Optimization Oct 14 - Oct 16, 2024

Lectures 7-8: Integer Programming

Dan A. Iancu

In this lecture, we consider the following type of optimization problems:

min ¢’z + d'y
Ax+ By =15
z,y >0

T integer

We call this problem a mixed integer programming problem. If there are no contin-
uous problem, then we simply call this an integer program (IP). Moreover, if x is further
constrained to take value in {0,1}", we call this a zero-one or binary optimization prob-
lem. As we will soon see, these problems offer a very powerful modeling framework, but
the downside is that they are generally hard to solve to optimality. We then discuss a few
special cases when these problems are solvable (essentially, as easy as LPs) and we highlight
some of the algorithms used to tackle these problems in full generality.

1 Modeling Techniques

Integer programming offers a very rich modeling framework. Here are some examples to
illustrate this.

1.1 Binary choice

A binary variable can represent one of two alternatives. For instance, consider the classical
knapsack problem.

Example 1 (The zero-one knapsack problem). We are given n items. The j-th item has
weight w; and its value/reward is ;. Given a bound K on the weight that can be carried in
a knapsack, we would like to select items to maximize the total value.

To model this problem, we define a binary variable z; which is 1 if item j is chosen, and
0 otherwise. The problem can then be formulated as follows:

n
maximize Z riT;
j=1
n
subject to ijacj <K
j=1
zj €{0,1}, j=1,...,n.

1.2 Logical constraints

We already saw several examples of logical constraints in our third class. Here, we briefly
remind you of some of the basic building blocks. Suppose that we have activities/projects
A and B and we use binary variables with the same name to indicate whether each activity
is conducted; so A = 1 if and only if activity A is done. Then:

e to impose the condition: “if activity A is done, then activity B should also be done,”
we should add the constraint A < B. This exactly implements the logical “or”
between the two projects: note that the condition that A or B should be done means
A+ B > 1, which is exactly equivalent to our constraint.

e To implement the logical not, we can use 1 — A. That is, A is not done if and only
ifl1—-A=1.

e To implement the logical and — for instance, to create the binary variable Z = A- B
— we can add the constraints:

Z<X, Z<Y, Z>X+Y 1.

Moreover, if x is an n-dimensional vector of continuous or discrete decisions and a €
R™ b € R, to implement the condition that

Y=1 & a'2+b>0,
we should add the two constraints:

alz+b>m- (1-Y)

a'r+b+e<(M+e)-Y,
where m and M are the smallest and largest value, respectively, that aTx + b can take over
any feasible x, and € is a very small tolerance parameter. The parameter arises because with

continuous variables z, it is impossible to enforce precisely a strict inequality. However, if
x € Z", the epsilon can be replaced with a finite value to obtain an exact reformulation.

Facility Location. As a classical example of logical constraints in practice, consider the
facility location problem where we have n potential locations and m clients who need service.
There is a fixed cost ¢; for opening a facility at location j and a cost d;; for serving client ¢
from facility j. The goal is to select a set of facility locations and assign each client to one
of the facilities at minimum cost. (For a visualization, see Figure 1.)

n m n
min chyj + Z Zdij$ij
j=1

i=1 j=1
n
> wig=1
j=1
Tij < Y5
zij, Y € {0,1}
Here, the equality constraint Z?Zl x;j = 1 model the requirement that each client i is

exactly matched with one of the facilities j, and x;; < y; ensures that clients can only be
matched with open facilities.

Figure 1: A facility location problem. Black squares denote potential locations for facilities,
circles denote customers, and the cost function is Euclidean distance. The color-coding
denotes the match between the three open facility and the customers.

1.3 Restricted range of values

Suppose we need to restrict a variable x to take values in a set {ai,...,a,}. This can be
achieved with the following constraints:

m m
T = Zajyja Zyj =1, y; €{0,1}.
j=1 j=1

1.4 Arbitrary piecewise linear cost functions

Binary variables allow reformulating an arbitrary piecewise-linear cost function. Suppose
that a1 < az < --- < a; and that we have a continuous' piecewise linear function f(x) spec-
ified by the points (a;, f(a;)) for i = 1,...,k, defined on the interval [a1, ai]| (see Figure 2).
Then, any x € [aj, ax| can be expressed in the form

k
xr = E Aidi,
i=1

where A1, ..., \; are nonnegative scalars that sum to one.

Importantly, although the choice of coefficients A1, ..., Ax used to represent a particular
x is not unique, this becomes unique if we require that at most two consecutive coefficients A;
can be nonzero. In this case, any x € [a;, aj+1] is represented uniquely as z = \ja;+Aiy1ai41,
with \; + \jy1 =1, and

k
fla) =Y Nif(ai).
i=1

We also need to model the additional constraint that at most two consecutive coefficients \;
are nonzero. To this effect, we consider a binary variable y;, ¢ = 1,...,k — 1, which can be

!Discontinuous functions can also be readily accommodated by introducing additional constraints.

0@ a1 as as R ag Z

Figure 2: A piecewise linear cost function.

equal to 1 only if a; < z < a;4+1, and must be 0 otherwise. The problem is then formulated
as the following mixed integer programming problem:

k
minimize Z Aif(a;)
i=1
k
subject to Z)‘i =1,
i=1
)\1 < Y1,
AN Z<wyi1ity, YVi=2,...,k—1,

e < Yk—1,

k—1

Zyl = 1>

i=1

)\i > 07 Yi € {07 1}7 Vi.

Notice that if y; = 1, then \; = 0 for ¢ different than j or j + 1.

These constraints are so important in practice that they bear a special name: spectal or-
dered sets (SOS) of type 2). When adding an SOS constraint of type 2, you just need
to specify a list of non-negative decision variables of which at most two can be non-zero
and these must be consecutive in their ordering. (In our formulation above, these would be
the ordered list of \ variables, A1, A2, etc.) Several modeling languages support adding such
constraints directly and would handle the addition of any mnecessary binary variables and
constraints “behind the scenes.” For instance, in Gurobipy, you can add an SOS constraint
with the syntaxr Model.addS0S (type, vars, weights=None) where type specifies the
type of SOS constraint (GRB.SOS_TYPE2 for type 2 SOS). In case you are wondering, a type
1 S0OS constraint specifies that exactly one variable from a given list can be nonzero. For
more details, you can read here.

https://www.gurobi.com/documentation/current/refman/sos_constraints.html#subsubsection:SOSConstraints

1.5 Set covering, set packing, and set partitioning problems

Consider a set of ground objects M = {1,...,m} and let My, M, ..., M, be a given col-
lection of subsets of M. We are also given a weight ¢; for each set M; in the collection.
(Depending on the application, we may want more or less weight!)

Set covering. In the set covering problem, we seek a collection of sets M; so that their
union includes (i.e., covers) M and has minimum weight. To capture this mathematically,
define an incidence matrix A with one row for each ground object ¢ = 1,...,m and one
column for each set M;,j = 1,...,n and such that 4; ; = 1ifi € M; and A; ; = 0 otherwise.
The set cover problem is then:

minimize, wTx
Ax > e
x € {0,1}".

The facility location example is a type of covering problem (customers must be covered from
the open locations) and the ambulance placement problem you saw in the first homework is
another example. There are many others in practice: crew scheduling in public transporta-
tion (where the elements of M are specific shifts or bus routes to cover and the sets M;
denote the ability /availability of each driver j), sensor placement (elements are locations
that require sensing and each set M corresponds to a sensor placement choice that covers
some locations), etc.

Set packing. In the set packing problem, we try to include as many disjoint sets M; as
possible in order to maximize the weight of the included elements. Mathematically, with
the same incidence matrix A as above, the set packing problem is then:

maximize, wlx
Ax <e
z e {0,1}".

Again, there are many practical examples. Consider flight crew scheduling, where an airline
needs to assign flight crews to flights, but a crew cannot be assigned to overlapping flight
schedules (e.g., two flights departing at the same time). The elements i € M are the flights
and each set M; represents the flights that a crew can cover based on availability. For
another example, consider a logistics company that needs to allocate containers to ships,
but each ship has limited capacity. Different shipments may overlap in terms of size and
weight, and only disjoint combinations of shipments can be placed on a single ship. The
elements i € M would be the shipments that need to be loaded, and each set M; represents
a collection of shipments that fit within the capacity of a ship without overlapping in size
and weight. (The airline revenue management problem was also a type of packing problem!)

Set partitioning. In a set partitioning problem, we seek sets M; that form a partition of
M, i.e., they are disjoint and they cover M. Both maximization and minimization versions

are possible here:

maximize, wlx
Ax =ce¢
z e {0,1}"

1.6 Matching Problems

Matching problems are among the most ubiquitous in practice: riders being matched with
drivers (in ride-sharing platforms), patients awaiting for a transplant being matched with
an organ available for transplantation, etc.

To formulate a matching problem, consider a set U of tasks that must be completed
and a set V of persons available to complete the tasks. Each task can be assigned to at
most one person and each person is only able to complete only some of the tasks (e.g.,
due to skills). If task ¢ € U is assigned to person j € V, there is a reward of w;;. A
matching is an assignment of tasks to persons so that each task is done by at most one
person and each person works on at most one task, and the goal is to find a matching that
maximizes the total reward. We represent the matching abstractly through an undirected,
bipartite graph G = (N,) where the set of nodes N is partitioned into the two sets U, V/
(N=UUV,UNV =0), nodes i € U denote tasks, nodes j € V denote persons, and an
edge {i,j} € € with i € U and j € V indicates that j is able to complete task i. (See
Figure 77 for a visualization.)

ics[width=0.3]Discrete/Figures/max,,eight,atching.png

Figure 3: A maximum weight matching problem.

With decisions z. € {0,1} denoting whether edge e = {3, j} is selected — meaning task
1 is assigned to person j — the maximum weight matching problem is:

maximize Z Wele
ecE

subject to Z re <1, VieN,
e€d(i)
ze €{0,1},

where we use the notation 6(i) := {j : {i,j} € £} to capture all nodes j adjacent to node i.

Other variations of this problem are possible. For instance, you may encounter matching
problems that involve minimizing a cost and subject to a constraint that one side has to be
matched fully (e.g., all the jobs must be completed), in which case the constraints would
become Zeeé(i) zre > 1,Vi € U. It is also common to consider a perfect matching,
which is one where there is no unmatched node in the graph. (This is only possible in
bipartite graphs with [U| = [V], and then the constraints would read }_.c4(;) 2o = 1 for any
i.) Lastly, matching problems can be formulated in more general graphs rather than the
bipartite examples we considered.

1.7 The minimum spanning tree problem

Let G = (N, €) be an undirected graph with node set N (|[A/| = n) and edge set £ (|E] = m).
Every edge e € £ has an associated cost c.. We consider the problem of finding the
minimum spanning tree (MST), i.e., a subset of the edges that connect all the nodes in
N at minimum cost. To formulate the problem, we define a variable z, for each e € £ that
is equal to 1 if edge e is included in the tree and zero otherwise.

For this problem we actually consider two distinct formulations. The first is based on
the idea that a spanning tree on n nodes should be a connected graph containing n —1
edges. To have n — 1 edges, the following constraint must be satisfied:

Zaze:n—l.

ec&

For the tree to be connected, any subset of nodes S C N (S # @) should be connected with
nodes in A\ S through at least one edge. So if we define the cutset §(5):

0(8) = {{i,j}:i€8j¢5} (1)

we can provide the following cutset formulation for the MST problem:

minimize E CeTe

ecé
Zme =n-—1,
(Cutset MST) e€€ (2)
Y ze>1, SCN,S#0
e€d(S)
z. € {0,1}.

Note that the cutset formulation involves an exponential number of constraints, one for
each subset S C NV, S # (.

An alternative — and equivalent — definition of a tree is based on the idea that a tree
on n nodes should have exactly n — 1 edges and no cycles. It can be shown that the tree
is guaranteed to not contain a cycle if for any nonempty set S C N, the number of edges
with both endpoints in S is less than or equal to |S| — 1. For any S C N, we define

&8)={{i,jte€ i jesy, (3)
and we can express these constraints as:

> @ <|S| -1, SCN,S#0,N.
ec&(S)

This leads to the following IP formulation of the MST problem:

ec&
Z Te=n—1,
(Subtour-elimination MST) e€€ (4)
Y @ <[S|-1, SCN,S#0,N,
ec&(S)
ze € {0, 1}.

This is called the subtour elimination formulation because it contains constraints that
eliminate all subtours (cycles over subsets of vertices). Note that this also involves an
exponential number of constraints.

The two formulations — cutset and subtour elimination — can be visualized in Figure 4.

(a) (b)

Figure 4: Formulation for the Minimum Spanning Tree Problem. The initial graph G =
(N, &) is depicted in (a). Panel (b) shows a choice of edges that satisfies Y ¢ xe =n — 1
but is not a valid tree. Note that the cutset formulation would rule this out because the
subset of nodes S = {1, 2, 3} is not connected with nodes A"\ S, i.e., §(S) = 0. The subtour
elimination formulation would also rule this out because _ c¢(g) ze = S| > [S] — 1.

1.8 Traveling salesperson problem

Given an undirected graph G = (N, &) and cost ¢, for each edge, the objective is to find
a tour (i.e. a cycle that visits each node exactly once) with minimum cost. To model
this problem, we again use a variable z. to denote whether an edge belongs to the tour.
Mirroring the MST problem, the TSP also admits two formulations — a cutset formulation
and a subtour elimination formulation — as follows.

minimize g CeTe

ec
(Cutset TSP) Z Te=2Vie N (5)
e€d({i})
> 2 >=2,VSCN,S#0.
e€d(S)

Note that this is slightly different than the cutset MST formulation. In the cutset TSP
formulation, any node ¢ should have exactly one edge coming into it and one edge
leaving it and any nontrivial subset of nodes S (S #), N) should have at least two
edges joining S with Nset\ S. This is because in TSP, we are interested in a tour, whereas
in the MST we wanted a tree (which should be free of tours!)

The following formulation is also valid for the TSP (we omit the objective):

(Subtour-elimination TSP) Z Te=2,Vie N
ecd({i}) (6)
Y @ <|S|-LVSCN,S#£0
ec&(S)

The key difference with the MST formulation lies again in the first set of constraints.
The two formulations are depicted in Figure 5.

(a) (b)

Figure 5: Formulation for Traveling Salesman Problem (TSP). The initial graph G = (N, £)
is depicted in (a). Panel (b) shows a choice of edges that satisfies 3 .4 ze = 2 for any
i € N, but is not a valid tour. Note that the cutset formulation rules this out because the
subset of nodes S = {1, 2, 3} is not connected with nodes '\ S, i.e., §(S) = 0. The subtour
elimination formulation would also rule this out because - c¢(s)Ze = S| > [S| - 1.

2 The Bad News First

Unfortunately, linear optimization over integers is significantly harder than over con-
tinuous variables. The following examples illustrate some of the challenges.

Example 2 (Solution Not Attained). Consider the optimization problem:

sup x+\/§y
z7y
1
:1:+\@y§ 5
z,Y € Z.

The optimal value is not attained.

You can probably quickly see that the optimal value in this problem is % and it would

be achieved with any choice of # and y such that = + 2y = % But unfortunately, no
integer values of =,y would ever satisfy this with equality. Note that this problem would
never arise with continuous x, y, where the optimal value would be trivially achieved.

Example 3 (No Strong Duality). Consider the following pair of optimization programs:

() min x (2) max p
2w =1 2 <1
x>0

With x € R and p € R, the problems constitute a primal-dual pair; both are feasible and

1

the optimal value (for each) is 5. With x € Z and p € 7Z, problem (&) does not have any

feasible solution, but problem () is feasible and has optimal value 0.

This example shows that strong duality fails with discrete variables: we have an opti-
mization problem that has a finite optimal value (the dual (2)) but its dual is infeasible.
(It is easy to construct examples where the mirroring situation also happens, i.e., the primal
minimization has a finite optimal value but the dual maximization problem is infeasible).

In fact, IPs are — in theory and practice — significantly more difficult than LPs.

Theorem 1. Given a matriz A € Q™™™ and a vector b € Q™, the problem: “does
Az < b have an integral solution x” is NP-complete.

The theorem states that the “feasibility problem” in integer programming is already NP-
complete, which means it is the hardest type of problem in NP. (We will not be discussing
complexity results too much in this class, but as a quick reminder, problems in NP are
problems that admit a polynomial-time verification of a YES instance. For instance, in
our IP feasibility problem, if we are given an x that is actually feasible, it is easy to verify
whether it works — we just need to check the constraints!) For a proof of the result, see
Theorem 18.1 in Schrijver (1997).

3 Linear Relaxation and Strength of IP Formulations

Despite these negative results, a substantial body of theory and very scalable algorithms
have been developed to solve IPs. In the subsequent discussion, we focus on optimization
problems with rational entries: A € Q™*". b € Q™,¢c € Q", and we assume that the
feasible set of the IPs of interest is bounded. Rational entries are needed both for
theoretical purposes (e.g., to ensure that optimal solutions exist) but also for the purely
practical necessity of representing optimization problems on computers with finite memory.
Considering bounded feasible sets only simplifies a few statements, but is not really needed
for any of the theory. (In practice, this is not a terrible assumption anyway because we
rarely deal with optimization problems that are truly unbounded!)

Let us start in the same way we started with linear optimization, and consider the
problem of finding a good lower bound for an IP. Clearly, we could obtain a bound if we
relaxed the integrality requirements. The following definition allows us to formalize this.

10

Definition 1 (LP relaxation). Given the generic integer program.?

min c'x + dTy
Ax+ By =1»
z,y >0
xe€{0,1}"™ y e 7",

its linear programming relazation is obtained by replacing the requirement x € {0,1}™ with
x € 10,1]™ and replacing the requirement y € 22 with y € R™2.

The LP relaxation entails changing the binary requirement on x into a (continuous)
restriction to the interval [0, 1] and removing the integrality requirement on y. The feasible
set of the original IP is therefore contained in the feasible set of its LP relaxation (which
also justifies the name!). The following observation is immediate.

Observation 1. The optimal value of the LP relazation to an IP provides a lower bound
on the optimal value of the IP. Moreover, if the optimal solution to the LP relazation is
feasible for the original IP, then that solution is optimal for the IP.

In practice, the LP relaxation could be quite strong but also quite weak, and critically,
this depends on the formulation of the IP! To appreciate this point, let us consider
again some of our earlier motivating examples.

3.1 Strength of IP Formulations in Our Examples
3.1.1 Facility Location.

In §1.2, we presented an IP formulation for the facility location problem. For convenience,
we replicate it here (omitting the objective) and we also introduce a new formulation for
the feasible set that we refer to as the aggregate facility location (AFL) formulation:

(F'L) (AFL)

n n

Zl‘lj:l, i:l,...,m le,?:]‘?]::17__"m
i <y;, 1=1,....m, j=1,...,n

m
Tii < MY, ji=1...;n
Tij,Yj € {0,1} ; Y J? ’

Tij,Yj € {0, 1}.

The main difference is that (AFL) replaces the constraints z;; < y; in (FL) with the
constraints 2?1:1 x;; < my;. Because the latter constraint forces x;; to be 0 whenever
y; = 0 but allows x;; to be 1 if y; = 1, it is a valid reformulation. So the two formulations
result in the same feasible set of integer points z,y and therefore also the same
optimal solutions and optimal costs.

2A similar definition also applies to mixed-integer problems. In that case, restrictions on any continuous
variables would remain unchanged.

11

On first glance, the (AFL) formulation might seem superior because it has m + n con-
straints, whereas the (FL) formulation has m + m - n constraints.

But consider their corresponding LP relaxations. We define the following two polyhedra,
which are the feasible sets of the two relaxations:

n
PeL =< (z,y) 0 Y wij=1,Vi, ay<y;,Vij, 0<az;<1, 0<y <1
j=1

n m
Pprr, = (xay):zxij:17Via Z-Tijgm'yjavja O<az<1, 0<y;<1
j=1 i=1

Clearly, Pr;, C Papr, and the inclusion can actually be strict. In other words, the feasible
set of the LP relaxation for formulation (FL) is closer to the set of integer solutions than
the LP relaxation of formulation (AFL). The situation corresponds visually to Figure 6.

A

>
>

Figure 6: The feasible sets Ppr, and Papr, for the two LP relaxations for the facility location
problem. Note that the feasible points T" for the IP (and their convex hull) are the only
integer points contained in both Ppy, and Papy,, but the (FL) formulation provides a tighter
relaxation than the (AFL) formulation.

So if Z1p is the optimal cost of the facility location IP and Zgy, and Zapr, are the optimal
costs of the two LP relaxations, we obtain that:

Zar1, < ZyL < Z1p,

so (FL) provides a better (i.e., higher) lower bound on optimal cost than (AFL).

12

3.1.2 Minimum Spanning Tree Revisited

Recall the minimum spanning tree (MST) construction and the two formulations — cutset
and subtour-elimination — which we replicate below for convenience.

(Cutset MST) (Subtour-elimination MST)
Zmezn—l, Zme:n—l,

ec& eck

Y we>1, SCN,S#0 > w<|S|-1, SCN,S#0,
e€d(S) ec&(S)
ze € {0,1} z. € {0,1}.

Theorem 2. With P.,: and Ps,, denoting the feasible sets of the two LP relaxations,
i) Psyp C Peyr and examples exist where Py C Py
i) Peyt can have fractional extreme points.

Proof. a) For any set S of nodes, we have
E=E(S)UH(S)UEWN\S).

Therefore,

Soowmet > met Y T =) 7

ec&(S) e€d(S) ecE(N\S) ee€
For o € Py, and for S # (), N, we have

Y we<|S]-1,

ec&(S)
and
> m<IN\S|-1L
e€E(N\S)
Because
Z Te=mn—1,
ec&
we obtain that
> nz
e€d(S)
and therefore x € P.y.
b) We refer the interested reader to Bertsimas and Tsitsiklis (1997) for an example. O

13

3.1.3 Traveling Salesperson Problem Revisited

Lastly, recall the cutset and subtour-elimination formulations for the TSP.

(Cutset TSP) (Subtour-elimination TSP)
Y m=2VieN Y me=2VieN
e€d({:}) e€d({i})
> 2. >2¥SCN,S#0 > @ <|S|-1LVSCN,S#£D.
e€s(S) ec&(S)

Letting Prgcut and Prggsu, be the polyhedra corresponding to the LP relaxations of these two
formulations, it turns out that the two formulations are equally strong, i.e., Prscut = PrSsub
(see Bertsimas and Weismantel (2005) and Bertsimas and Tsitsiklis (1997) for proofs.)

3.2 Strength of IP Formulation

These examples show that different formulations of the IP could result in different LP
relaxations and therefore different lower bounds on the IP’s optimal value. Because we no
longer have strong duality, the quality of the lower bounds will be critical when solving
IPs, so it is important to understand what makes some formulations better than others —
and also consider what an “ideal” formulation could look like.

To understand this, let T" denote all the feasible points to an IP, define

conv(T):{Z)\w-x tA>0, eT/\zl}

zeT

as their convex hull, and let P denote the feasible (polyhedral) region of an LP relaxation
to our IP. Because we assumed that the feasible set for the IP is bounded, the set T is finite
and conv (7)) is a polyhedral set! Then, we clearly have (see Figure 7 for a visualization):

T C conv (T') C P.

This shows that the ideal LP relaxation would be one that exactly corresponds to
conv (T')! Put differently, if we had access to an explicit representation of conv (7') — for
instance, as an inequality description conv (T') = {x : Dx < d} — then we could immediately
solve our IP by solving a linear program on the polyhedral set conv (7).

We highlight some important take-aways, which we summarize in the following remarks.

Remark 1 (Quality of formulations). The quality of a formulation for an IP with
feasible set T can be judged by how closely its LP relazation approzimates conv (T). In
particular, for two formulations A and B with the same feasible set of integer points and
with P4 and Pg denoting the feasible sets of their LP relaxations, A is said to be stronger
(i.e., results in an improved lower bound) than B if Py C Pp.

Remark 2 (Models with more constraints). Constraints play a more subtle role in an
IP formulation than in an LP formulation. Whereas in an LP, formulations with more

14

o

<=
Q‘mm\m\

(a) (b)

A LSS

Figure 7: (a) Depicts the feasible set of the LP relaxation — the polyhedron P — and the set
T of all the integer points in P. (b) Depicts the convex hull of the integer points, conv (7).
The optimal value for the IP is same as the optimal value over the set conv (7).

constraints should be avoided®, a valid IP formulation with more constraints is typically
stronger. Adding more (valid) constraints in an IP formulation thus involves a trade-off
between the strength and the and the size of the formulation.

The results in this section will lead us in two different directions. §4 examines what
types of IP formulations are “ideal,” meaning they result in LP relaxations that exactly
correspond to the convex hull of all integer feasible solutions. When that is not possible, §6
shows how to add valid cuts, which are linear inequalities that remove fractional points
from the feasible set of the LP relaxation without removing any integer points.

4 Ideal Formulations With Total Unimodularity

This section examines the first set of conditions that guarantee an ideal IP formulation, i.e.,
one where the LP relaxation’s feasible region would have only integral extreme points.
Let F = {x € ZT} | Az < b} be the set of integer points for an IP formulation, where
A e Z™" and b € Z™,* and let P denote the feasible set of its LP relaxation:
P ={x R} | Az < b}.

Our goal is to identify conditions on the matrix A such that P is integral, i.e., P = conv(F).
We start by recalling Cramer’s rule.

3For LPs, introducing constraints increases the problem size and also introduces degeneracy, which can
complicate algorithms like simplex.

4The restriction to integer matrices is without loss of generality here: if the entries were rational, we
could multiply all the equations by the least common multiple of (the absolute values of) all denominators.

15

Proposition 1 (Cramer’s Rule). Let A € R™*" be a nonsingular matriz. Forb € R",

_ det(AY)

Az = = A1 ;=
r=b — =z b — =z det(A)

) VZ,

where A' is the matriz with columns A; = Aj forall j € {1,...,n}\ {i} and A =b.

To motivate the definition of total unimodularity, consider the polyhedron
P={zxecR} | Az =b}

with A € Z™*™ of full row rank and b € Z™. For each vertex x of P, there exists a basis
B C {1,...,n} such that x5 = AZ'b and zy = 0. For matrices with det(Ap) = +1,
Cramer’s rule ensures that Agl is integral. Therefore, integrality of = can be guaranteed if
we require that det(Ap) is equal to £1. This motivates the following definition.

Definition 2 (Unimodularity, Total unimodularity).

1. A matriz A € Z™*™ of full row rank is unimodular if the determinant of Ap
is 1 or -1 for every basis B.

2. A matrix A € Z™*"™ is totally unimodular if the determinant of each square
submatriz of A is 0, 1, or -1.

Note that all entries of a totally unimodular matrix (which are 1 x 1 submatrices of A)
must belong to the set {0,1,—1}. However, that is not the case for unimodular matrices;
for instance, the matrix

3 2
[7

is unimodular. The reason we carry both definitions is to be able to make statements about
optimization problems in standard form and in inequality form. We will provide several
characterizations that allow checking quickly whether a matrix is (totally) unimodular. For
now, to appreciate why the definitions are important, we state the main result of interest.

s a

Theorem 3.

1. The matriz A € Z™*"™ of full row rank is unimodular if and only if the
polyhedron P(b) = {x € R" | Az = b} is integral for all b € Z™ with P(b) # 0.

2. The matriz A is totally unimodular if and only if the polyhedron P(b) =
{z e R} | Az < b} is integral for all b € Z™ with P(b) # 0.

Proof. (a) “=" Assume that A is unimodular. Consider b € Z™ with P(b) # 0. Any
extreme point x € P(b) can be written as (zp,zy), where x5 = A5'b and 2 = 0 for some
basis B. Because A is unimodular, det(Ap) = +1, which by Cramer’s rule implies that xp
(and therefore also x) is integral.

16

“«<” Suppose that P(b) # () is integral for any integral b. Let B be any basis of A.
We claim that it’s sufficient to argue that Agl is integral; because Ap is integral and
det(Ap) - det(Az') = 1, that would imply that det(Ag) € {1,—1} and thus that A is
unimodular. To prove that Agl is integral, consider a right-hand-side b = Ap -z +¢;, where
z is an integral vector. We have that Agl b=2z+ Aélei. Thus, by choosing z sufficiently
large so that z + Al_glei > 0 (which can readily be done by increasing the entries), we obtain
a basic feasible solution for P(b). Because this is integral by assumption, this implies that
A]_S,lei must be integral. Repeating the argument for all e; proves that Agl is integral.

(b) We claim that A is totally unimodular if and only if the matrix [A, /] is unimodular.
Moreover, we claim that for any b € Z™, the extreme points of the polyhedron {z € R |
Az < b} are integral if and only if the extreme points of the polyhedron {(z,y) € R} |
Az + Iy = b} are integral. (These will be the subject of future propositions, but the proofs
follow by suitably expanding determinants.) The result then follows from part (a). O

The critical consequence from Theorem 3 is that the optimal value in the IP min{cTz |
Az < b,x € Z } is obtained by solving the LP min{cTz | Az < b,z € R} }.

Detecting (total) unimodularity is therefore quite critical, so we provide a few additional
characterizations followed by examples.

Proposition 2. Consider a matriz A € {0,1, —1}"*™. The following are equivalent:
1. A is totally unimodular.
. AT is totally unimodular.
. [AT — AT I — 1] is totally unimodular.

Z

&

4. {x € R} | Az =b,0 < & < u} is integral for all integral b, u.
5. {x|a < Ax < bl < x < u} is integral for all integral a,b,l, u.
3}

. Fach collection of columns of A can be partitioned into two parts so that the
sum of the columns in one part minus the sum of the columns in the other part
is a vector with entries 0,41, and —1. (By part 2, a similar result also holds

for the rows of A.)

7. Each nonsingular submatriz of A has a row with an odd number of non-zero
components.

8. The sum of entries in any square submatriz with even row and column sums is
divisible by four.

9. No square submatriz of A has determinant +2 or -2.

For a proof of these results, see Theorem 19.3 in Schrijver (1997).

17

4.1 Examples of Totally Unimodular Matrices
4.1.1 Node-Edge Incidence Matrix for Bipartite Graphs

Let G = (N,€) be an undirected graph and let A € {0, 1}WIXI€l be the node-edge
incidence matrix of G, i.e., A;. = 1 if and only if ¢ € e. Then, A is TU if and only if
the graph G is bipartite. The proof follows from Proposition 2 (#6) and is omitted.

Figure 8 shows an example. Recalling our discussion of matching problems in §1.6, it
can be seen that if these are defined on bipartite graphs, all matching formulations will
admit integral LP relaxations.

L5} {23} {26} {43} {45} {46}

a e 1] 1 0 0 0 0 0
/ 21 0 1 1 0 0 0
e"e 3 0 1 0 1 0 0
41 0 0 0 1 1 1

A 50 1 0 0 0 1 0
° e 6| 0 0 1 0 0 1

Figure 8: Undirected bipartite graph and its node-edge incidence matrix.

4.2 Node-Arc Incidence Matrix for Directed Graphs

Let D = (N, E) be a directed graph and let M be the N x E incidence matrix of D, where
M, = 1if and only if e = (-,v) (arc e enters node v), M, . = —1 if and only if e = (v,)
(arc e leaves node v), and M, . = 0 otherwise. Then, M is TU. Figure 9 shows an example.

e o (1,2) (1,3) (2,4) (4,3) (3,5) (5,4) (4,6) (5,6)
1] -1 -1 0 0 0 0 0 0

20 1 0 -1 0 0 0 0 0

G e 3/ 0 1 0 1 ~1 0 0 0
41 0 0 1 ~1 0 1 ~1 0

5/ 0 0 0 0 1 ~1 0 ~1

e e 6| 0 0 0 0 0 0 1 1

Figure 9: Directed graph and its node-arc incidence matrix.

The important consequence of this result is that all network flow problems with integral
arc capacities and integral demand or supply at nodes will admit an integral LP relaxation.
The Prosche Motors problem on the second homework is one such example — so with integral
data, the optimal solution is guaranteed to be integral.

4.3 Interval Matrices

If A e {0,1}"*" and each column of A has its values of 1 consecutively (under some
ordering of the columns of A), then A is TU. Such matrices are called interval matrices.

18

An example is the matrix below.

1100
1 110
0111
0 011

4.4 Network Matrices

All of the examples above are special instances of network matrices. To formalize this
broad class, let D = (V, A) be a directed graph and let 7' = (V, Ap) be a directed tree on
V. Let M be the Ay x A matrix defined by, for a = (v,w) € A and o’ € Ay:

+1 if the unique v — w path in T passes through o’ forwardly
My o = { —1 if the unique v — w path in T passes through o’ backwardly
0 if the unique v — w path in T does not pass through a’.

Then, M is TU. For an example, consider the directed graph D and directed tree T' in
Figure 10. The corresponding network matrix is shown in Table 1.

D = (N, A) T = (N, A

(b)

Figure 10: Directed graph (a) and a directed tree (b).

(a) b

(L,2) (1,3) (24) (43) (3,5) (54) (4,6) (5,6)
1,3)] 1 1 1 0 0 0 0 0
2,4 -1 0 0 0 0 0 0 0
4,3)] -1 0 0 1 o -1 1 0
(3,5)| 0 0 0 0 1 -1 1 0
(5,6) | 0 0 0 0 0 0 1 1

Table 1: Network matrix corresponding to the directed graph and tree in Figure 10.

There is a very famous result in combinatorial optimization due to Seymour (1980), who
showed that every TU matrix arises, in a certain way, from network matrices and just two
other matrices. Importantly, testing whether a matrix is TU can be done in polynomial
time; for more details, see Schrijver (1997).

19

5 Dual Integrality and Submodular Functions

Next, we discuss an alternative way to show integrality of polyhedra based on linear opti-
mization duality. This will also allow us to discuss submodular and supermodular functions,
which are extremely important concepts in their own right in optimization.

The approach here is based on a simple observation: to show that the LP relaxation of
an IP has integral extreme points, it suffices to check that the optimal value of any LP with
integer cost vector is an integer. The following proposition summarizes the idea.

Proposition 3. Let P be a nonempty polyhedron with at least one extreme point. The
polyhedron P is integral if and only if the optimal value Zpp := min{cTx | x € P} is
an integer, for all c € 7.

The intuition should be quite clear; the proof is straightforward and is omitted.

Therefore, to show integrality of a polyhedron P, it suffices to show that Zpp € Z for
all ¢ € Z™. One way to show that is to construct a dual optimal integral solution for
any such ¢.> We illustrate this with an example that is important in its own right.

5.1 Polymatroid Polyhedra and Submodular Functions
For a given finite set N = {1,...,n}, consider a function f(S) defined on subsets S of N.

Definition 3 (Sub-, super-modular). A set function f : 2N — R is submodular if
FES)+ (@) = f(SNT) + f(SUT), VS, TCN
and it is supermodular if the reverse inequality holds.

Note that the condition in the definition may not make a lot of sense written this way,
but it is equivalent to:

F(S) = F(SNT) > f(SUT) — f(T), VS,T C N.

In this form, note that the set difference between the sets appearing on the left of the
inequality is exactly S\ (SNT) = S\ T, which exactly matches the difference between the
sets on the right because (SUT)\ T = S\ T. So the condition is stating that the gains
obtained when adding S \ T" to the set S N T are greater than the gains obtained when
adding the same set to the larger set T'. The following alternative definitions will make this
intuition even more clear.

"These ideas are related to the concept of total dual integrality (TDI), which has been studied exten-
sively in combinatorial optimiziation. For a more general treatment, see Schrijver (1997).

20

Proposition 4. A set function f : 2N — R is submodular if and only if:

(a) For any S, T C N such that S CT and k ¢ T':
f(SULk}) = £(S) = F(TU{k}) — f(T).
(b) For any S C N and any j,k with j,k ¢ S and j # k:

FSU{G}) = £(S) = f(SU{h k}) — F(SULRD). (3-2)

For a proof, see Bertsimas and Weismantel (2005) or Bach (2010).

These equivalent definitions should make it clear that a submodular function has the
certain “diminishing returns” or “decreasing differences” property: the marginal
gain when adding an element k£ to a larger set T is smaller than the gain when adding
k to a smaller set S (or equivalently, the marginal gain from including an extra element
j is smaller when some other element k is also included). In economics, a submodular
cost function captures economies of scale, whereas a submodular profit function captures
substitution. (Supermodular functions are the exact opposite.) On first glance, one may
perceive submodular functions as a discrete analog to concave functions, but that analogy
only holds solely in terms of economic intuition, but not from an optimization standpoint!
In fact, in terms of optimization, submodular functions behave more like convex
functions, e.g., there are efficient algorithms to minimize them, they admit a very elegant
link to convexity (through the Lovasz extension) and they also admit a duality theory.

Submodular and supermodular functions play central roles in a variety of fields, including
operations research, economics, and computer science. The scope of our treatment here will
be limited, but we direct the interested reader to Bach (2013) for a concise overview and
the book Schrijver (2003) for an in-depth treatment.

Subsequently, we are interested in submodular functions that are non-negative and in-
creasing® in the set inclusion sense, i.e.,

F(S) < f(T), ¥SCTCN.

5.1.1 Examples

A few quick examples of (monotone) submodular functions.

e Linear functions. A function f : 2Y — R is modular if
FA) = w;
i€A

for some weights w : N — R. Such functions are both supermodular and submodular.
If w; >0 for all ¢ € N, then f is also increasing.

5We use “increasing” and “decreasing” in weak sense, and use “strictly” to emphasize strict relationships.

21

e Compositions with linear functions. As a generalization of the linear case, con-
sider any weights w > 0 and any concave function g : R — R. Then, the function

f:2VN SR
f(8) =g (Z wi)
1€S
is submodular. If g is increasing, f is also increasing.

For a different example, suppose that ¢ is convex and the weights w are zero except
for two weights with opposite signs, i.e., 3¢ # j : w; <0, w; > 0. Then, f : 2V 5 R

defined as
f(8) =g (Z wi)
€S
is submodular.
e Set systems and coverage functions. Given a universe U and n subsets Ay, As,..., A, C
U, we can define several natural submodular functions on the set N = {1,2,...,n}.

First, the coverage function given by

f(8) =

U4

i€S

is submodular. This naturally extends to the weighted coverage function: given a
non-negative weight function w : U — Ry,

F(8)=w (U Az)

€S
is submodular. Another related function defined by

f(8) =) maxw(A;,z)
zelU

is also submodular, where w(A4;,z) is a non-negative weight for A; covering x. All
these functions are increasing.

e Valuation functions with decreasing marginal values. Sometimes we assume
that a certain function is submodular not because it arises in a specific combinatorial
way, but because it arises in a setting where it’s natural to have decreasing marginal
returns. An example are combinatorial auctions, where each player has a valuation
function w : 2V — R on subsets of items. This might have a specific form, like

w(S) = min Zvj,B ,
JeS

or it might be given by a black box. However, we might assume that the (unknown)
function is submodular just it may be natural to expect that having more items
decreases the benefit of acquiring another item.

22

Optimal TSP cost on tree graphs. Consider an undirected tree graph G =
(N, E) with a positive cost for traversing the edges (c. > 0 for every edge e € E).
For every S C N, define f(S) as the optimal (i.e., smallest) cost for a TSP that goes
through all the nodes in S. Then, f(5) is submodular.

Network optimization. Submodular functions also arise in network optimization
models. For instance, consider a directed graph where there are capacities on the
edges that constrain how much flow can be transported through the edge. Then, if
we define f(S) as the maximum flow that can be received at a set of sink nodes S,
the function f(S) is submodular.

Inventory and supply chain management. Lastly, submodular functions appear
frequently in the study of supply chain and inventory management, such as when char-
acterizing perishable inventory systems, dual sourcing, and inventory control problems
with trans-shipment.

Returning to our setting, let us consider the following problem:
n
maximize Z Tix;
7j=1

jES
n
x € L.

This problem essentially looks like an extension of the knapsack problem that we considered
earlier, except that there is one constraint for every possible subset S C N. Let F denote
the set of feasible integer solutions and let

P(f)=qzeR|> z; < f(S), VSCN
jeS

denote the feasible set of the LP relaxation.

We next state and prove the main result in this section: the polyhedron P(f), which is

called a polymatroid, is integral for any f(S) is submodular and increasing.

Theorem 4. If f is submodular, increasing, integer valued, and f(0) = 0, then

P(f) = conv(F).

Proof. Consider the linear relaxation and its dual:

n

maximize erxj minimize Z f(S)ys (7)
j=1 SCN
Sz < f(S), SCN, Y us>rj, jEN,
jES S:jeS
z; >0, JEN ys >0, SCN.

23

The key intuition behind the proof is that in a maximization like the one in the primal
above, the use of a submodular function to evaluate the right-hand-sides implies that a
greedy heuristic actually produces an optimal solution. So we will construct such a greedy
solution for the primal and also a feasible solution for the dual with the same cost.

Suppose r1 > 19 > ... > 71 > 0> 718y > ... > 1y Let S ={1,...,j} for j € N, and
5% = (). We prove that the following primal and dual solutions and y are optimal for the
primal and dual problem, respectively.

A7) = (87, for 1< <K,
i {O, for j > k.
Tj = Tj4+1, for =97, 1<j<k,
Ys = | Tk, for S = Sk,
0, otherwise.

Because f is integer valued, x € Z". Moreover, x is primal feasible: f is increasing, which
implies x; > 0, and for all ' C N, we have:

Yo=Y () - f(5h)

JET JET,j<k
(because f submodular) < Z (f(S9NT)— (97 'nT)) =
JET,j<k

— F(SUNT) - £(0)
(because f monotone) < f(T) — f(0)
(because f(0) =0) = f(T).

To show that y is dual feasible, note that yg > 0 and:
Z Ys =Ysi + ... +yge =71, if 7 <k and Z ys =02>r;, it j > k.
S:jes S:jes
The primal objective value is

k

> (F(8) = £(577h),

=1

and the dual objective value is

E

-1

k
(rj = i) () + 7 f(S%) = 3wy (F(87) = £(577D)).
j=1

1

<.
Il

From strong duality, the two problems have the same optimal value. Because this is true
for every r € Z", it follows that P(f) = conv (F). O

24

An analogous result holds in the context of the following minimization problem
n
min Z CjT;
j=1

Y a; > f(S), VSC N,
jeSs
reZl,

where the function f is supermodular. The arguments are identical and are omitted.

Importantly, the proof above highlighted that a greedy solution is optimal for prob-
lem (7). The intuition is directly tied to the diminishing returns property of submodular
functions and can appreciated when interpreting the problem as a generalized knapsack
problem. Because any item j brings more reward when included in a smaller (rather than
larger) set S, it is optimal to include the items in decreasing order of their rewards r; as
long as the rewards are positive.

Several important extensions of this result are possible. For instance, a similar result also
holds when f(S) = min(f1(5), f2(S)) where fi, fo are both submodular, increasing, integer-
valued functions. For details, see Bertsimas and Weismantel (2005) or Schrijver (2003).

6 Improving LP Relaxations with Valid Cuts

We argued earlier that if T" is the set of feasible integer solutions and P is the feasible region
of the linear relaxation for an IP formulation, then unless conv (T') = P, there will be valid
inequalities for conv (T") that are not valid for P. Such inequalities are called cuts because
they cut off some fractional solution from P. Adding cuts strengthens the IP formulation
and also leads to algorithmic improvements.

To appreciate how cuts can be generated, consider the following IP:

min cTx
Ax =b
x>0
reZ”,
where A, b, ¢ have rational entries. The LP relaxation would be an LP in standard form, so
let * be an optimal basic feasible solution and B be the associated optimal basis. Then,

we can write 2* = [x}; 2] where 27, = 0 are the nonbasic variables. (For simplicity, we
assume here that B = {1,...,m}, to avoid extra notation.) Then, recall that we have:

oy + At Analy = A5,

and consider one of these equalities in which the right-hand-side is fractional. Suppose
this corresponds to the basic variable z;, so we write this as:

* — * 1
x; + E a;jx; =b.
JEN

25

Figure 11: T' denotes the feasible set for an IP, and P is the feasible set of the LP relaxation.
The red binding constraint x; + Zje ~ @ijx; = b defines a supporting hyperplane for P, and
the (blue) inequality @; + ;e n|aij]z; < 2+ 32 ey aijzy < |b] is a Gomory cut.

But then, because any x € T must satisfy « > 0, it can be shown that:

i+ Ztaz’jj%‘ <z + Z a;jx; = b,VreT.
JEN JEN

Moreover, because x € T should be integer, it must be that:

v+ Y |aile; <@+ Y aja; < b, Vz e T
JEN JEN

This inequality is satisfied by all integer solutions, but is not satisfied by z*. (That
follows because z] = b and z; = 0 for all nonbasic j € N, and because |b] < b by our
assumption that b is fractional.) So we just obtained a valid inequality that cuts off some of
the polyhedral region of the feasible relation without removing any feasible integer point!
This is the key idea behind Gomory cuts (named after Ralph Gomory, who introduced them
in 1958). See Figure 11 for a visualization.

This approach lead to the first cutting plane method for solving IPs. It has been
shown that by systematically adding these Gomory cuts, and using the dual simplex method”
with appropriate anticycling rules, we obtain a finitely terminating algorithm for solving
general IPs. In practice, however, this method has not been particularly successful.

6.1 Inequality Form and Chvatal Closure

If you are wondering how this would work for linear IPs in inequality form, let Aq,..., A,
be the columns of a rational matrix A € Q™*", b € Q™, and define

P:{xER":Zijjgb, x>0tand T={zx e P:zecZ"}.
j=1

"We use the dual simplex method here because we are introducing more constraints in the primal, so the
dual readily gives a feasible solution.

26

Note that if for any feasible z € P and any vector u € R'", we readily have:
uTAzx < uTh, (8)

because this simply entails multiplying the ¢-th inequality by u; and adding all the inequal-
ities up. So any constraint of the form (8) must hold for any point in the LP relaxation’s
feasible set, x € P. But then, because x > 0, the following inequality must be valid for
feasible integer points, x € T"

n

Z(LUTAJ-J):cj < uTh,

j=1
and because x € Z", we can strengthen this inequality to

n

> ([T A;])z; < |uh). (9)

j=1

In summary, inequality (9) is valid for all the feasible integer points x € P and may cut off
some fractional points.

By adding inequalities like (9) to the original inequalities Az < b, we can strengthen the
LP relaxation. By varying the vector u > 0, we obtain what is known as the first Chvatal
closure of the polyhedron P:

P = {x € R : Az <b, Z(LUTAjJ)x]- < |u™h|, Vu > O}. (10)
j=1

It can be shown that the set P; is actually a polyehdral set. (This requires a proof because
we may be adding an infinite number of inequalities with the process above! However, a
finite number of inequalities suffices — see Theorem 9.4 in Bertsimas and Weismantel (2005)
or Theorem 23.1 in Schrijver (1997).)

This process can actually be repeated, i.e., we can apply the procedure outlined above
to the polyhedron Py, etc. A remarkable fact is that after a finite number of such iterations,
we are guaranteed to recover exactly the convex hull conv (() T'), so the process terminates
in a finite number of steps. We will not prove this here, but the interested reader can refer
to Schrijver (1997) for details and a full proof.

7 Lift-and-Project

The key idea behind the lift-and-project approach is to construct polyhedral sets that lie
between P and conv (T') as projections of higher-dimensional sets that have a polynomial
description. The polyhedron P C R” is first lifted into a higher-dimensional space R""?,
where the formulation is strengthened, and is then projected back onto the original space
R™ to obtain a tigher approximation of conv (7).

The construction is actually remarkably intuitive and it is enlightening to see it one
time. Consider a polyhedron P := {z € R}*? : Az > b} and the mixed-0, 1 feasible set

27

P
N \\z\\\

$j:0 szl

Figure 12: The original polyhedral set P is on the left, and the relaxation P; obtained via
one step of the lift-and-project procedure is on the right.

T :={z € {0,1}" x RE : Az > b} (note that we’re generalizing things slightly here by
allowing some continuous variables as well). Without loss of generality, we assume the
constraints Az > b include z; > 0 for j =1,...,n+p, and z; <1 for j = 1,...,n. Balas,
Ceria, and Cornuéjols study the following lift-and-project procedure:

e Step 0: Select j € {1,...,n}.
e Step 1: Generate the nonlinear system:

zj(Az —b) >0, (1—=z;)(Az—10b)>0. (11)

e Step 2: Linearize the system by substituting y; for x;z; (for i # j), and z; for x
(Because x; € {0, 1}, note that we have a;jz = xj, so the latter substitution is without

any loss.) Call the resulting polyhedron M;.

2
5

e Step 3: Project M; onto the x-space. Let P; be the resulting polyhedron.

We claim that this is a valid relaxation that is better than P, i.e., T C P; C P. That
T C Pj holds follows because for any « € T', we have (z,y) € M; by choosing y; = x;x; for
i # j, because CL']Q = x;j holds due to x; being a binary variable.) Moreover, this is a tighter
relaxation than P because Az > b is obtained by adding the constraints (11) defining M;.

The key question is how tight is the relaxation P;. The following theorem shows that it
is actually the tightest possible among the relaxations that ignore the integrality

of all variables x; for i # j. A visualization of the statement is in Figure 12.

Theorem 5. P; = conv ({Az > b, z; =0} U{Az > b, z; = 1}).

The set ﬂ?zl Pj is called the lift-and-project closure. It is a better approximation
of conv (T") than P,

n
conv (T) € (| P C P,
j=1

and in practice it can be a much better approximation. Bonami and Minoux performed
computational experiments on 35 mixed 0-1 linear programs from the MIPLIB library and
found that the lift-and-project closure reduces the integrality gap by 37% on average.

28

Sherali and Adams defined a stronger relaxation by skipping Step 0 and considering
the nonlinear constraints z;(Az —b) > 0 and (1 —z;)(Az —b) > 0forall j =1,...,nin
Step 1. Then, in Step 2, variables y;; are introduced foralli =1,...,n+pand j=1,...,n
with ¢ > j. Note that the size of the linear system generated in Step 2 is much larger
than in the previous lift-and-project procedure: on the order of n? + np variables and nm
constraints instead of just n + p — 1 new variables and 2m constraints before. Clearly, the
Sherali-Adams relaxation is at least as strong as the lift-and-project closure defined above,
and it can be strictly stronger because the Sherali-Adams procedure takes advantage of the
fact that y;; = y;;, whereas this is not the case for the lift-and-project closure ﬂ?zl P;.

In practice, experiments done by Bonami and Minoux for the 19 MIPLIB instances
for which the Sherali-Adams bound could be computed within an hour show that the im-
provement over the lift-and-project bound was 10% on average. On these 19 instances, the
Sherali-Adams relaxation closed 39% of the integrality gap on average (compared to 29%
for the lift-and-project closure).

The Lovasz-Schrijver relaxation is even stronger than Sherali-Adams, but requires solv-
ing semidefinite programming problems (which we have not yet discussed :-)).

7.1 Other Types of Cuts

Apart from the Gomory-Chvatal cuts and the Lift-and-Project procedures that we dis-
cussed, many other types of cuts also exist. For instance:

e Mixed-Integer Rounding (MIR) Cuts: These are designed to handle general integer
variables by transforming fractional solutions into valid integer bounds.

e Knapsack Cover Cuts: Applied to knapsack problems

w>0,wer <K :><2—>in§|0|—1forany0 : sz‘>K (Cover)
) ieC

e Clique Cuts: These are used to strengthen a constraint like " | z; < 1 when some
of the binary variables appearing form a clique. In that case, for any pair of variables
in the clique, we can add the constraint x; + x; < 1.

e Flow Cover and Flow Path Cuts: Specialized cuts for models involving flow variables,
such as network flow problems.

Solvers such as Gurobi have several cuts embedded and the solution methods actually
involve branch and cut methods that combine branching with adding cuts. However,
developing good cuts often requires good knowledge of the specific combinatorial structure
of the problem and is part art, part science.

We refer readers interested in more details to the excellent tutorial Cornuéjols (2008)
and several of the classic textbooks.

8 Solving IPs

Unlike linear programming problems, integer programming problems are very difficult to
solve. This should not be surprising in view of the complexity of just finding a feasible

29

solution, which we discussed in §2. However, given their practical importance, many solution
approaches have been devised. There are three main categories of algorithms:

1. Exact algorithms that are guaranteed to find an optimal solution, but may take
an exponential number of iterations. The most famous among these include: cutting
planes, branch and bound, branch and cut, lift-and-project methods, and dynamic
programming methods.

2. Approximation algorithms that provide a suboptimal solution with a bound on
the degree of its suboptimality in polynomial time.

3. Heuristic algorithms that provide a suboptimal solution, but typically without
any guarantees on its quality. Although the running time is not guaranteed to be
polynomial, empirical evidence suggests that some of these algorithms find a good
solution fast. Examples include local search methods and simulated annealing.

Moreover, a Lagrangean duality theory can also be developed for integer programming
problems to derive lower bounds on the optimal cost. Such bounds are very useful in exact
algorithms, as they can allow us to avoid enumerating too many feasible solutions and thus
speed up the performance.

We briefly overview some of these developments in this section, but refer the interested
reader to classical textbooks such as Schrijver (2003) or Bertsimas and Weismantel (2005)
for a more thorough overview.

8.1 Cutting Planes

Our previous discussion of cuts leads to the first class of algorithms for solving IPs. This is
called a cutting plane method and works roughly as follows:

Generic cutting plane algorithm.
1. Solve the linear relaxation and get an optimal solution «*
2. If z* is integer stop

3. If not, add a cut (i.e., linear inequality that all integer solutions satisfy but that x*
does not satisfy) and go to step 1 again.

The exact algorithm obviously depends on the choice of cuts. Pure cutting plane algorithms
have not been extremely successful in practice, but adding cuts within a branch-and-bound
algorithm (which we discuss next) can significantly speed up the framework so cuts are very
meaningful in practice.

8.2 Branch and Bound

Branch and bound uses a “divide and conquer” approach to explore the set of feasible
integer points, and leverages the LP relaxations to derive bounds on the optimal cost so as
to avoid exploring certain parts of the set of feasible integer solutions.

30

To understand the key intuition, consider a very simple problem of solving an IP with
three binary decisions z, y, z:

minc;-x+co-y+c3-z

X

Alyl <b (12)
z

z,y,2 € {0,1}

where A, b and ¢y, co, c3 are rational. Figure 13 depicts one possible implementation of a
branch-and-bound algorithm. The steps are roughly as follows:

Root node: solve LP relaxation
0<xyz<1

* At optimality, get: x.=0, y=0.3, z.=1

* Ifx, y, z binary, done! . .
* L:=OPT(F) is a lower bound on optimal cost

Branch based on
fractional variable y

. y=1
F,: Solve withy=0,0<x,z<1

* Optimal: x¢;=0.5, y¢;=0, z;,=1
* Optimal value OPT(F,)

F,: Solve with y=1, 0 <=x,z <=1
* Optimal: =0, yg,=1, z;,=0.2
Optimal value OPT(F,)

L:= min(OPT(F,), OPT(F,))
is better lower bound!

Branch on z if
OPT(F,) < U

Branch on x if
OPT(F,) < U

x=0

Keep branching & bounding until
you achieve desired tolerance
(or get proof of optimality)

F;: Solve with x=y=0,0<z<1 F,: Infeasible!
* At optimality: get z;;=1

* Afeasible solution!

* Update upper bound U := OPT(F;)

* IfU-L < tolerance, stop

Figure 13: A tree of subproblems in a branch-and-bound procedure.

1. We start with an upper bound U := 400 and a lower bound L := —oo on the optimal
value of problem (12).

2. In the first step, corresponding to the root node F' of the tree, we solve the LP
relaxation of (12). If the optimal solution is integral, we are done! This must be
optimal in problem (12)! Suppose the optimal value is OPT(F') and the optimal
solution involves fractional variables: zp = 0,yr = 0.3, zp = 1.

3. Note that now L := OPT(F') is an improved (finite!) lower bound on the problem.

4. We then select one of the variables that was fractional in the optimal solution (here,
y) and create two branches that correspond to two sub-problems named Fj and Fs.
This step is what gives the method its name — branching. In problem F}, we solve an

31

LP relaxation where we constrain y to be 0, whereas in F5 we solve an LP relaxation
where we constrain y to be 1. In both of these problems, the other variables x, z are
only constrained to satisfy 0 < x,z < 1.

5. Suppose we first solve F; and at optimality we get OPT(F}) and the optimal solution
rzr1 = 0.5,yr1 = 0,zp1 = 1. We do not yet have a feasible solution, so the upper
bound is still U = +o00. But we can further branch based on the fractional variable
x, so we create two other subproblems, F5 and Fy. In both of these LPs, y is still
constrained to satisfy y = 0 (these are part of the same master branch corresponding
to F1), but in F3 we also add the constraint x = 0, whereas in F» we add the constraint
x = 1. In both F3 and Fy, z is only required to satisfy 0 < z < 1.

6. Continuing in this fashion, upon any subsequent branching, we increase the number
of decisions that are constrained to belong to {0, 1}, so eventually we may obtain a
feasible solution for problem (12). In our case, that happens in node F3. (In case this
does not happen in the current subtree or in any other subtree, the problem must be
infeasible...) Once we have a feasible solution, we can update the upper bound.
In our case, U := OPT(F3) is a valid upper bound. If U — L satisfies our desired
tolerance/optimality gap, we can even stop the entire process. Otherwise, we can
continue this process of branching and bounding.

7. A few additional observations that can speed up the procedure:

e once we have a finite upper bound U, we need need to explore subtrees for a root
note that has optimal value larger than U. For instance, if the LP in node Fy
returns optimal value OPT(Fy) > U, that subtree is not worth exploring because
the best possible binary solution in that entire subtree is worse than our current
best feasible solution!

e If we end up solving LP relaxations for all the children of a node, the maximum
of those optimal values is a better lower bound of the optimal value achievable
by IP solutions in that node. For instance, if we solve both F; and F5, then
min(OPT(F1),OPT(F»)) is a better lower bound for the optimal value of the
original problem. This allows updating the lower bound L on the overall problem.

Our example showcases the fundamental principles behind a branch-and-bound ap-
proach. For a slightly more general description, let F' be the set of feasible solutions to
a minimization IP:

minimize c¢'z subject to x € {x: Ax <b,z €Z"} (13)

The fundamental idea is to partition the set F' into a finite collection of subsets F; and solve
a separate subproblem for each subset. For every such subproblem, we only need to be able
to derive a lower bound ¢(F;) on the cost of the subproblem, i.e., we need to compute

((F;) < mincTz.
(,)_glcréll%ca:

At each step, we thus maintain a collection of subproblems/nodes to potentially explore
further, and choose one of these to explore. Each subproblem may be almost as difficult

32

as the original problem and this suggests trying to solve each subproblem by means of the
same method, that is, by splitting it into further subproblems. This is the branching part
of the method.

In the course of this process, we occasionally solve certain subproblems to optimality
or simply evaluate the cost of certain feasible solutions. This allows us to maintain an
upper bound U on the optimal cost, which could be the cost of the best feasible solution
encountered thus far. If the lower bound ¢(F;) corresponding to a particular subproblem
satisfies £(F;) > U, then this subproblem need not be considered further, since the optimal
solution to the subproblem is no better than the best feasible solution encountered thus far.

Importantly, there are several choices to be set in this algorithm; for instance:

1. There are different ways of choosing which subproblem to explore next. Two extreme
choices are “breadth-first search” and “depth-first search.”

2. There may be several ways of obtaining a lower bound £(F;) on the optimal cost of
a subproblem. One possibility that we used above is to consider the LP relaxation.
However, we can also employ smart Lagrangean duality to derive tighter bounds —
see 8.3 for details.

3. The LP relaxations could be improved by adding cuts. This is what branch-and-
cut approaches do.

4. There are several ways to break a problem into subproblems. Our example partitioned
based on constraints such as z; < |z]] and z; > [z]], but other choices are possible.

The best choices are usually dictated by experience and perhaps the most critical choice
revolves around the ability to derive good lower bounds. In practice, the branch-and-
bound method often produces good solutions quickly, although in principle it could take
exponential time in the worst-case.

8.3 Lagrangean Duality
We consider the integer programming problem
minimize ¢’z
Ax >b,

Dz >d,
zeZ",

(14)

and assume that A, D, b, ¢, and d have integer entries. Let Zip be the optimal cost and let
X ={zeZ"| Dz >d}.

The key premise behind the method is that optimizing over the set X can be done
efficiently; for example, X may have an ideal characterization (which involves totally-
unimodular matrices) or perhaps the combinatorial structure allows us to employ specific
algorithms that work very well. However, adding the constraints Az > b makes the problem
difficult to solve.

33

To that end, just like we did when we introduced the dual of an LP, we consider relaxing
these more difficult constraints and penalizing violations. Specifically, let p > 0 be
a vector of dual variables (Lagrange multipliers) and define

minimize ¢z +p' (b— Ax)
reX,

and denote its optimal cost by g(p). We will say that we relax or dualize the constraints
Ax > b. For a fixed p, the above problem can be solved efficiently, as we are optimizing
a linear objective over the set X. Following our developments for LPs, we note that g(p)
provides a lower bound on Zip.

Lemma 1. If the problem (14) has an optimal solution and if p > 0, then Z(p) < Zip.

The proof is immediate and we omit it. Since this provides a lower bound for any p > 0, it
is natural to consider the tightest such bound, which leads us to introduce the problem

max g(p)

p = 0. (15)

Mirroring our LP developments, we refer to problem (15) as the Lagrangean dual. Let

Zp = ma .
p = max g(p)
Because g(p) is piece-wise linear and concave (as the minimum of a finite collection of
points), computing Zp involves solving an LP with a potentially very large number of
constraints. However, this leads to a lower bound and a weak duality result.

Theorem 6. We have Zp < Zjp.

Unlike linear programming, we do not have have a strong duality result. However, the
most important result here is the following characterization of the Lagrangean dual.

Theorem 7. The optimal value Zp of the Lagrangean dual is equal to the optimal
cost of the following linear programming problem:

minimize c¢'x
subject to Ax > b, (16)
x € conv (X).

We omit the proof here and instead refer the interested reader to Bertsimas and Weis-
mantel (2005). An important consequence of this theorem is the following ordering between
the optimal value of the LP relaxation (Zp), the Lagrangean dual, and the IP:

Zip < Zp < Zyp. (17)

34

The inequality on the left holds because conv (X) C {x : Dx > d}, so the feasible set of
problem (16) is contained in the feasible set of the LP relaxation. Problem instances exist
where either of the inclusions in the relation above holds strictly (and it is also possible to
have ZIP < ZD).

9 Dynamic Programming Methods

Lastly, we mention in passing that dynamic programming (DP) methods can also be used
to solve IPs. This is readily evident if one considers the example of the discrete knapsack
problem, which can be readily formulated as a DP. To understand the formulation, consider
taking decisions in n stages, where n is the number of items in the knapsack. At each stage
i, we decide whether to include item ¢ in the knapsack or not. With the state variable
v corresponding to remaining volume in the knapsack, the Bellman recursions for the
problem can be written as:

() = Jit1(v), if v < w;
‘ max(r; + Jit1(v — wj), Jiy1(v)), otherwise.

The recursion states that the best option in stage ¢ (when the decision is whether to include
item 7 or not) is to not include it in case that would exceed the remaining volume in the
knapsack (i.e., if v < w;) and otherwise to choose the best option between including the
item and moving to stage i + 1 with less remaining volume (which yields r; plus the best
continuation value from stage i + 1 starting with volume v — wj;) or not including item ¢
and moving to stage ¢ + 1 with the entire remaining item v (which yields J;11(v)). The
recursion can be initialized at stage i = n + 1 with J,41(v) = 0 for any v > 0, and solved
backwards for it =n,n—1,...,1.

More broadly, dynamic programming techniques can actually be used to derive pseudo-
polynomial time algorithms for solving IPs in fixed dimension, i.e., if either the number
of constraints is considered fixed or the number of variables is considered fixed. Details
for the interested reader are available in Schrijver (1997) and Papadimitriou and Steiglitz
(1998).

References

Francis Bach. Convex analysis and optimization with submodular functions: a tutorial.
Technical report, INRIA, HAL, 2010. URL https://hal.science/hal-00527714v2.

Francis Bach. Learning with Submodular Functions: A Convex Optimization Per-
spective. Now Publishers Inc., 2013. URL https://www.di.ens.fr/~fbach/
2200000039-Bach-Vol6-MAL-039.pdf.

Dimitris Bertsimas and John Tsitsiklis. Linear Optimization. Athena Scientific, 1997.

Dimitris Bertsimas and Robert Weismantel. Optimization Ouver Integers. Dynamic Ideas,
2005.

35

https://hal.science/hal-00527714v2
https://www.di.ens.fr/~fbach/2200000039-Bach-Vol6-MAL-039.pdf
https://www.di.ens.fr/~fbach/2200000039-Bach-Vol6-MAL-039.pdf

Gerard Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical
Programming, pages 3—44, 2008.

Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization - Algorithms
and Complexity. Prentice Hall, 1998.

Alexander Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, 1997.

Alexander Schrijver. Combinatorial Optimization. Algorithms and Combinatorics. Springer
Berlin, Heidelberg, 2003.

36

	Modeling Techniques
	Binary choice
	Logical constraints
	Restricted range of values
	Arbitrary piecewise linear cost functions
	Set covering, set packing, and set partitioning problems
	Matching Problems
	The minimum spanning tree problem
	Traveling salesperson problem

	The Bad News First
	Linear Relaxation and Strength of IP Formulations
	Strength of IP Formulations in Our Examples
	Facility Location.
	Minimum Spanning Tree Revisited
	Traveling Salesperson Problem Revisited

	Strength of IP Formulation

	Ideal Formulations With Total Unimodularity
	Examples of Totally Unimodular Matrices
	Node-Edge Incidence Matrix for Bipartite Graphs

	Node-Arc Incidence Matrix for Directed Graphs
	Interval Matrices
	Network Matrices

	Dual Integrality and Submodular Functions
	Polymatroid Polyhedra and Submodular Functions
	Examples

	Improving LP Relaxations with Valid Cuts
	Inequality Form and Chvatal Closure

	Lift-and-Project
	Other Types of Cuts

	Solving IPs
	Cutting Planes
	Branch and Bound
	Lagrangean Duality

	Dynamic Programming Methods

