and z € Z. In other words, w* minimizes f(w,z*) (over w € W) and z*
maximizes f(w*,z) (over z € Z):

f(w*7 Z*) = 11}25[/ f(w, Z*)7 f(w*7 Z*) = ilelgf(w*’ z).

Returning to our discussion of Lagrange duality, we see that if x* and A\* are primal and
dual optimal points for a problem in which strong duality obtains, they form a saddle-point
for the Lagrangian. The converse is also true: If (x,\) is a saddle-point of the Lagrangian,
then x is primal optimal, A is dual optimal, and the optimal duality gap is zero. The
following result actually formalizes and proves this.

Theorem 3 (Saddle Point Optimality Condition in Convex Programming). Let ()
be an optimization program, L(xz, \) be its Lagrangian function, and let x* € X. Then:

(i) A sufficient condition for x* to be an optimal solution to () is the existence
of the vector of Lagrange multipliers \* > 0 such that (x*, \*) is a saddle point
of the Lagrange function L(x,)\), i.e., satisfies:

L(x,\*) > L(z*,\*) > L(z*,\) VzeX, A>0. (29)

(ii) If (Z) is a convex optimization problem and satisfies the Slater condition, then
the above condition is also necessary for the optimality of x*: if x* is optimal
for (£2), then there exists \* > 0 such that (z*,\*) is a saddle point of the
Lagrangian function.

Proof. (i): Assume that for a given 2* € X there exists A* > 0 such that (29) is satisfied.
We prove that 2* is optimal for (). First, «* is feasible: indeed, if f;(2*) > 0 for some j,
then supysq L(z*, ) = 400, which is forbidden by the second inequality in (29). Because
x* is feasible, supysq L(z*, \) = fo(z*), and we conclude from the second inequality in (29)
that £(z*, \*) = fo(z*). Now, the first inequality in (29) reads

fo(x) + D Xifi(@) > fola*) Vx € X.
j=1

This inequality implies that «* is optimal: indeed, if x is feasible for (&), then the left side
of the inequality is < fy(z) because \* > 0 and f;(x) > 0, so f(z) > f(z*).

(ii): Assume that (&) is a convex program, z* is its optimal solution, and the problem

satisfies the Slater condition. Then, we prove there exists A* > 0 such that (z*, \*) is a
saddle point of the Lagrange function. From the Convex Programming Duality Theorem,
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the dual problem (2) has a solution A* > 0, and the optimal value of the dual problem
equals f(z*):

fola®) = gO) = inf [fola) + Y- A5 (@)
j=1

In particular, this implies that
m
Jo(x*) < L(x*, ) = fola™) + Y Njfi(").
j=1

But all the terms in the sum » 7", X% f;(2*) are negative (because z* and \* are feasible
for the primal and dual, respectively), so the inequality above implies that each term must
actually be zero. So A} - fj(z*) = 0 and we have f(z*) = L(z*, A*). Therefore:

L(z*, \*) = f(2*) = inf L(z,\").
reX
Because z* is feasible for (), we have L(z*,A\) < f(z*) for A > 0, implying
L(z*,\) < L(z*, \*) < L(z, \¥)

for all x € X and A > 0. O

4.1 Game interpretation

The saddle-point properties developed above also bare a natural interpretation in terms of

a continuous zero-sum game between a decision maker and an adversary. If the first player

chooses w € W, and the second player selects z € Z, then player 1 pays an amount f(w, z)

to player 2. Player 1 therefore wants to minimize f, while player 2 wants to maximize f.
The critical comparison between

inf inf . 30
iggwlgwf(w,z) versus ngiggﬂw’z) (30)

then boils down to the order of play. Suppose that player 1 makes their choice first, and
then player 2, after learning the choice of player 1, makes their selection. This corresponds
to the second game above. Player 2’s will seek to maximize the payoff f(w,z) and so will
choose z € Z to maximize f(w,z). Critically, Player 2’s choice z is allowed to depend on
the choice w made by Player 1 so the resulting payoff, which is sup,c, f(w, 2z), will also
depends on w, the choice of the first player. Player 1 knows (or assumes) that player 2 will
follow this strategy, and so will choose w € W to make this worst-case payoff to player 2 as
small as possible. Thus player 1 chooses

argmin,,cyy sup f (v, 2),
ze€Z

which results in the payoff

inf sup f(w, 2z
weW Zegf( )
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from player 1 to player 2. In this game, Player 2 has an informational advantage over
player 1 because she makes her choice after observing the choice of Player 1.

Now suppose the order of play is reversed: player 2 must choose z € Z first, and then
player 1 chooses w € W (with knowledge of z). Following a similar argument, if the players
follow the optimal strategy, player 2 should choose z € Z to maximize inf ey f(w, 2), which
results in the payoff

sup Jnf f(w,z)
from player 1 to player 2.

The max-min inequality states the (intuitively obvious) fact that it is better for a player
to go second, or more precisely, for a player to know their opponent’s choice before choosing.
In other words, the payoff to player 2 will be larger if player 1 must choose first. The optimal
duality gap for the problem is exactly equal to the advantage afforded to the player who
goes second. If strong duality holds — or equivalently, the saddle-point property holds —
there is no advantage to playing second. If (w*, z*) is a saddle-point for f (and W and Z),
then it is called a solution of the game.

4.2 Sion Mini-max Result

One of the most celebrated results in optimization is the Sion-Kakutani Theorem that allows
interchanging the order of minimization and maximization in a minimax problem.

Theorem 4 (Sion-Kakutani). Let X C R™ and A C R™ be convex and compact
subsets and let f : X x A — R be a continuous function that is convex in x € X for
any fized A € A and that is concave in A € A for any fived x € X. Then,

iy s, ) = Sepe ity e, )

We note that slight generalizations of this result are also possible. (A only needs to be convex
— so no need for compactness — and f only needs to be lower semicontinuous and quasi-
convex on X and upper semicontinuous and quasi-concave on A. We omit further details
here.) A proof is slightly outside the scope of these notes, but we direct the interested
reader to Ben-Tal and Nemirovski (2023) and Bertsekas (2009) for more details.

5 Optimality Conditions

We next discuss optimality conditions for optimization problems. We will be concerned
with the following primal optimization problem:

(#) min, fo(z)
file) <0, i=1,...,m
hi(z) =0, i=1,...,s (31)
r e X.

The question we are interested in is the following: “Assume that we are given a feasible
solution x* to (£?). What are the conditions (necessary, sufficient, necessary and sufficient)
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for x* to be optimal?” We intend to answer this question under the following assumptions
on the problem primitives:

e x* is an interior point of the domain of the problem X;

e The functions f, g1,...,9m and h;, ..., hs are smooth at x*: at least once continuously
differentiable in a neighborhood of the point (for second-order conditions, we would
need to require more smoothness!)

Importantly, we stress that we are not going to impose structural convexity as-
sumptions, unless explicitly stated otherwise.

Before stating the conditions, we note that the only kinds of conditions that we should
hope for are necessary conditions for the optimality of x* and sufficient conditions for
the local optimality of x*. In particular, we cannot possibly hope for global optimality
conditions without imposing some other global requirements (such as convexity).

Letting A denote the dual variables for the inequality constraints fj(z) < 0 and v denote
the dual variables for the equality constraints h;(z) = 0, recall from the developments in the
previous section that if we have an optimal solution z* for the primal (&) and an optimal
solution A\*,v* for its dual so that strong duality holds, this implies:

fo@™) = g(X*,v7)

= inf [f(@) + SN L @) + 30 vy (a)]
j=1 =1

< fola*) + > N f(a)
=1

< fo(CC*),

The first inequality follows because x* is feasible in (&) so f;(z*) < 0 (we omit writing the
term + ijl vihj(x*), which is zero anyway) and the last inequality also uses that A\* is
feasible in (2), so A* > 0. But this implies that:

N fi(zh) =0,i=1,...,m. (32)

This condition, which we already encountered in linear optimization, is called complemen-
tary slackness, and it can be expressed equivalently as

Af>0= fi(z")=0 < fi(z*)<0= X\ =0. (33)

These conditions will be very important as they will allow us to establish necessary (and
sufficient) optimality conditions for optimization problems.

5.1 Karush-Kuhn-Tucker (KKT) Optimality Conditions

Let * € X be a point that in the domain for the primal (£?) and let A\* € R™ be dual
variables corresponding to the inequality constraints and v* be dual variables for the equality
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~fi(xz) =0

V fa(z™)
VAGE) _gf @)

Figure 4: Illustration of KKT conditions. Here, the feasible set is the intersection of several
inequality constraints f;(x) < 0. At the optimal point z*, only fi(x) and fa(x) are active
constraints. The Stationarity Condition requires that the negative of gradient of the objec-
tive, —V fo(z*), can be expressed as a conic combination of the the gradients of all active
constraints, i.e., Vfi(z*) and —V fo(2*) here. (The set of all conic combinations of these
gradients is denoted by N¢(z*) and is called the normal cone at z*.)

constraints. The Karush-Kuhn-Tucker (KKT) conditions at 2* € X are given by:

0= Vfo(z*)+ Z AF -V fi(x®) + Z vy - Vhi(z¥), (“Stationarity”)
i=1

i=1

fi(z*) <0, i=1,...,m (“Primal Feasibility 1”)

hi(z*) =0, i=1,...,s, (“Primal Feasibility 2”)

A >0 (“Dual Feasibility”)

Aifi(x®) =0, i=1,...,m (“Complementary Slackness”).

In this definition, we noted common names for each condition in quotes. The rationale
for the conditions should be clear from our previous developments involving the primal-dual.

To visualize these conditions, consider a case without equality constraints (s = 0). Note
that the Stationarity Condition (which also corresponds to the derivative of the Lagrangian
vanishing) together with the Complementarity Slackness condition (which states that A =0
for any inequality constraints f;(z) < 0 that are not active) yield:

~Vioa) = Y A -Vfi(ah).

i fi(a*)=0

This means that at optimality, —V fo(z*) can be written as a conic combination of the
gradients of all the constraints that are active at z*. The cone of all such directions is
known as the normal cone at z* and it denoted by N (z*). Note that No(z*) contains
all the directions d € R™ that “point away” from the feasible set, i.e., No(2*) := {d e R™ :
dT(y —x*) > O}.2 The geometric intuition of these conditions is depicted in Figure 4, and
should be reminiscent of the optimality conditions we saw in linear optimization.

*Equivalently, the directions in —N¢(z*) allow moving from 2* while remaining inside the feasible set.
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In some cases, the KKT conditions may fail to hold at optimality. Typically that
happens when the linearization of the constraints collapses. Consider the following example.

Example 3 (Failure of KKT Conditions.). Consider the optimization problem

min x
xeR

x320.

In this example, fo(z) = = and fi(x) = —23. The feasible set is (—oo, 0] and the optimal
solution is #* = 0. The KKT condition fails because V fy(x*) = 1 while V fi(z*) = 0, so
there is no A > 0 such that —V fo(z*) = AV fi(z*). Note that in this case, we are not
dealing with a convex optimization problem!

Here is a more subtle example of the KKT condition failing, in which the constraint
gradients do not vanish.

Example 4 (Failure of KKT Conditions.). Consider the optimization problem

min —x
z,yeR
y—(1-— x)?’ <0

z,y >0

Here, f0($ay) =T, f1($7y) =Y - (1 - l‘)3, fQ(xay) = —x and f3(x7y) =Y. The
feasible set is illustrated in Figure 5. At the optimal point (z*,y*) := (1,0), the gradients

Y
1

0 13:‘

Figure 5: KKT Conditions Failing. (Figure not drawn to scale.)
of the objective and binding constraints f; and f3 are
i) = (). Ve = (1), vaean = ().
It is clear that no Lagrange multipliers A1, A3 satisfy

—Vfo(.%'*, y*) = Alvfl(w*: y*) + )\3Vf3($*, y*)v

so the KKT conditions fail in this case.
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The reason why the KKT conditions failed in the last example is because the lineariza-
tion of constraint f; < 0 around the optimal point (1,0) is y < 0, which is parallel to the
existing constraint y > 0 and fails the capture the fact that < 1 on the feasible set.

Luckily, several constraint qualification conditions exist to prevent such pathological
behavior; we highlight some examples below. In all of these conditions, z* is the candidate
point for which we want to check local optimality and we let I(z*) := {i € {1,...,m} :
fi(z*) = 0} denote the set of indices of all active inequality constraints. We restrict at-
tention to cases where the functions {f;}) =i=1,._m and {h;};=1, ., are differentiable. If any
of these constraint qualification conditions hold, then the KKT conditions are necessary
for z* to be locally optimal.

1. Affine constraints. If the feasible set is defined by linear constraints (i.e., all h; and
f; are affine functions), then no further constraint qualifications are necessary and the KKT
conditions are necessary at x*.

2. Slater’s condition. This is the condition we are already familiar with, which we
can relax slightly by only making reference to active constraints. Specifically, the relaxed
Slater’s condition holds if the functions f; appearing in active inequality constraints { f; :
i € I(x*)} are convex and there exists a feasible point Z in the relative interior of the
domain z € rel int(X) that is strictly feasible for these, i.e.,

fi(@) <0 Vjel(z"),

and if all the functions {h;};—1 . s appearing in equality constraints are affine.

3. Linearly independent gradients for active constraints. Suppose that the gradi-
ents of all active constraints at x* are linearly independent, i.e., the vectors:

{Vfi(x*):jeI(a®)} U{Vhj(z*):j=1,...,s}
has linearly independent vectors. Then, the KKT conditions are necessary at x*.

A point z* where the gradients of active constraints are linearly independent is also referred
to as a regular point. You may recall regular points from multivariate calculus, where
regularity is a necessary condition for the implicit function theorem to hold.

4. Mangasarian-Fromovitz. Suppose the gradients of all equality constraints
{Vhj(z*):j=1,...,r}
are linearly independent and there exists a vector d € R™ such that
d™Vfi(z*) <0, i€ I(z¥), d'Vhj(z*)=0,j=1,...,s,

then the KKT conditions are necessary at z*.

As it turns out, these constraint qualification conditions satisfy a specific “pecking or-
der,” in the sense that some conditions are stronger and imply others. For instance, one can
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show that condition (3) requiring linearly independent gradients implies the Mangasarian-
Fromovitz condition (4). In principle, even more relaxed conditions are possible; we refer
the interested reader to the lecture notes Burke (2012) and the article Peterson (1973) for a
more thorough overview. However, the most practical conditions to check are the Slater con-
dition (when dealing with a convex optimization problem) or the Mangasarian-Fromovitz
condition for a more general (smooth) non-linear optimization problem.

5.2 Second Order Optimality Conditions

Under additional smoothness assumptions on the objective and constraints, we can also
state a set of second-order optimality conditions that make use of Hessian information.

Second Order Necessary Optimality Conditions

Theorem 5 (Necessary Conditions). Consider problem () stated in(31) and as-
sume that x* is a feasible solution and fo, f1,..., fm, h1,...,hs are twice continuously
differentiable in a neighbourhood of x*. Let I(z*) := {i € {1,...,m} : fi(z*) = 0}
denote the indices of all active inequality constraints at x* and assume that x* is
regular, i.e., the gradients

(V@) 5 € I@)}U{Vhj(z*) :j=1,...,8}

of all active constraints at x* are linearly independent. Then, if x* is locally optimal,
there exist unique Lagrange multipliers X7 > 0 and 1/; such that

(i) (\*,v*) certify that x* is a KKT point of (P):

Vo L(z* N, v%) = Vio(z*) + Y NVfi(a) + ) _viVhi(z*) =0  (34a)
i=1 j=1
AN fi(x*)=0, i=1,....,m (34b)

(i) The Hessian V2L (x*; \*, u*) of L in x is positive semidefinite on the orthogonal
complement M* to the set of gradients of active constraints at x*:
dUN2L(x* N, p*)d > 0 for any d € M*
where M* :={d | d"V f;(z*) =0, Vi € I(z*), d"Vhj(z*) =0,j=1,...,s}.

The Second Order Necessary Optimality Conditions actually state some intuitive facts.
To see it, it first helps to develop an intuition for the subspace M™ involved in the necessary
condition. This is the subspace obtained by linearizing all the constraints that are active
at x*, so the affine space z* + M™* is exactly a tangent plane to the surface S where all
constraints active at x* are still active. Thus, directions d € M™ are tangent to S at x*.
When z* is regular, moving forward or backwards along any such direction d € M* allows
us to stay “very close” to §. So when z* is locally optimal, it must be that no direction
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from M* leads to a desired decrease of the objective. Indeed, if such a direction d existed
that, we could improve on z* by implementing a small step along this tangent direction,
which would improve the objective only by an infinitesimal shift of second order.

In a similar fashion, we can also state a set of sufficient second-order conditions that
would guarantee that a point z* is a local optimum.

Second Order Sufficient Optimality Conditions

Theorem 6 (Sufficient Conditions). Under the same premises as stated in Theo-
rem 5, assume that there exist Lagrange multipliers Xy > 0 and VJ* such that:

(i) (N*,v*) certify that x* is a KKT point of (), i.e., (34a) and (34b) hold.

(ii) The Hessian V2L(x*; \*,u*) of L in = is positive definite on the orthogo-
nal complement M™** to the set of gradients of equality constraints and active
inequality constraints associated with positive Lagrange multipliers X} :

dTV2L(x*; N, p*)d > 0 for any d € M**
where

M :={d|d'Vfi(z*)=0,Vie I(z*): X\ >0 and
d'Vhj(z*)=0,j=1,...,s}

Then, z* is locally optimal for ().

Note that the sufficient condition involves a stronger requirement on the Hessian: it
should be positive definite in the subspace M™**.

We omit proofs for these reasons due to space limitations. The interested reader can
refer to Ben-Tal and Nemirovski (2023) or the book Borwein and Lewis (2006).

As we stated at the onset, the conditions above provide necessary and sufficient conditions
for local optimality. When the optimization problem exhibits other (global) properties — for
instance, when we deal with convex optimization problems like the ones we discussed
in the previous sections — these conditions actually become necessary and sufficient for
global optimality.

5.3 Examples
5.3.1 A Consumer’s Constrained Consumption Problem

Consider a consumer trying to maximize his utility function u(z) by choosing which bundle
of goods = € R} to purchase. The goods have prices p > 0 and the consumer has a budget
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B > 0. The consumer’s problem can be stated as:
maximize u(x)
such that pTx < B
x>0,
where u(z) is a concave utility function.
Let us express the KKT conditions when the utility function u(x) is differentiable. We
first convert this into the following equivalent problem:
minimize — u(x)
(A=) pla <B
(:u _>) —x <0,
With A € Ry, u € RY} denoting the Lagrange multipliers, the Lagrangian becomes:
L(z, A\, p) =—u(z)+ ANp'e — B) —zTp.

This is a convex optimization problem and the Slater condition is trivially satisfied (with a
sufficiently small choice x > 0). The KKT conditions are therefore necessary and sufficient
for optimality. These conditions at a primal point x and dual point A, 4 can be written as:

0=— Ou +Api— i, it=1,...,n (“Stationarity”)
ox;
ple <B, >0 (“Primal Feasibility”)
A>0, u>0 (“Dual Feasibility”)
A (pTle—B)=0 (“Complementary Slackness” 1)
i - x; =0 (“Complementary Slackness” 2).

We distinguish two cases, depending on whether pTxz < B holds.

Case 1. If the consumer’s budget constraint is not binding, pTx < B, then A = 0 from
the complementary slackness condition, and we have

ou

Because for any x; > 0, we must have p; = 0, this implies that the optimal consumption
bundle satisfies:
ou
al‘i

=0 for any z; > 0.

In words, the consumer purchases the unconstrained optimal amount of each good i.

Case 2. If pTxz = B, then it is possible to have A = 0 or A > 0. The former case would
lead to the same qualitative insights as Case 1. If A > 0, then we have:

ou
8Ii

= \p; for any x; > 0,
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or equivalently,

ou
ox;

Di

=\ for any x; > 0.

The quantity on the left has a very nice interpretation as the “bang-for-the-buck” for good
i: it is the marginal increase in utility if the consumer increased the consumption of the
good by a small amount § (beyond the optimal consumption) , g—; -9, divided by the price
of the extra purchase, dp;. So the condition states a very well-known economic fact that
when the consumer is budget-constrained, the bang-for-the-buck for all the goods that are
consumed (z; > 0) must be equal at optimality.
Moreover, note that the stationarity condition also implies that for any ¢ with x; > 0
and j with z; = 0, we have:
ou Ou
Oy — > Ox;
€Ty Xy

so the bang-for-the-buck for goods that are consumed must be (weakly) larger than for
goods that are not consumed.

6 Fenchel Duality

In this section we briefly sketch out the elegant and concise theory of Fenchel Duality, which
can be used to gain a deeper understanding of optimality conditions stated earlier as well
as to appreciate some important constructions in optimization.

We start by defining a central concept in convex optimization and convex optimization:
the conjugate of a function f.

Conjugate of a function

Let f:R™ — R. The function f*:R"” — R defined as

f*y)= sup {yTz—f(z)} (35)

z€dom(f)

is called the conjugate of f.

The construction is depicted in Figure 6. The rationale behind the definition is to be
able to describe f in terms of the affine functions that are majorized by f, i.e., supporting
hyperplanes to epi(f). When f is a closed convex function that is also proper (i.e., does
not take value —oo anywhere), this description is actually accurate and the transformation
is symmetric, i.e., f can be recovered by taking the conjugate of its conjugate f*. The
conjugacy transformation thus provides an alternative view of a convex function, which
often reveals interesting properties and is useful for analysis and computation.

Note that regardless of the structure of f, the conjugate function f* is convex, because
it is the pointwise supremum of affine functions of y:

2Ty — f(z)Vz € dom(f).
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f(.’E) (_ya 1)

—f*(y) = mnf {~yTz+ f(2)}

X

Figure 6: Visualization of the conjugate function f*(y) = supxedom(f){yTa; — f(2)} of a

function f. The crossing point of the vertical axis with the hyperplane with normal (—y, 1)

that supports the epigraph of f is exactly —f*(y).

6.1 Basic Examples
We present a few examples of conjugate functions.

The zero function.

Example 5. For f(x) =0, the conjugate will depend on the relevant domain:
o If f:R— R, then f*: {0} — R and f*(y) = 0.

o If f: Ry — R, then yx is unbounded for y > 0 and for y < 0, it achieves its
mazximum for x = 0. We then have f*:(—00,0] = R and f*(y) = 0.

o If f:[-1,1] — R, then yx achieves its mazimum for x = sign(y) and we have
ff:R—=Rand f*(y) = |y|.

o If f:[0,1] = R, then for y < 0, the function yx achieves its mazimum value of
0 at x =0, and for y > 0 it achieves its mazimum of y at x = 1. So we have
fF:R—=Rand f*(y) =y*.

Affine functions.

Example 6. Consider f : R — R with f(x) = aTx + b. Note that yTx — aTx — b is
finite if and only if y = a, in which case it equals —b. Therefore f* : {a} — R and
f*(a) = —b.
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Absolute value.

Example 7. Consider f : R — R with f(z) = |z|. Note that yTx — |z| has a finite
supremum 0 if and only if y € [—1,1]. Therefore, f*:[—1,1] = R and f*(y) = 0.

Negative logarithm.

Example 8. Consider f : (0,00) — R with f(z) = —logx. The function yx+logz is
unbounded above if y > 0 and reaches its mazimum at x = —1/y otherwise. Therefore,
f*:(—00,0) = R and f*(y) = —log(—y) — 1 fory <O0.

Exponential.

Example 9. Consider f : R — R, f(z) = e*. Then, yx — e® is unbounded if y < 0.
Fory > 0, yx — e reaches its mazimum at x = logy, so we have f*(y) = ylogy —y.
For y =0,

F*(y) = sup —e* = 0.

In summary, f*: Ry — R and
. ylogy—y y >0
frly) = { (36)
0 y=0.

Negative entropy.

Example 10. Consider f : [0,00) — R, f(x) = zlogx (with the convention
lim, o f(x) = 0). The function yxr — xlogx is bounded above on [0,00) for all y

and attains its mazimum at x = eY~'. Hence f*: R — R and f*(y) = e¥~L.

Inverse.

Example 11. Consider f(x) = 1/x defined on 0,00. Fory > 0, yx — 1/x is un-
bounded above. For y = 0 this function has supremum 0; for y < 0 the supremum is
attained at x = (—y)~Y/2. Therefore f*:[0,00) = R and f*(y) = —2(—y)Y/2.

Strictly Convex Quadratic Function

%I‘TQJL’, where @ = 0. The function

Example 12. Consider f : R" — R, f(z) =
= Q7 'y for any y, so f* : R" —» R and

yTo — %xTQx attains its maximum at x

) =3yTQ .
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Indicator Function

Example 13. Let Ig be the indicator function of a (not necessarily convex) set S C
R™, i.e., Is(x) =0 on dom Is = S and Is(z) = +oo otherwise. Its conjugate is

I5(y) = supy’z,
eSS

which is the support function of the set S.

6.2 Conjugate of Conjugate and Convex Envelope

For a function f : R™ — R, consider the conjugate of the conjugate function f* (or the
double conjugate) denoted by f** and given by

(@) = sup {y"z — f*(y)}, zeR™
yeR?

The next proposition shows that f** is the convex closure or convex envelope of f, i.e.,
the function that has as epigraph the closure of the convex hull of epi(f). In particular,
the last part of the result shows that under a few mild technical conditions, f** = f for a
convex function f.

Conjugacy Theorem

Theorem 7. Let f : R™ — R be a function such that epi(f) is a closed set and let
f** be the double-conjugate. Then,

a) We have f(x) > f**(z), forallz € R".
b) If f is converx, then f(x) = f**(z), Vo € R".

c) f**(x) equals the convexr envelope of f, i.e., the largest convex function g(x)
satisfying g(x) < f(z) for any x € R.

For a proof, we refer the interested reader can refer to Bertsekas (2009).

This result has important implications, albeit more for theory than practice! Specifically,
it can be shown that the optimal value in the problem of minimizing an arbitrary (i.e.,
potentially non-convex) closed function f — if finite — is the same as the optimal value when
minimizing the convex envelope of f. Therefore, IF we had access to the convex function
f**, we could solve a convex optimization problem to determine the optimal value of any
function f. Obviously, the challenge here lies gaining access to f**: in general, that function
is extremely difficult to compute or even approximate for arbitrary functions f!

6.3 Important Inequalities

An immediate consequence of the definition of the conjugate is the following inequality,
which is called Fenchel (or Fenchel-Young) inequality:
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Fenchel-Young Inequality

) zylz— f(z).

More importantly, the conjugates of functions allow us to restate the strong duality
result in a very concise and illuminating form. To appreciate this, consider the following
optimization problem:

minimize fi(z) + fa(x)
subject to z € X1 N Xy

where f; : R® — R and X; C R” for ¢ = 1,2. Let’s assume that the optimal value is finite
and equal to p*. Then, the problem can be converted into:

minimize fi(y) + f2(z)
subject to z =y, z € X1, y € NXa.

Moreover, we can dualize the constraint z = y and construct a dual lower bound. Specifi-
cally, for any A € R", define the following functions:

gN) = _inf  {fi(y) + fa(2) + (2 —y)TA}

yeX1,26€ X2
= —sup {y"A - fi(y)} + inf {zTA+ fa(2)}
yeX1 z€Xo
=—sup{y"A— fi(y)} — sup {—2TA — fa(2)}
yeXy z€Xo

= —g1(A) — g2(=A),

where g1(\) is the conjugate of f; and go2(\) is the conjugate of f.
Clearly, for any A, g(A) is a lower bound on p*, and we can form the following dual
problem:

max{—g1(}) — g2(=A)},

which is actually equivalent to the problem

min {g1(3) + g2(=A)},

which has a very similar form to the primal problem.?
Then, the following main result holds.

3This could be made to look even more symmetric by considering instead a function fi(x) — f2(z) and
defining the convex and concave conjugates. We preferred to not introduce additional notation and instead
obtain the slight asymmetry in the definitions of the primal and dual.
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Fenchel Duality

Assume that f; and fo are convex and either (i) rel int(dom(f1)) Nrel int(dom(fy) # 0
or (ii) dom(f;) are polyhedral and f; can be extended to a real-valued convex function
over R" for 4 = 1,2. Then, there exists \* € R™ such that

p =g\

and strong duality holds.

For a proof, see Bertsekas (2009) or Borwein and Lewis (2006).

This result is essentially a restatement of the strong duality result for convex optimiza-
tion. It is worth noting that condition (i) is simply a restatement of the Slater condition in
this new framework (the Slater condition has been replaced with the existence of a point
x in the relative interior of the domains of f; and f3), while condition (ii) is primarily
concerned with the polyhedral case. So the theorem is simply reinterpreting — rather than
extending or generalizing — the previous results.
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