Optimization Algorithms Overview

Method	Details
Simplex Method	Description: Solves LPs by moving along the edges of the feasible region to find the optimal vertex. Convergence: Exponential in the worst case but generally polynomial time for practical problems. When to Use: Suitable for small to medium-sized LPs, especially when a vertex solution is desired.
Gradient Descent (GD)	Description : Iteratively updates variables in the direction of the negative gradient. Convergence Rates : Convex and L -smooth: $O(1/k)$. μ -strongly convex and L -smooth: $O((1-\mu/L)^k)$. γ -PL condition and L -smooth: $O((1-\gamma/L)^k)$. When to Use : For smooth and (strongly) convex problems; careful step size selection is crucial.
Newton's Method	
BFGS	Description: A quasi-Newton method approximating the Hessian matrix iteratively using the secant condition. Convergence: μ -strongly convex, L -smooth, Lipschitz continuous Hessian: Globally linear. Exhibits fast superlinear convergence once it is close enough to optimum. When to Use: When exact Hessians in Newton's method are too costly to compute or invert, but faster convergence than GD is desired.
L-BFGS	Description: Memory-efficient version of BFGS, storing only a limited amount of information to approximate the Hessian. Convergence: Linear convergence, performs better than (A)GD in practice but no supporting theory. When to Use: Ill-conditioned large-scale optimization problems with memory constraints.
Interior-Point Methods (IPM)	Description: Solves constrained optimization problems using barrier functions. Convergence: Polynomial time for LPs, QPs, and conic optimization problems. When to Use: For small to medium-scale problems with complex constraints. When a reliable, high-accuracy solution is required.
Accelerated Gradient Descent (Nesterov's)	Description : Enhances basic GD by incorporating a momentum term. Convergence Rates : Convex and L -smooth: Optimal $O(1/k^2)$. μ -strongly convex and L -smooth: $O((1-\sqrt{\mu/L})^k)$. When to Use : For smooth, convex problems needing faster convergence than standard GD and provable rates.
Stochastic Gradient Descent (SGD)	 Description: Computes the gradient based on a subset of data at each iteration. Convergence Rates: Convex and Lipschitz continuous: O(1/√k) with decaying step size η_k = O(1/√k). μ-strongly convex, L-smooth: 1. linear to a ball centered at the optimum of radius O(ϵ), when using appropriate fixed step size equal to O(ϵ). 2. O(1/k) with decaying step size η_k = O(1/k). When to Use: Large-scale or online learning problems where full gradient computation is intractable.
Stochastic Variance Reduced Gradient (SVRG)	Description : Mitigates gradient variance in SGD by periodically computing a full gradient. Convergence Rates : L-smooth and convex: $O(1/k)$. μ -strongly convex and L-smooth: Linear, $O((1-\mu/L)^k)$. When to Use : Large-scale learning with variance reduction needs, feasible when full gradient computation intermittently is affordable.
Projected Gradient Descent	Description : Extends GD by projecting onto the feasible set after each iteration. Convergence Rates : Convex and L -smooth: $O(1/k)$. μ -strongly convex and L -smooth: Linear $O((1-\mu/L)^k)$. When to Use : Constrained optimization within a convex feasible set with an easy-to-compute projection operator.