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Lectures 4-5-6: Duality
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1 Motivation

In this class we will discuss duality theory, one of the most important concepts in optimiza-
tion. To appreciate its importance, consider a linear program (LP) in inequality form:

minimize c⊺x

such that Ax ≤ b,

and the following practical questions that you might be faced with:

1. Suppose we have a feasible x, how can we know “how good” it is? More formally,
assuming the problem has an optimal solution x∗ (resulting in a finite optimum cost
c⊺x∗), how can we to quantify the gap c⊺x− c⊺x∗?

2. Suppose we do not yet have a feasible x (and we have been searching for a while...)
How can we certify that no such feasible x exists, i.e., that {x : Ax ≤ b} = ∅?

3. Suppose one of constraints in our problem depends on parameters that are uncertain.
For instance, suppose the i-th constraint is a⊺i x ≤ 0 and the row vector of parameters
ai is only known to reside in a given set, i.e., ai ∈ A. This situation occurs often
in practice, where optimization problems are affected by uncertainty. How can we
ensure this constraint is feasible for any ai ∈ A? Note that if the set A contains
infinitely many points (for instance, if it’s a polyhedral set), this constraint would
give rise to infinitely many constraints. Could we reformulate such a problem as a
finite-dimensional optimization problem?

4. Suppose some components of the right-hand-side vector b correspond to some valuable
resources. For instance bi is a capacity in a plant that you are operating or is a
monetary budget that constrains your investments. Clearly, more bi would be nice,
because it would enlarge your feasible set and (possibly) reduce your objective. If
someone were to offer you a bit more of bi, what is a “suitable” price for bi, i.e.,
a price that you are willing to pay that makes the deal worthwhile?

Duality theory will help us answer all of these questions. With duality, we can construct
bounds on the optimal values of optimization problems and provide optimality gaps (i.e.,
know how suboptimal a given solution is) and optimality certificates (i.e., guarantee
when a given solution is optimal). Moreover, duality will provide feasibility certificates,
i.e., it will allow us to know when a given optimization problem is infeasible. Lastly, duality
will provide alternative algorithms to solve optimization problems and will lead to important
applications in economics, finance, and engineering, which we will discuss more amply later.
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Note. Our discussion here is inspired to a large extent by Chapter 4 in the Bertsimas &
Tsitsiklis book, but we adjusted several proofs to make them self-contained and emphasize
general concepts that will be useful beyond linear optimization.

1.1 Notation

For today’s class, we will try to be very consistent with mathematical notation. For a matrix
A ∈ Rm×n, we use Aj to denote the j-th column, AS to denote the submatrix obtained by
retaining the columns j ∈ S, and a⊺i to denote the i-th row. For a vector x ∈ Rn, we can
then view the expression Ax either as a linear combination of the columns Aj or as having
components corresponding to the inner products a⊺i x, i.e.,

Ax =
n∑

j=1

Ajxj =


a⊺1x
a⊺2x
...

a⊺mx

 .

We also let ∥ · ∥ be the Euclidean norm defined by ∥x∥ = (x⊺x)1/2.

1.2 Setup

Let us consider a linear optimization problem in the most general form possible:

(P) minimizex c⊺x
a⊺i x ≥ bi, i ∈ M1,
a⊺i x ≤ bi, i ∈ M2,
a⊺i x = bi, i ∈ M3,
xj ≥ 0, j ∈ N1,
xj ≤ 0, j ∈ N2,
xj free, j ∈ N3.

(1)

which we henceforth call the primal problem and concisely refer to as problem (P). We
also denote its feasible set with P and we let x∗ be an optimal solution, assumed to exist.

Because (P) is a minimization, we are interested in constructing lower bounds on its
optimal value. One thought is to simply remove some constraints! Although that would
lead to a lower bound, it might lose too much information from the problem and give us
poor lower bounds, such as −∞. A better approach is to relax some of the constraints –
specifically, we should remove the constraints and instead add them in the objective, with a
suitable penalty. To that end, let us consider a relaxed problem in which we associate with
every constraint i ∈ M1 ∪ M2 ∪ M3 a price or penalty pi that should penalize us when
that constraint is violated. The objective in this relaxed problem, which is referred to as
the Lagrangean function, can be written as follows:

L(x, p) = c⊺x−
∑

i∈M1∪M2∪M3

p⊺i (a
⊺
i x− bi) = p⊺b+ (c⊺ − p⊺A)x. (2)

We note that the choice of − sign in front of the penalty and the choice to write the penalty
as p⊺(Ax−b) rather than p⊺(b−Ax) is quite arbitrary. Our choice above has two advantages:
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(i) it gives us the “nice” term p⊺b (rather than −p⊺b) in the expression for L, and (ii) it
makes it easy to figure out what requirements we need to impose on p to ensure
that it a valid penalty, or equivalently, that L(x, p) leads to a valid relaxation. To that
end, note that we must impose the following constraints on p:

∀ i ∈ M1, a⊺i x− bi ≥ 0 for x feasible in (P) ⇒ pi ≥ 0
∀ i ∈ M2, a⊺i x− bi ≤ 0 for x feasible in (P) ⇒ pi ≤ 0
∀ i ∈ M3, a⊺i x− bi = 0 for x feasible in (P) ⇒ pi free.

(3)

Clearly, any p satisfying these leads to a valid lower bound on the primal objective:

p satisfying (3) ⇒ L(x, p) ≤ c⊺x, ∀x ∈ P. (4)

This allows us to define a lower bound on the optimal objective of the primal by considering
the function g(p) defined as:

g(p) := minx L(x, p)
s.t. xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3.

(5)

Because L(x, p) ≤ c⊺x, ∀x ∈ P by (4) and problem (5) has fewer constraints than (P), we
can immediately infer that g(p) is a valid lower bound on the optimal primal cost:

g(p) ≤ c⊺x∗, for any p satisfying (3).

Moreover, because we obtain a valid bound for any price p, we might as well look for the
best such lower bound, which leads us to consider the problem:

maximize
p

{g(p) : p satisfying (3).} (6)

Problem (6) is called the dual of the primal problem (P); for conciseness, we also refer
to it as problem (D). Let us try to rewrite (D) to make it clear that it is also a linear
optimization problem. First, we rewrite the objective. Note that we have:

g(p) := minx
[
p⊺b+ (c⊺ − p⊺A)x

]
s.t. xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2,

xj free, j ∈ N3.

=

{
p⊺b, if sign(cj − p⊺Aj) = sign(xj), ∀ j ∈ N1 ∪N2 and cj = p⊺Aj , ∀j ∈ N3

−∞, otherwise.

Because we are interested in maximizing g(p), we can restrict attention to those values of p
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for which g(p) > −∞. Therefore, the dual is equivalent to the linear programming problem:

(D) maximize
p

p⊺b

subject to pi ≥ 0, i ∈ M1,
pi ≤ 0, i ∈ M2,
pi free, i ∈ M3,
p⊺Aj ≤ cj , j ∈ N1,
p⊺Aj ≥ cj , j ∈ N2,
p⊺Aj = cj , j ∈ N3.

(7)

Putting everything together, we obtain the following primal-dual pair of problems:

(P) minimizex c⊺x
(pi →) a⊺i x ≥ bi, i ∈ M1,
(pi →) a⊺i x ≤ bi, i ∈ M2,
(pi →) a⊺i x = bi, i ∈ M3,

xj ≥ 0, j ∈ N1,
xj ≤ 0, j ∈ N2,
xj free, j ∈ N3.

(D) maximize
p

p⊺b

subject to pi ≥ 0, i ∈ M1,
pi ≤ 0, i ∈ M2,
pi free, i ∈ M3,

(xj →) p⊺Aj ≤ cj , j ∈ N1,
(xj →) p⊺Aj ≥ cj , j ∈ N2,
(xj →) p⊺Aj = cj , j ∈ N3.

(8)

There are simple mnemonic rules to help you memorize this primal-dual formulation so
that you can avoid going through all the steps above with the Lagrangean each time.
Specifically, note that we introduce a dual decision variable pi for every constraint in the
primal except the sign constraints; so every constraint i ∈ M1∪M2∪M3 has a corresponding
dual variable indicated by the symbol pi → on the left of the constraint. Symmetrically, for
every decision variable xj in the primal with j ∈ N1 ∪N2 ∪N3, there is a constraint in the
dual (and the mapping is indicated by the symbol xi → on the left of the dual constraints).
As for the signs, the following table summarizes all the cases that can arise:

PRIMAL minimize maximize DUAL

≥ bi ≥ 0
constraints ≤ bi ≤ 0 variables

= bi free

≥ 0 ≤ cj
variables ≤ 0 ≥ cj constraints

free = cj

(9)

Note. There are intuitive rules to derive the signs in the table above. To understand
what sign you need for the dual variable pi, think of it as a shadow price that records the
marginal change in the primal optimal objective value when the right-hand side bi of the
primal constraint is changing infinitesimally. Increasing the right-hand-side in a “≥ bi”
constraint would (weakly) shrink the feasible set and therefore reduce the objective (because
the primal is a minimization), hence the positive shadow price pi ≥ 0 for a primal constraint
“≥ bi”. Similarly, increasing the right-hand-side in a “≤ bi” constraint would (weakly)
enlarge the feasible set and therefore decrease the objective (in our primal minimization),
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hence the negative shadow price pi ≤ 0 for the primal constraint “≤ bi”. These rules will
become more clear once we formalize this interpretation of dual variables as gradients of the
primal objective value with respect to the right-hand-side vector b.

The main result in duality theory asserts that when the primal (P) admits an optimal
value, it will be equal to the optimal value of the dual problem (D). And this also implies
that a choice of penalties/prices p exists so that the relaxed problem (RP ) with penalty
p has exactly the same optimal value as the primal (P). We will prove this result in the
subsequent sections.

Subsequently, we will use a notation that parallels the one we used for the primal (P).
Specifically, we will denote the feasible set for the dual problem (D) with D; by (8), D is
clearly a polyhedral set.

The following implication, which is immediate from table (9) and our earlier derivation,
will be useful subsequently:

∀x ∈ P, ∀ p ∈ D : sign(a⊺i x− bi) = sign(pi), sign(xj) = sign(cj − p⊺Aj). (10)

1.3 Duals of Equivalent Primals and Duals of Duals

It is a rather tedious exercise, but it can be readily checked that for linear optimization
problems, the following result holds.

Theorem 1. If we transform a primal linear optimization problem P1 into an equivalent
formulation P2 by transformations such as

• replacing a free variable with a difference of two non-negative variables, xi = x+i −x−i ;

• replacing an inequality constraint with an equality constraint by introducing a slack
variable;

• for a feasible LP in standard form, removing any rows a⊺i that are linearly dependent
on other rows,

then the duals of (P1) and (P2) are equivalent, i.e., they are either both infeasible or they
have the same optimal objective.

The proof involves simple algebra and is not very enlightening, so we omit it. The result
should be consistent with the intuition that the precise formulation of the primal should
bear no impact on its optimal value, so the duals of equivalent primal formulations should
also be equivalent.

The following result is slightly more subtle, and concerns a natural question: “what if
we formed the dual of a dual? would we recover the primal?” For linear optimization, the
answer is “yes.”

Theorem 2 (The dual of the dual is the primal). If we transform the dual into an equivalent
minimization problem and then form its dual, we obtain a problem equivalent to the original
primal optimization problem.

We leave the proof to the reader. An important word of caution here is that this result
is not true more generally. It does hold (with qualifiers) for the broader class of convex
optimization problems, but it does not hold for non-convex optimization problems.
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2 Weak Duality

We already argued at the start of this section that for a primal (P) in standard form, the
cost g(p) of any dual solution p provides a lower bound on the optimal primal objective.
The following result is a slightly more general restatement.

Theorem 3 (Weak Duality). Consider any primal-dual pair in the general form (8). If x
is feasible for the primal and p is feasible for the dual, then:

p⊺b ≤ c⊺x.

Proof. For any x and p, we define:

ui = pi(a
⊺
i x− bi),

vj = (cj − p⊺Aj)xj .

Recall from (8) that for any feasible x ∈ P and p ∈ D:

sign(a⊺i x− bi) = sign(pi), sign(xj) = sign(cj − p⊺Aj). (11)

Therefore, the sign of pi equals the sign of a⊺i x− bi and the sign of cj −p⊺Aj equals the sign
of xj , and therefore: ui ≥ 0, vj ≥ 0. Also, we have:∑

i

ui = p⊺Ax− p⊺b,
∑
j

vj = c⊺x− p⊺Ax.

Add these equalities and using the non-negativity of ui and vj then proves the result.

As the name suggests, weak duality is not a powerful result and it will hold for many
optimization problems, including non-convex ones. In our context, it has the following
immediate corollaries.

Corollary 1. The following results hold:
(a) If the optimal cost in the primal is −∞, then the dual problem must be infeasible.
(b) If the optimal cost in the dual is +∞, then the primal problem must be infeasible.
(c) If x is primal-feasible and p is dual-feasible and p⊺b = c⊺x holds, then x and p are
optimal solutions to the primal and dual problems, respectively.

A practical implication of these results is worth pointing out: weak duality enables
us to assess the degree of suboptimality for a given solution. More specifically,
suppose we have a primal-feasible solution x. Then, any dual-feasible solution p will lead
to a suboptimality guarantee for x, because the optimal solution x∗ for (P) must satisfy:

c⊺x ≥ c⊺x∗ ≥ p⊺b.

Therefore, if the gap c⊺x− p⊺b is small, we may be satisfied with the current solution x and
not need to worry about finding the optimum! However, weak duality cannot guarantee
that such optimality gaps become small, so these may not be practically meaningful.

Similarly, Part (c) provides a (weak) form of optimality certificate: it states that if we
can produce two solutions x and p satisfying these conditions, we are guaranteed that these
are optimal solutions for the primal and the dual, respectively. However, weak duality does
not guarantee that such a pair of x and p even exists!
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3 Strong Duality

We would now like to prove a more powerful result, referred to as strong duality: if the
primal and dual are both feasible – which, by Corollary 1, implies they both admit optimal
solutions – then they will have the same optimal values. There are several proofs possible for
this result. We adopt an approach here that is significantly more general and involves results
that will be useful later in the course, when we discuss convex optimization. Chapter 4 of
the Bertsimas & Tsitsiklis book also has an alternative proof that relies on the iterations
in the simplex algorithm (and is therefore tailored to linear optimization problems).

3.1 A Few Results from Real Analysis

Our proof requires a few basic facts from analysis. First, recall the definition of a closed set.
A set S ⊂ Rn is called closed if it has the following property: if x1, x2, . . . is a sequence of
elements of S that converges to some x ∈ Rn, then x ∈ S. That is, S contains the limit of
any sequence of elements of S.

The first result we need is that any polyhedron is a closed set.

Theorem 4. Every polyhedron is closed.

Proof. Consider a polyhedron P = {x ∈ Rn | Ax ≥ b} (the representation does not matter
because the set of points is the same; so we adopt a representation with inequalities without
loss of generality). Suppose that x1, x2, . . . is a sequence of elements of P that converges to
some x∗. For each k, we have xk ∈ P , and therefore, Axk ≥ b. Taking the limit, we obtain
Ax∗ = A (limk→∞ xk) = limk→∞Axk ≥ b, so x∗ belongs to P .

It is important to note that this is not true for any convex set! For instance, consider
a circle with a full interior and remove one point from its boundary. Then, the remaining
points will form a convex set that is not closed.

The following result – which we state without proof – is fundamental in real analysis.
It states that any continuous function achieves its minimum and maximum value on a
nonempty, compact (i.e., closed and bounded) set of points.

Theorem 5 (Weierstrass’ Theorem). If f : Rn → R is a continuous function, and if S
is a nonempty, closed, and bounded subset of Rn, then there exists some x ∈ S such that
f(x) ≤ f(x) for all x ∈ S and there exists some x̄ ∈ S such that f(x̄) ≥ f(x) for all x ∈ S.

This result is not valid if the set S is not closed. A classic example in the half-line S =
{x ∈ R | x > 0}, for which the problem of minimizing x does not achieve its minimum. The
reason the set is not closed is because we used a strict inequality to define it. The definition
of polyhedra and linear programming problems does not allow for strict inequalities in order
to avoid precisely situations of this type.
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3.2 The Separating Hyperplane Theorem

The first step in our proof is to show that if a point x∗ lies outside a polyhedron P , then
there exists a hyperplane that strictly separates x from P , i.e., there exists a vector c such
that c⊺x∗ < c⊺x for all x ∈ P . This has a very clear geometric intuition, as depicted in the
left panel of Figure 1. On first sight, you may think the fact is obvious, but it is actually an
important result in linear programming. Instead of showing this, we prove a more general
result that concerns the separation of two convex sets.

Theorem 6 (Separating Hyperplane Theorem for Convex Sets). Let S and U be two
nonempty, closed, convex subsets of Rn such that S ∩ U = ∅ and S is bounded. Then,
there exists a vector c ∈ Rn and scalar d ∈ R such that S ⊂ {x ∈ Rn : c⊺x < d} and
U ⊂ {x ∈ Rn : c⊺x > d}.

The geometric intuition for the claim appears in the right panel of Figure 1. Our result
will obviously follow as a special case with S = {x∗} and U = P .

Figure 1: Separating Hyperplane Theorem. Left: separating a point from a polyhedral set.
Right: more general result on separating two convex sets.

Proof. Consider the following optimization problem:

infimum ∥x− y∥
such that x ∈ S, y ∈ U.

(12)

We claim that the infimum is achieved, i.e., ∃(x∗, y∗) ∈ S×U such that ∥x∗−y∗∥ ≤ ∥x−y∥
for any (x, y) ∈ S × U . To see this, we will invoke the Weierstrass Theorem. The theorem
does not immediately apply because the set U is not required to be bounded. But we will
try to apply the theorem to the following function f : S → R:

f(x) := inf
y∈U

∥x− y∥.

Intuitively, f(x) is the shortest distance from x to U . If f were continuous, then the
Weierstrass Theorem would be readily applicable because the domain of f is the compact,

8



convex set S. So all we need is to argue that f(x) is continuous. To that end, consider any
x, x′ ∈ S and y ∈ U and the following inequalities derived from the triangle inequality:

∥x− y∥ ≤ ∥x− x′∥+ ∥x′ − y∥
∥x′ − y∥ ≤ ∥x′ − x∥+ ∥x− y∥.

These imply that

|(∥x− y∥ − ∥x′ − y∥)| ≤ ∥x− x′∥

and therefore

|f(x)− f(x′)| ≤ ∥x− x′∥,

which proves that f is continuous and that the minimum is achieved in (12). Let (x∗, y∗)
denote an optimal solution in that problem. (Q: Is such a solution guaranteed to be unique?
Does that matter?)

We will show that the vector c := y∗ − x∗ and the scalar d := c⊺(x∗+y∗)
2 give a strictly

separating hyperplane. Specifically, we prove that for any x ∈ S and any y ∈ U :

c⊺x ≤ c⊺x∗ < d < c⊺y∗ ≤ c⊺y.

See the right panel of Figure 1 for the corresponding geometric intuition.
First, with z := (x∗ + y∗)/2, observe that:

d− c⊺x∗ = (y∗ − x∗)⊺(y∗ − x∗)/2 > 0

c⊺y∗ − d = (y∗ − x∗)⊺(y∗ − x∗)/2 > 0,

where the inequalities hold because the optimal value in problem (12) must be strictly
positive because S and U are closed and have non-empty intersection.

We next argue that c⊺y∗ ≤ c⊺y holds for any y ∈ U . Consider any y ∈ U . For any
λ ∈ (0, 1], we have that y∗ + λ(y − y∗) ∈ U because U is convex. Because y∗ minimizes
∥y − x∗∥ over all y ∈ U , we have:

∥y∗ − x∗∥2 ≤ ∥y∗ + λ(y − y∗)− x∗∥2

= ∥y∗ − x∗∥2 + 2λ(y∗ − x∗)⊺(y − y∗) + λ2∥y − y∗∥2

which implies that

2λ(y∗ − x∗)⊺(y − y∗) + λ2∥y − y∗∥2 ≥ 0

Dividing by λ and taking the limit as λ approaches zero, we obtain c⊺(y − y∗) ≥ 0. The
proof that c⊺x ≤ c⊺x∗ is analogous.

It is important to note that the strict separation for convex sets requires all the as-
sumptions in Theorem 6, namely (convex) sets that are closed and at least one of which is
bounded. To see this, consider the following two examples, also depicted in Figure 2.
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Example 1 (Strict Separation Failing). Consider the following two sets in R2:

S = [−1, 1]× [−1, 0) ∪ {(x, y) : x ∈ [−1, 0], y = 0}, U = [−1, 1]2 \ S.

Both sets are bounded and not closed; no hyperplane that strictly separates them exists.
Moreover, consider the choice:

S = {(x, y) : x ≤ 0}, U = {(x, y) : x ≥ 0, y ≥ 1/x}.

Both sets are closed and unbounded; no hyperplane that strictly separates them exists.

Figure 2: Strict Separating Hyperplane Theorem failing when assumptions are not met.
Left: two convex sets that are not closed (but are both bounded) and that cannot be
strictly separated. The sets are S = [−1, 1] × [−1, 0) ∪ {(x, y) : x ∈ [−1, 0], y = 0} and
U = [−1, 1]2 \ S. Right: two convex sets that are closed but are unbounded that cannot
be strictly separated. The sets are S = {(x, y) : x ≤ 0} and U = {(x, y) : x ≥ 0, y ≥ 1/x}.

The following result, which is necessary for our purposes, is an immediate corollary.

Corollary 2. ⊺IfP is a polyhedron and x∗ satisfies x /∈ P , there exists a hyperplane that
strictly separates x from P , i.e., there exists c ̸= 0 such that c⊺x∗ < c⊺x for all x ∈ P .

Note. The strict separation result in Theorem 6 is much stronger than what we need, but it
is very enlightening to see the proof one time and understand its inner workings. (Moreover,
the proof is not significantly harder than a direct proof of Corollary 2, and the generalization
is substantial and will be useful later in our course, when we discuss convex optimization.)

3.3 Farkas Lemma

We are now equipped to prove the building block that will provide us with certificates of
feasibility and optimality and will lead to a quick proof of strong duality. This result is
named after Gyula Farkas, a Hungarian mathematician, and has played a pivotal role in
the development of mathematical optimization (and it even has interesting connections to
quantum mechanics!)
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Theorem 7 (Farkas’ Lemma). Consider A ∈ Rm×n and b ∈ Rm. Then, exactly one of the
following two alternatives holds:

(a) There exists some x ≥ 0 such that Ax = b.

(b) There exists some vector p such that p⊺A ≥ 0 and p⊺b < 0.

Before proving this result, let’s develop a bit of geometric intuition. Figure 3 depicts the
two alternatives: on the left, the vector b belongs to the cone generated by the columns Ai

of the matrix A, so there exists x ≥ 0 such that Ax = b. In contrast, on the right, the vector
b does not belong to the cone generated by the columns of A, so a separating hyperplane
given by the normal vector p exists.

Figure 3: The two alternatives possible in the Farkas Lemma. Left: the vector b belongs
to the cone generated by the columns Ai of the matrix A, so there exists x ≥ 0 such that
Ax = b. Right: the vector b does not belong to the cone generated by the columns of A, so
a separating hyperplane exists.

Proof. “(a) ⇒ not (b).” This direction is easy. If there exists some x ≥ 0 satisfying
Ax = b and if we have p such that p⊺A ≥ 0, then p⊺b = p⊺Ax ≥ 0, so (b) cannot hold.
“not (a) ⇒ (b).” This is the more subtle direction, but the separating hyperplane theorem
will make our life easy. Assume that there exists no vector x ≥ 0 satisfying Ax = b. This
implies that b /∈ S where the set S is defined as

S := {Ax : x ≥ 0} = {y : ∃x ≥ 0 such that y = Ax}.

The set S is clearly convex. However, to apply the separating hyperplane theorem, we must
show that it is also closed. The set S is the projection of the polyhedral set

S̄ := {(x, y) ∈ Rn × Rm : x ≥ 0, y = Ax}

on the last m coordinates. Because the projection of a polyhedral set on a subset of
coordinates is another polyhedral set1 and because every polyhedral set is closed, we can

1This result can be shown in several ways, including via the Fourier-Motzkin procedure for eliminating
variables in a linear program; see the Bertsimas and Tsitsiklis book for details on this.
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indeed apply Theorem 6 to conclude that there must exist a vector p such that p⊺b < p⊺y
for every y ∈ S. Because 0 ∈ S, we must have p⊺b < 0. Moreover, because every column Ai

of A satisfies λAi ∈ S for every λ > 0, we have

p⊺b

λ
< p⊺Ai, ∀λ > 0,

and taking the limit as λ → ∞ we see that it must be the case that p⊺Ai ≥ 0. We conclude
that there exists p such that p⊺A ≥ 0 and p⊺b < 0, which completes the proof.

To appreciate the power of the Farkas Lemma, note that its statement provides an
immediate certificate of infeasibility for the primal problem. Recall that in our original
(standard form) primal problem, we are interested in points x satisfies Ax = b, x ≥ 0. The
Farkas Lemma essentially states that either the primal problem is feasible or there exists a
vector p satisfying alternative (b). Therefore, p constitutes a certificate of infeasibility:
if we have such a p, we know for a fact that the primal problem is infeasible.

3.4 The Strong Duality Theorem

We are now ready to derive our main result – the strong duality theorem – as a direct
corollary of the Farkas Lemma. Without loss of generality, we prove this for a primal
problem with constraints in inequality form, Ax ≥ b. (This is without loss because the
optimal solution in an optimization problem is the same irrespective of the representation
of the feasible set and any polyhedron admits an inequality representation like the one we
consider.) So we consider here the following pair of primal and dual problems:

Primal Problem (P1) : Dual Problem (D1) :
minimize c⊺x maximize p⊺b
subject to Ax ≥ b, subject to p⊺A = c⊺, p ≥ 0.

(13)

Theorem 8. If a primal linear programming problem has an optimal solution, so does its
dual, and the respective optimal values are equal.

Proof. Assume that the primal (P1) in(13) has an optimal solution x∗. We prove that the
dual problem admits a feasible solution p such that p⊺b = c⊺x∗.

Let F = {i | a⊺i x∗ = bi} be the indices of active constraints at x∗. We claim that the
cost vector c can be written as a conic combination of the active constraints {ai : i ∈ F .
(See Figure 4 for a visualization.)

As a first step, we show that for any vector d, the following implication holds:

a⊺i d ≥ 0, ∀ i ∈ F ⇒ c⊺d ≥ 0.

To see this, consider any d satisfying the premise on the left-hand-side. For a sufficiently
small ϵ > 0, we claim that the point x∗ + ϵd is feasible for P . We have that a⊺i (x

∗ + ϵd) ≥
bi, ∀i ∈ F ; moreover, because a⊺i x

∗ > bi for all the constraints i /∈ F , we will have that
a⊺i (x

∗ + ϵd) ≥ bi also holds for i /∈ F provided that ϵ is sufficiently small. So x∗ + ϵd is
feasible. Moreover, if c⊺d < 0, then c⊺(x∗ + ϵd) < c⊺x∗ would contradicts the optimality of
x∗. This implies that we cannot find any vector d such that a⊺i d ≥ 0, ∀ i ∈ F and c⊺d < 0.
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Figure 4: Interpretation of optimality conditions at x∗. The red constraints a1, a2 are active
at x∗, whereas the black constraint a3 is not active. The proof shows that in this case, the
cost vector c can be generated as a conic combination of the active constraints a1, a2, with
coefficients p1 and p2.

In the context of the Farkas Lemma (Theorem 7), this means alternative (b) is not true, so
alternative (a) must be true: c can be expressed as a nonnegative linear combination of the
vectors ai, i ∈ F . That is, there exist nonnegative scalars pi, i ∈ F , such that:

c =
∑
i∈F

piai.

Letting pi = 0 for i /∈ F , we conclude that ∃p ≥ 0 feasible for the dual (D). Moreover,

p⊺b =
∑
i∈F

pibi =
∑
i∈F

pia
⊺
i x

∗ = c⊺x∗,

which shows that the objective of the dual (D) under the feasible solution p is the same as
the optimal primal objective. The strong duality result follows from Corollary 1.

3.5 Possibilities for Primal/Dual Pairs

In view of the strong duality result, we can see that the only possibilities for a primal-dual
pair are summarized in Table 1.

Finite Optimum Unbounded Infeasible

Finite Optimum Possible Impossible Impossible
Unbounded Impossible Impossible Possible
Infeasible Impossible Possible Possible

Table 1: The different possibilities for the primal and the dual.

The result that is perhaps not immediately obvious is that both the primal and the dual
may be infeasible. This can be seen with the following two-dimensional example:

13



Example 2 (Infeasible (P) and (D)). Consider the infeasible primal problem:

minimize x1 + 2x2 subject to x1 + x2 = 1, 2x1 + 2x2 = 3.

Its dual is:
maximize p1 + 3p2 subject to p1 + 2p2 = 1, p1 + 2p2 = 2,

which is also infeasible.

4 Some Initial Applications of Duality

We can now revisit some of the motivating applications discussed in Section 1. The previ-
ous results already showed how duality provides optimality certificates and certificates of
infeasibility, so we now focus on more practical aspects.

4.1 Robust Optimization

Consider a setting where we have a linear program where one of the constraints is uncertain.
Specifically, suppose one of the constraints defining the feasible set Ax ≤ b is:2

a⊺x ≤ b, (14)

where a is only known to reside in a polyhedral set, a ∈ A, and we seek decisions x that
are robustly feasible, i.e., that satisfy the constraint for any possible value of a:

a⊺x ≤ b, ∀ a ∈ A, (15)

where the set A is a known polyhedral set

a ∈ A := {a ∈ Rn : Ca ≤ d} ,

where the matrices C and D are given. (As a more concrete example, consider the very
practical case when we only have bounds on each coefficient, ai ≤ ai ≤ āi, so the set A is a
hyper-rectangle.)

Note that the constraint (15) makes our LP a difficult optimization problem – in fact, it
is called a “semi-infinite” optimization problem because we would have an infinite number
of constraints (one for every a ∈ A).

However, strong duality will enable us to rewrite the constraint (15) as a finite-dimensional
optimization problem even when A is specified through inequalities. In that case, con-
straint (15) is equivalent to:

max
a :Ca≤d

(a⊺x) ≤ b. (16)

2The case where the right-hand-side is also uncertain can be captured by extending the vector x with
one extra component xn+1 constrained to equal 1.
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The left-hand side in (16) is a linear program. For the constraint to be feasible, that linear
program must have a finite optimal value, in which case (by strong duality) its value will
equal the value of its dual, which is given by the following problem:

max
a

x⊺a

Ca ≤ d

= min
p

p⊺d

p⊺C = x⊺

p ≥ 0.

Then, constraint (16) is satisfied for a given x if and only if the following system of con-
straints is feasible in variable p:

p⊺d ≤ b

p⊺C = x⊺

p ≥ 0.

This finite-dimensional system of linear (in)equalities in variables x, p reformulates the semi-
infinite constraint (15). Note that the reformulation does require introducing new variables
and constraints: we introduced a new set of decisions p (as many as there are rows of C)
and n additional constraints (p⊺C = x⊺).

As a small side remark, note that if we had access to a representation of the polyhe-
dral set A through its extreme points and extreme rays, i.e., A = conv({a1, . . . , ak}) +
cone({w1, . . . , wr}), then we could readily reformulate constraint (15) equivalently as the
following finite-dimensional system of inequalities:

a⊺x ≤ b, ∀ a ∈ {a1, . . . , ak}
a⊺x ≤ 0, ∀ a ∈ {w1, . . . , wr}.

However, this approach may not be practical because there might be an exponentially large
number of extreme points. (For instance, if A = {a ∈ Rn : ai ≤ ai ≤ āi,∀i}, there would
be 2n extreme points!)

4.2 A Polynomially-Sized Representation for CVaR

Recall the homework problem where we wanted to ensure that the Conditional Value-at-
Risk (CVaR) of a portfolio payoff was exceeding some lower limit. CVaR was defined as
the average over the k-smallest values among the monetary payoffs (for a suitable integer
k). As such, if the values of the monetary payoffs in the different scenarios are given as
v1, v2, . . . , vn, the key constraint that needs to be met is of the form:

k∑
i=1

v[i] ≥ b, (17)

where v[1] ≤ v[2] ≤ · · · ≤ v[n] is the sorted vector of payoffs. That constraint can be satisfied
by enumerating over all the vectors x ∈ {0, 1}n that contain exactly k values of 1. However,
that formulation would require exponentially many constraints.
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Here, we leverage strong duality to rewrite the constraint with a “small” (i.e., polynomially-
sized) number of variables and constraints. We claim that the sum of the k-smallest values
among the values v1, . . . , vn can be obtained as the optimal value of the linear program:

min
x∈Rn

n∑
i=1

vixi

x ≥ 0

x ≤ e

e⊺x = k.

(18)

In the above formulation, the vector x ∈ [0, 1]n represents weights placed on each value vi.
The weights are non-negative and there is a budget k that must be exactly distributed for
the weights. We claim that LP (18) achieves its optimal value at:

xi =

{
1, if vi ∈ {v[1], v[2], . . . , v[n]}
0, otherwise.

(19)

This solution is clearly feasible in the LP (18) and its optimality can be shown through
a simple interchange argument. Assume that some other feasible solution could achieve a
strictly lower objective. Such a solution would necessarily be taking some strictly positive
weight from at least one of {v[1], v[2], . . . , v[n]} to distribute to {v[i] : i > n}, all of which are
(weakly) larger; so that solution cannot strictly decrease the objective.

By strong duality, the optimal value of LP (18) is the same as the optimal value of its
dual:

max
p,t

e⊺p+ k · t

p+ t · e ≤ v

p ≥ 0.

So constraint (17) is satisfied if and only if the following system in variables p, t is feasible:

e⊺p+ k · t ≥ b

p+ t · e ≤ v

p ≥ 0.

We challenge the reader to try proving the optimality of the solution (19) (to LP (18)) by
producing a feasible solution to the dual with the same optimal value!

5 Other Implications of Duality

We next discuss a few other important results and implications of duality, including opti-
mality conditions (for standard-form LPs and general LPs), computational choices to make
when solving LPs, complementary slackness, and the resolution theorem.
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5.1 Optimal Solutions for Standard-Form LPs.

Strong duality provides powerful certificates of (in)feasibility and (sub)optimality. We al-
ready knew from weak duality that any dual-feasible solution p provides a bound on the
cost of a feasible primal solution x. However, strong duality assures us that these optimality
bounds are actually really good and that the dual optimal solution provides a “certificate
of optimality” for the primal (so we would be able to prove that a given feasible x is optimal
by simply checking whether it satisfies c⊺x = b⊺p∗).

To appreciate these points, it is helpful to reconsider the case of a standard-form LP and
examine some properties of the optimal primal and dual solutions. So consider a primal in
standard form and its dual:

(P) min c⊺x

Ax = b

x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺

Primal (P). Recall from our earlier classes that the primal always admits an optimal
solution that is a basic feasible solution. Let B ⊆ {1, . . . , n} denote a basis and AB the
submatrix of A with columns from B. The basic feasible solution for the primal can then
be determined as

x = [xB, 0], xB = A−1
B b.

The feasibility of x therefore translates into the condition:

Feasibility-(P) : xB := A−1
B b ≥ 0. (20)

Moreover, recall from our lecture on the simplex algorithm that the condition for optimality
of x is that the reduced costs are non-negative, i.e.,

Optimality-(P) : c⊺ − c⊺BA
−1
B A ≥ 0. (21)

Dual (D). The same basis B that gave us a primal solution can also be used to determine
a dual vector p through the equations:

p⊺Ai = ci, ∀ i ∈ B.

Because AB is invertible, this system has a unique solution, which can be written as:

p⊺ = c⊺BA
−1
B , ∀ i ∈ B. (22)

The dual objective value of p is exactly:

p⊺b = c⊺BA
−1
B b = c⊺x.

Moreover, p is feasible in the dual if and only if:

Feasibility-(D) : c⊺ − p⊺A ≥ 0 ⇔ c⊺ − c⊺BA
−1
B A ≥ 0 (23)

So dual feasibility is exactly the same as primal optimality! This gives an alternative
interpretation to the termination conditions for the simplex method: simplex stops when
the current basis B corresponds to a solution p that is feasible for the dual! Because that
solution p has the same cost as the current primal solution x by construction, when p is
feasible it automatically proves the optimality of the primal solution x.
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5.2 Solve (P) or (D)? Primal and Dual Simplex.

Instead of solving the primal, one can attempt to solve the dual. The dual simplex
algorithm does exactly that: it tries to solve the dual (D) by maintaining dual feasible
solutions p and trying to prove their optimality – or equivalently, construct a primal solution
x with the same objective that is feasible in (P). Whereas the primal simplex is swapping
decisions in and out of the basis, the dual simplex can then be seen as swapping one
binding constraint for another: the basic feasible solutions obtained by the dual simplex at
consecutive iterations have m−1 active inequality constraints in common, so these solutions
are either adjacent or they coincide. We do not include a detailed discussion here but refer
the interested reader to standard textbooks (such as Bertsimas & Tsitsiklis) for more.

Here, we just note that the dual simplex method is not a perfect mirror of the primal
simplex because dual simplex works entirely with a problem with inequality constraints,
whereas the primal simplex is tailored to problems in standard form.

A natural question is: when should one solve (P) (with primal-simplex) rather than
solve (D) (with dual-simplex)? This largely depends on specification of the problem and
an important consideration is whether it is easier to generate a feasible solution for one for-
mulation rather than the other. Sometimes, optimal solutions are available for a “simpler”
version of the problem and the choice of method depends on how the “larger” problem
is related to the simpler one. For instance, suppose we solved a primal problem with n
decisions and m constraints to optimality and we have both a primal-optimal solution x∗

and a dual-optimal solution p∗. Then:

• If the larger problem involves an extra set of decisions xe, it is natural to consider
the primal simplex because we can readily generate a feasible solution for the larger
problem as [x∗, xe = 0].

• If the larger problem involves adding extra constraints in the primal, Aex = be, then
it is natural to consider the dual simplex because we can readily generate a feasible
solution for the larger problem as [p∗, pe = 0].

Modern solvers such as Gurobi include both “primal simplex” and “dual simplex”, and even
allow concurrent methods that run in parallel and pick the solution from whichever process
terminates first. If you are curious, you can read more at this url: https://www.gurobi.
com/documentation/current/refman/method.html.

5.3 Optimality Conditions and Complementary Slackness

Sometimes all we want is to characterize the optimal solutions to a problem – this is often
the case in theoretical work, where we want to show that solutions possess certain proper-
ties. We will discuss such optimality conditions more extensively in nonlinear optimization
problems, so it is important to appreciate them in the simplest possible case, namely for
linear optimization. The following theorem states necessary and sufficient optimality
conditions in the context of the general primal-dual problem considered in (8).

Theorem 9 (Complementary Slackness). Consider the primal-dual pair in (8). Let x and p
be feasible solutions to the primal and dual problem, respectively. Then x and p are optimal
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solutions for the primal and the dual if and only if:

pi(a
⊺
i x− bi) = 0, ∀i

(cj − p⊺Aj)xj = 0, ∀j.

Proof. Recall the definitions ui = pi(a
⊺
i x − bi) and vj = (cj − p⊺Aj)xj in the proof of the

weak duality result in Theorem 3. We noted that for x primal feasible and p dual feasible,
we have ui ≥ 0 and vj ≥ 0 for all i and j and that:

c⊺x− p⊺b =
∑
i

ui +
∑
j

vj .

By the strong duality theorem, if x and p are optimal, then c⊺x = p⊺b, which implies that
ui = vj = 0 for all i, j. Conversely, if ui = vj = 0 for all i, j, then c⊺x = p⊺b, which implies
that x and p are optimal.

Intuitively, the first set of optimality conditions are always satisfied if the primal (P) is
in standard form. If the primal has a constraint like a⊺i x ≥ bi, the complementary slackness
condition implies that if a⊺i x > bi (so the constraint is not active), then pi = 0. Put
differently, constraints that are not active are “uninteresting” and have zero price: these
can be removed from the primal (and the corresponding dual variable can also be removed)
without affecting optimality.

In some cases – typically, for smaller-scale problems or more stylized models – these
optimality conditions can actually be solved analytically to recover the optimal solutions
for the primal and the dual. However, this is almost never the most efficient approach to
solving large-scale problems in practice!

Also in some special cases, we can actually strengthen this result to a strict comple-
mentarity result. One such instance is due to Goldman and Tucker, and concerns the
following primal-dual pair.

Theorem 10 (Goldman and Tucker). Consider the following primal-dual pair of LPs:

(P) min c⊺x

Ax = b

x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺

If (P) and (D) are both feasible, they admit optimal solutions satisfying strict comple-
mentarity, i.e., there exist x∗ and p∗ optimal in (P) and (D), respectively, such that

x∗j > 0 ⇔ p⊺Aj = cj .

We will not prove this here, but the result will be useful when we discuss one of the
main applications of duality in finance (for proving a fundamental result in asset pricing).
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5.4 Representation of Polyhedra

An important consequence of duality theory is an alternative representation of all polyhedra,
in terms of their extreme points and extreme rays. We first need a quick definition.

Definition 1. Consider a nonempty polyhedron P = {x ∈ Rn : Ax ≥ b}. Then:

1. The set C := {d ∈ Rn : Ad ≥ 0} is called the recession cone of P , i.e., the set
of directions d along which we can move indefinitely without leaving the set P . Any
nonempty element of the recession cone is referred to as a ray of P .

2. Any d ∈ C for which there exists S ⊂ {1, . . . ,m} with |S| = n− 1 and a⊺i d = 0, ∀i ∈ S
(i.e., n− 1 linearly independent constraints active) is called an extreme ray of P .

The rays of P are directions in which we can move indefinitely in the set P , and the
recession cone is the set of all rays; the extreme rays are extremal directions, and any ray
can be written as a conic combination of the extreme rays. A visualization is provided in
Figure 5. Clearly, any poltyope (i.e., bounded polyhedron) has C = {0}.

Figure 5: A polyhedron and its recession cone and extreme rays. Left: the polyhedron
P = {x : Ax ≥ b} and the rows of the matrix A. Right: the shaded area denotes the
recession cone of P (described by the green normal vectors) with a generic ray d shown in
blue; the extreme rays are w1 and w2, which can also be visualized in the figure on the left.

Recession cones provide some insight regarding cases where optimization problems are
unbounded. In particular, the following result is true.

Proposition 1. Consider the problem minimize
{
c⊺x : x ∈ P := {x ∈ Rn : Ax ≥ b}

}
.

Then, the optimal value is −∞ if and only if there exists a ray d of P such that c⊺d < 0;
moreover, if P has at least one extreme point, that ray can be taken as an extreme ray.

We do not prove this result, but the intuition should be quite immediate from Figure (5).
With this result, we can provide the following fundamental representation result for an
arbitrary polyhedron P .

Theorem 11 (Resolution Theorem). Let P = {x ∈ Rn : Ax ≥ b} be a non-empty polyhe-
dron. Let x1, x2, . . . , xk be its extreme points (possibly empty) and let w1, w2, . . . , wr be the
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set of extreme rays of P (possibly empty). Then, with

Q :=conv
(
{x1, . . . , xk}

)
+cone

(
{w1, . . . , wr}

)
=

{ k∑
i=1

λix
i +

r∑
j=1

θjw
j :λ ≥ 0, θ ≥ 0, e⊺λ = 1

}
,

we have P = Q.

Proof. Proving that Q ⊆ P can be done by checking that Ax ≤ b holds for any x ∈ Q.
To prove P ⊆ Q, assume for purposes of deriving a contradiction that there exists z ∈ P

such that z /∈ Q. Consider the linear programming problem:

(P1) maximize
λ,θ

k∑
i=1

0λi +

r∑
j=1

0θj

subject to

k∑
i=1

λix
i +

r∑
j=1

θjw
j = z

k∑
i=1

λi = 1

λi ≥ 0, i = 1, . . . , k,

θj ≥ 0, j = 1, . . . , r,

which is infeasible because z /∈ Q. This problem is the dual of the problem

(D1) minimizep,q p⊺z + q

subject to p⊺xi + q ≥ 0, i = 1, . . . , k,

p⊺wj ≥ 0, j = 1, . . . , r,

Because problem (P1) is infeasible whereas (D1) is trivially feasible with p = q = 0, it must
be that (D1) has optimal cost −∞. This implies that (D1) admits as feasible (p, q) so that
p⊺z + q < 0. Because p is feasible, this implies p⊺z < −q ≤ p⊺xi for any i = 1, . . . , k, and
also that p⊺wi ≥ 0.

Having fixed p as above, we now consider the linear programming problem

minimize p⊺x

subject to Ax ≥ b.

If the optimal cost is finite, there exists an extreme point xi which is optimal. Because z ∈ P
is a feasible solution in this problem and p⊺z < p⊺xi, that would lead to a contradiction. If
the cost is −∞, this implies (by Proposition 1) that there exists an extreme ray wj of P
such that p⊺wj < 0, which is also a contradiction.

The resolution theorem is a fundamental result in linear optimization that states that
a polyhedron can be represented in two ways: (i) in terms of a finite number of linear con-
straints, or (ii) in terms of a finite collection of extreme points and extreme rays. However,
going from one description to the other is a nontrivial task.
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6 Dual Variables as Marginal Costs; Sensitivity Analysis

Next, we develop an important interpretation of the dual variables as marginal costs (or
shadow prices) for the constraints they are associated with. These results will provide a
direct economic interpretation of shadow prices and will also lead to simple mnemonic rules
for remembering the signs of shadow prices and writing duals.

Because some of the developments are related to the simplex algorithm, we work with a
primal in standard form, but we emphasize that the concepts — and particularly the shadow
price interpretation – hold for general LPs. Consider the following primal-dual pair:

(P) min c⊺x

Ax = b

x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺
(24)

Suppose we solved this LP and obtained an optimal primal solution x∗ and an optimal dual
solution p∗. Our main goal is to show that p∗ is the gradient of the optimal cost with respect
to b (“almost everywhere”). To that end, we must examine how the optimal cost changes
with b, which is a type of sensitivity analysis. (Sensitivity analysis tries to understand
how results change when problem parameters change; this is important in their own right
because problem parameters are often estimated from noisy/imperfect data, so it is natural
to examine how the noise in the estimates might impact the solution.)

6.1 Dependency on b.

Let P (b) := {x : Ax = b, x ≥ 0} denote the feasible set in (24) as a function of b, and F (b)
denote the optimal cost as a function of b. Throughout this section, we assume that the
dual feasible set {p : p⊺A ≤ c⊺} is nonempty; this set is independent of b, so this assumption
guarantees that F (b) > −∞.

We want to prove that the function F (b) is convex and piece-wise linear in b.

Definition 2 (Convex/concave functions). A function f : X ⊆ Rn → R is convex if its
domain X is a convex set and for any x, y ∈ X and λ ∈ [0, 1], we have:

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y). (25)

A function is concave if −f is convex.

The geometric intuition is depicted in Figure 6. For a convex function, the line segment
between any two points (x, f(x)) and (y, f(y)) lies above the graph of the function.

An equivalent definition of a convex function is in terms of its epigraph. The epigraph
of a function f : X ⊆ Rn → R is the set of points that lie on or above its graph:

epi(f) = {(x, t) ∈ X × R : t ≥ f(x)}. (26)

Then, f is convex if and only if epi(f) is a convex set.
With these definitions, we can present the first main result.

Theorem 12 (Global Dependency On b.). The optimal cost F (b) is a convex and piece-wise
linear function of b on the set S := {b : P (b) ̸= ∅}.
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Figure 6: For a convex function, the line segment between two points (x, f(x)) and (y, f(y))
lies above the graph. The epigraph is the shaded area (extending vertically to +∞).

Proof. First, we claim that S is convex. We can recognize this because S ≡ cone({A1, . . . , An})
is the cone spanned by the columns of A and any cone is convex. (We also dealt with this
exact same cone in the proof of the Farkas Lemma.)

Although the convexity of F can be proved from base principles, we adopt a different
proof that leverages duality. Because we assumed that the dual is feasible, F (b) will be
finite and (by strong duality) will equal the optimal value of the dual. Let p1, p2, . . . , pr be
the extreme points of the dual feasible set. (Clearly these exist because the optimal values
are finite.) Then, we have:

F (b) = max
i=1,...,r

b⊺pi, ∀ b ∈ S. (27)

Figure 7 visualizes this result. F (b) is the pointwise maximum of a finite collection of
linear functions of b. That this function is convex follows readily from properties of convex
functions, but to see an elementary proof, note that the epigraph of F (b) is the intersection
of the epigraphs of the functions b⊺pi for b ∈ S. Because S is convex, every such epigraph
is convex, and the intersection of convex sets is convex, proving that F (b) is convex.

Figure 7: The optimal value F (b) as a function of the right-hand-side b. The dashed linear
functions (in blue) correspond to extreme points pi of the dual feasible set. Note that at
any point b̄ where F (b) is differentiable, F (b) is linear in a certain range and the optimal
dual variable p∗ defines its gradient.
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This representation gives the interpretation we were seeking for dual variables. Note
that at any point b = b̄ where F (b) is differentiable, the optimal dual solution p∗ is
exactly the gradient of F (b). The dual variable pi associated with the i-th constraint
thus acts as a “marginal cost” or “shadow price” associated with the constraint. Moreover,
because F (b) is linear in a certain range around b̄, the dual variable allows estimating the
exact change in F (b) in that range: increasing bi by δ increases F (b) by δ · pi.

Modern solvers give direct access to (i) the optimal value of the dual variable associated
with any constraint and (ii) the allowable range described above within which the optimal
objective is linear. The linear optimization tutorial that we circulated describes how that
can be done in Gurobipy: for a constraint object c, the optimal dual variable can be obtained
from the attribute c.Pi, the left end of the range can be obtained from c.SARHSLow, and
the right end of the range can be obtained from c.SARHSUp. If you are wondering how
this is done, read through §6.4.

When the change in a particular right-hand-side component bi is large enough to put
us outside this allowable range, we cannot predict exactly the change in the objective or
the new value for the dual-optimal solution (we would need to resolve the problem!), but
we can predict directionally what could happen. Specifically, a simple mnemonic rule to
remember is that outside the allowable range, things only “get worse”. For instance,
if increasing bi increased the optimal costs (so pi was positive) in the range, increasing bi
outside the range would result in an even larger pi and costs increasing at faster rate. In
this case, although decreasing bi in the range reduced the costs, decreasing bi beyond the
range would reduce costs at a slower rate (so pi would decrease). A similar interpretation
also holds for the case when increasing bi reduced costs (so pi was negative) in the range:
increasing bi beyond the range would reduce

6.1.1 Optimal Dual Solutions As Subgradients of F (b)

The points b where F (b) is not differentiable actually correspond to cases where multiple
dual optimal solutions exist and it can be shown that in that case, all such dual solutions
are valid subgradients of F (b). To formalize this, we introduce one more definition.

Definition 3 (Subgradient.). Let F be a convex function defined on a (convex) set S. Let
b̄ be an element of S. We say that a vector p is a subgradient of F at b̄ if

F (b̄) + p⊺(b− b̄) ≤ F (b), ∀b ∈ S.

At points b where F (b) is differentiable, there is a unique subgradient; but at breakpoints,
multiple subgradients are valid (which form the so-called “sub-differential”). The following
result makes the connection with optimal dual variables clear.

Theorem 13. Suppose that the linear programming problem min{c⊺x : Ax = b̄, x ≥ 0} has
a finite optimal cost. Then, a vector p is an optimal solution to the dual problem if and
only if it is a subgradient of the optimal cost function F at the point b̄.

Proof. We first show that any dual optimal p is a valid subgradient. Suppose that p is an
optimal solution to the dual. Then, strong duality implies that p⊺b̄ = F (b̄). Consider now
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some arbitrary b ∈ S. For any feasible solution x ∈ P (b), weak duality yields p⊺b ≤ c⊺x.
Taking the minimum over all x ∈ P (b), we obtain p⊺b ≤ F (b). Hence,

p⊺b− p⊺b̄ ≤ F (b)− F (b̄),

and we conclude that p is a subgradient of F at b̄.
For the reverse direction, let p be a subgradient of F at b̄, that is,

F (b̄) + p⊺(b− b̄) ≤ F (b), ∀b ∈ S. (28)

Pick some x ≥ 0 and let b = Ax. Then, x ∈ P (b) and F (b) ≤ c⊺x. By (28), we have:

p⊺Ax = p⊺b ≤ F (b)− F (b̄) + p⊺b̄ ≤ c⊺x− F (b̄) + p⊺b̄.

Because this is true for all x ≥ 0, we must have p⊺A ≤ c⊺, which shows that p is a dual
feasible solution. Also, by letting x = 0, we obtain F (b̄) ≤ p⊺b̄. Using weak duality, every
dual feasible solution q must satisfy q⊺b̄ ≤ F (b̄) ≤ p⊺b̄, which shows that p is optimal.

6.2 Dependency on c.

In a similar fashion, let G(c) denote the optimal cost in (24) as a function of c, and define
the set T := {c ∈ Rn : minx≥0,Ax=b c

⊺x > ∞} as all cost vectors resulting in a finite
objective value. The following result summarizes the dependency of the optimal value on c.

Theorem 14. Consider a feasible linear programming problem in standard form. Then:
(a) The set T of all c for which the optimal cost is finite is convex.
(b) The optimal cost G(c) is a concave function of c on the set T .
(c) If for some value of c the primal problem has a unique optimal solution x∗, then G is
linear in the vicinity of c and its gradient is equal to x∗.

The proof follows by applying an identical line of arguments to the dual.3

Importantly, this result also affords an interpretation for the optimal primal solution x∗

as a shadow price for the constraints in the dual and implies that x∗ remains optimal for a
certain range of changes in each objective coefficient cj .

Modern solvers also allow obtaining this range of changes. For instance, in Gurobipy,
every decision variable xj has two attributes, SAObjLow and SAObjUp. Once an op-
timal solution x∗ is obtained, these attributes will specify the lower limit and upper limit,
respectively, of the values of the objective coefficient cj (corresponding to variable xj) within
which the solution x∗ would remain optimal.

6.3 Optimal Dependency and Signs of Shadow Prices.

On remark is important. Although our discussion in §6.1 and §6.2 relied on a
primal in standard form, the results hold for a primal problem in general form.

3Specifically, we can convert the dual maximization into the minimization problem −min(−p⊺b) and
apply arguments similar to those above because c is a right-hand-side in this problem.
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That is, if we considered a primal in general form and defined F (b, c) as its optimal value:

F (b, c) := minx c⊺x
a⊺i x ≥ bi, i ∈ M1,
a⊺i x ≤ bi, i ∈ M2,
a⊺i x = bi, i ∈ M3,
xj ≥ 0, j ∈ N1,
xj ≤ 0, j ∈ N2,
xj free, j ∈ N3.

= maxp p⊺b
pi ≥ 0, i ∈ M1,
pi ≤ 0, i ∈ M2,
pi free, i ∈ M3,
p⊺Aj ≤ cj , j ∈ N1,
p⊺Aj ≥ cj , j ∈ N2,
p⊺Aj = cj , j ∈ N3.

we would readily have that F (b, c) is a piece-wise linear, convex function of b
and a piece-wise linear, concave function of c. Moreover, the optimal dual solutions
p∗ are valid supergradients for F (b, c) with respect to b and the optimal primal solutions x∗

are valid subgradients for F (b, c) with respect to c.

This discussion also highlights and reemphasizes the direct connection between the signs
of shadow prices and the types of optimization problems solved. The only four possibilities,
which we already discussed in Table 1, are again depicted in Figure 8. Note that given the
type of optimization problem (minimization or maximization) and the type of constraint (≤
or ≥), one can precisely infer the sign of the dual variable corresponding to that constraint
and also predict the kind of dependency that the optimal objective has with respect to the
right-hand-side.

Figure 8: The relationship between the type of optimization problem solved, the type of
constraint, and the sign of the dual variable. Given two, one can figure out the third.

6.4 Exact Range for Shadow Prices and Local Sensitivity Analysis

We now consider the question of characterizing the precise range of changes in the right-
hand-side of a constraint (discussed in §6.1) or in an objective coefficient (discussed in §6.2)
that allow us to precisely infer what happens to the optimal objective or the optimal solu-
tion. This will rely on a local sensitivity analysis related to the workings of the simplex
algorithm, so we again consider the primal LP in standard form and its dual:

(P) min c⊺x

Ax = b

x ≥ 0

(D) max p⊺b

p⊺A ≤ c⊺
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Suppose we solved these problems are recovered an optimal basic feasible solution x for
the primal and a corresponding optimal p for the dual. Recall from Section 5.1 that for a
given basis B, the feasibility and optimality of the primal basic solution x := [xB, 0] with
xB := A−1

B b and the corresponding dual choice p⊺ := c⊺BA
−1
B translate into the conditions:

Feasibility in (P) : xB ≡ A−1
B b ≥ 0 (29a)

Optimality in (P)/Feasibility in (D) : c⊺ − p⊺A ≡ c⊺ − c⊺BA
−1
B A ≥ 0. (29b)

Subsequently, we examine what happens to the optimal solution when we make changes
in b or c. (For other changes, see Chapter 5 of the Bertsimas and Tsitsiklis text.) More
specifically, we will try to understand the conditions under which the changes in b and c
would preserve the same optimal basis B, which will then allow us to characterize how
the optimal primal or dual solutions would change.

6.4.1 Local Changes in the Right-Hand-Side b

Suppose that we change b to b+θei, where ei is the i-th unit vector. We want to determine
the range of values of θ under which the current basis B remains optimal. Note that the
optimality conditions (29b) are not affected by a change in b, so we only need to examine
the feasibility condition (29a), which now becomes:

A−1
B (b+ θei) ≥ 0 ⇔ xB + θg ≥ 0,

where g := [g1, g2, . . . , gm]⊺ denotes the i-th column of the matrix A−1
B . Clearly, the condi-

tion above holds provided that the change θ is sufficiently small; more precisely, we need

max
i:gi>0

(
−xBi

gi

)
≤ θ ≤ min

i:gi<0

(
−xBi

gi

)
. (30)

For θ in this range, we have the following observations:

• the optimal primal solution is x∗ := [xB + θg, 0].

• the optimal dual solution remains unchanged.

• the optimal value of the primal changes by:

c⊺BA
−1
B (b+ θei) = p⊺b+ θpi. (31)

Equation (31) again restates our interpretation of the dual variable pi as the derivative of
the optimal objective value with respect to the right-hand-side bi. Moreover, the discus-
sion above confirms that this dependency is exact for any changes of the right-hand-side
coefficient bi in the range satisfying (30). Modern solvers are thus able to construct the
interval (30) based on the optimal simplex tableau.

If θ is outside the allowed range in (30), the current basis satisfies the primal optimal-
ity/dual feasibility condition (29b), but is primal infeasible. The dual variables (i.e., shadow
prices) will change in a predictable direction, but the magnitude of the change cannot be
precisely known, as we saw in §6.1.
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6.5 Local Changes In the Cost Vector c

Suppose now that some cost coefficient cj becomes cj + θ. The primal feasibility condi-
tion (29a) is not affected. We therefore need to focus on the optimality condition (29b):

c⊺ ≥ p⊺A where p = c⊺BA
−1
B .

If cj is the cost coefficient of a nonbasic variable xj , then cB does not change and the
only inequality above that is affected is the one for the j-th component. We need:

cj + θ ≥ p⊺Aj ⇔ θ ≥ −cj , (32)

where c̄j := cj − p⊺Aj is the j-th reduced cost.
If cj is the cost coefficient of a basic variable, then cB becomes cB+θej and the optimality

conditions in the new problem would become:

ci ≥ (cB + θej)
⊺A−1

B Ai, i ̸= j.

(We are omitting the constraint for j because it will be automatically satisfied.) The
constraints above amount to

θ
(
e⊺jA

−1
B Ai

)
≤ c̄i := ci − p⊺Ai. (33)

The lower bounds (32) and the upper bounds (33) establish the range of changes for each
cost coefficient cj within which the optimal basis remains unchanged, which here implies
that the primal solution x would remain optimal. In these ranges, the optimal costs
would increase by a suitable amount, θxj .

7 More Complex Applications of Duality

We discuss a few more advanced applications of duality in finance and in airline network
revenue management.

7.1 Asset Pricing and No-Arbitrage

Let us assume than we are in an investment world where there are n+ 1 securities indexed
by i = 0, . . . , n, where i = 0 denotes cash and the other securities could be anything (stocks,
bonds, complex derivatives).4 Moreover, we have two periods: the current period “c” and
the future period “f”. In the current period, the prices of the securities are Sc

i for i = 1, . . . , n
are for cash Sc

0 = 1. In the future period, the prices are uncertain. Specifically, there is a
finite number of states of the world denoted by

Ω = {ω1, ω2, . . . , ωm},

each occurring with positive probability, and the prices of the securities are as follows:

4Our treatment here follows a simplified version of Chapter 4 of the book “Optimization Methods in
Finance” by Tütüncü and Cornuejols, to which we direct the interested reader for generalizations.
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• cash is assumed to be riskless, so the price of cash will be Sf
0 = R = 1+ r, where r is

the risk-free rate of return during the current period and the future

• for i > 1, security i will have a price that depends on the state of the world, Sf
i (ωj).

To state the main result here, we first need a few definitions.

Definition 4 (Arbitrage). An arbitrage is a trading strategy that either has a positive
initial cashflow and has no risk of a loss later (type A) or that requires no initial cash input,
has no risk of loss, and has a positive probability of making profits in the future (type B).

Intuitively, the arbitrage amounts to a sort of “free lunch” where an investor can get
something for nothing. To appreciate what this means in our investment model, note that
if we purchase an amount xi of each security i ∈ {0, . . . , n}, we would incur an immediate
cost

∑n
i=0 S

c
i xi (for the purchase in the current period) and we would have a future cashflow

of
∑n

i=0 S
f
i (ω) · xi if the state of the world turns out to be ω ∈ Ω. Thus,

• a type-A arbitrage would mean that we can find an investment strategy xi such that:

n∑
i=0

Sc
i · xi < 0 (positive initial cashflow)

n∑
i=0

Sf
i (ω) · xi ≥ 0, ∀ω ∈ Ω (no risk of loss)

(34)

• a type-B arbitrage would mean that we can find an investment strategy xi such that:

n∑
i=0

Sc
i · xi = 0 (no initial cash input)

n∑
i=0

Sf
i (ω) · xi ≥ 0, ∀ω ∈ Ω (no risk of loss)

∃ω ∈ Ω :
n∑

i=0

Sf
i (ω) · xi > 0, (positive probability of profit).

(35)

We also need one more definition.

Definition 5 (Risk-neutral probability measure). A risk-neutral probability measure
on the set Ω = {ω1, ω2, . . . , ωm} is a vector p ∈ Rm so that p > 0 and

∑m
j=1 pj = 1 and for

every security Si, i = 0, . . . , n,

Sc
i =

1

R

 m∑
j=1

pjS
f
i (ωj)

 =
1

R
Ep[S

f
i ].

Above, Ep[S] denotes the expected value of the random variable S under the probability
distribution p := (p1, p2, . . . , pm). So the definition states that the current price/value of
every asset in the market, Sc

i , exactly equals the discounted expected price/value in the
future, where the expectation is taken with respect to the risk-neutral measure (and the
discounting is done at the risk-free interest rate).
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Theorem 15 (Asset Pricing Theorem). A risk-neutral probability measure exists if and
only if there is no arbitrage.

Proof. Consider the following linear program with variables xi, for i = 0, . . . , n:

min
x

n∑
i=0

Sc
i · xi

s.t.

n∑
i=0

Sf
i (ωj) · xi ≥ 0, j = 1, . . . ,m.

(36)

Note that type-A arbitrage corresponds to a feasible solution to this LP with a negative
objective value. Since x = 0 is a feasible solution in (36), the optimal objective value is
always non-positive. Furthermore, since all the constraints are homogeneous, if there exists
a feasible solution such that ∑

S0
i xi < 0

(this corresponds to type-A arbitrage), the problem is unbounded. In other words, there is
no type-A arbitrage if and only if the optimal objective value of this LP is 0.

Suppose that there is no type-A arbitrage. Then, there is no type-B arbitrage if and
only if all constraints are tight for all optimal solutions of (36) because every state has a
positive probability of occurring. Note that any such solution must have objective value 0.

Then, consider the dual of this linear program. Let pj , j = 1, . . . ,m, be the dual variables
corresponding to the constraints in (36). The dual problem is:

max
p

0

s.t.
m∑
j=1

pj · Sf
i (ωj) = Sc

i , i = 0, . . . , n,

pj ≥ 0.

When there is no type-A arbitrage, the optimal value in the primal and the dual must be
0, which implies that the dual has a feasible solution p∗ (that is also optimal). Moreover,
if there is no type-B arbitrage, all the constraints in the primal must be binding, i.e.,∑n

i=0 S
f
i (ωj) ·x∗i = 0, for j = 1, . . . ,m. Because the dual problem satisfies the conditions of

the Goldman-Tucker Theorem (Theorem 10), this implies that there exists an optimal dual
solution p∗ such that p∗ > 0. From the dual constraint corresponding to i = 0, we have that∑m

j=1 p
∗
j =

1
R . Multiplying p∗ by R, we obtain a risk-neutral probability measure (RNPM),

proving that the “no arbitrage” assumption implies the existence of such a measure.
The converse direction is proved in an identical manner. The existence of a RNPM

implies that the dual is feasible, and therefore its dual, which is the primal (36), must be
bounded, which implies that there is no type-A arbitrage. Furthermore, because we have a
strictly feasible (and optimal) dual solution, any optimal solution of the primal must have
tight constraints, indicating that there is no type-B arbitrage.

This seemingly simple result is surprisingly powerful and has some profound implica-
tions in the theory of finance, including in proving the Value Additivity Theorem and the
Modigliani-Miller Theorem regarding the value of a firm.
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7.2 Network Revenue Management

In the airline industry, revenue management (or “yield management”, as it is sometimes
known) entails setting booking limits to control how many tickets of each type are sold.

To fix ideas, consider an airline that is planning operations for a specific day in the
future. On that day, the airline operates a set F of direct flights in its (hub-and-spoke)
network. For each flight leg (or segment) f ∈ F , you know the capacity of the aircraft flying
the leg, cf . Based on the flights, the airline can offer a large number of “products” (i.e.,
itineraries) I, where an itinerary refers to an origin-destination-fare class combination. Each
itinerary i has a price ri that is fixed,

5 and requires a seat on several flight legs operated by
the airline. We can represent the requirements of all itineraries with a matrix A having one
row for each flight leg and one column for each itinerary, with Af,i = 1 if itinerary i needs
a seat on flight leg f and Af,i = 0 otherwise.

Resource matrix A :

Itinerary 1 Itinerary 2 . . . Itinerary |I|
Flight leg 1 1 0 . . . 1
Flight leg 2 0 1 . . . 0

...
...

...
...

...
Flight leg |F | 1 1 . . . 0

For each itinerary, the airline also has estimates of the demand, given by di ∈ R+. The goal
is to decide how many itineraries of each type to sell to maximize the revenue.

The problem can be formulated as follows. Let xi denote the number of itineraries of
type i that the airline plans to sell, and let x be the vector with components xi. Similarly,
let c denote the vector with components {cf}f∈F , r the vector with components {ri}t∈I ,
and d the vector with components {di}i∈I . The revenue maximization problem is:

max
x∈RI

r⊺x

Ax ≤ c

x ≤ d,

where Ax ≤ c capture the constraints on plane capacity and x ≤ d captures that the planned
sales cannot exceed the demand for each itinerary type.

In practice, such an approach that includes all possible itineraries would encounter
several challenges. First, when considering all the possible origin-destination-fare class
combinations, the airline would end up with a gargantuan LP, which might be challenging
to solve to optimality. More concerning however, the airline might have very poor estimates
for certain itineraries (e.g., for very exotic combinations that might only be flown once or
twice in a year...) However, the airline would not want to tell its customers that it is unable
to fly them along a specific itinerary, so the airline would still like to sell that, but not
include it in its optimization. In this case, the most common approach is to rely on the
shadow prices for the capacity constraints to construct a valid range of prices.

Specifically, if we let p ∈ RF denote the dual variables corresponding to the capacity
constraints Ax ≤ c, note that:

5You can think of having multiple price points even for exactly the same origin-destination-fare class.
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• p ≥ 0;

• at optimality, pf would be the marginal revenue that the airline would lose if it lost
one seat on flight f (equivalently, the revenue it would gain if it gained a seat).

Therefore, consider now an “exotic” itinerary that entails offering a customer a seat of
several flights f ∈ E. If the airline were to sell this bundle, the marginal impact on its
revenue would be at least

∑
f∈E pf , because the airline would be losing one seat on each

flight f ∈ E. Therefore, the minimum price that it should charge a customer for the
exotic itinerary is given by the sum of the shadow prices,

∑
f∈E pf . (Naturally, the airline

would likely add a margin on top of this price. Note that an upper bound on how much
it can charge for the exotic itinerary is given by the sum of prices rf for all the one-leg
itineraries the constitute the route — such itineraries are almost always included in the
optimization explicitly.)

This heuristic is called the bid-price heuristic in network revenue management, but
the example showcases a broader principle of how a firm could price its “products.” This
views products as bundles of resources, and the dual variables/shadow prices allow valu-
ing/pricing these resources when the firm optimally allocates its resources.
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