
Optimization Algorithms Overview

Method Details

Simplex Method Description: Solves LPs by moving along the edges of the feasible region to
find the optimal vertex.
Convergence: Exponential in the worst case but generally polynomial time
for practical problems.
When to Use: Suitable for small to medium-sized LPs, especially when a
vertex solution is desired.

Gradient Descent (GD) Description: Iteratively updates variables in the direction of the negative
gradient.
Convergence Rates:
Convex and L-smooth: O(1/k).
µ-strongly convex and L-smooth: O((1− µ/L)k).
γ-PL condition and L-smooth: O((1− γ/L)k).
When to Use: For smooth and (strongly) convex problems; careful step size
selection is crucial.

Newton’s Method Description: Utilizes second-order derivative (Hessian) to find stationary
points.
Convergence:
µ-strongly convex, L-smooth, Lipschitz continuous Hessian: Globally linear
with fast local quadratic convergence, once it is close enough to optimum.
When to Use: For smooth problems requiring high precision and solving lin-
ear systems with the Hessian isn’t too expensive.

BFGS Description: A quasi-Newton method approximating the Hessian matrix it-
eratively using the secant condition.
Convergence:
µ-strongly convex, L-smooth, Lipschitz continuous Hessian: Globally linear.
Exhibits fast superlinear convergence once it is close enough to optimum.
When to Use: When exact Hessians in Newton’s method are too costly to
compute or invert, but faster convergence than GD is desired.

L-BFGS Description: Memory-efficient version of BFGS, storing only a limited amount
of information to approximate the Hessian.
Convergence: Linear convergence, performs better than (A)GD in practice
but no supporting theory.
When to Use: Ill-conditioned large-scale optimization problems with memory
constraints.

Interior-Point Methods (IPM) Description: Solves constrained optimization problems using barrier func-
tions.
Convergence: Polynomial time for LPs, QPs, and conic optimization prob-
lems.
When to Use: For small to medium-scale problems with complex constraints.
When a reliable, high-accuracy solution is required.

Accelerated Gradient Descent (Nesterov’s) Description: Enhances basic GD by incorporating a momentum term.
Convergence Rates:
Convex and L-smooth: Optimal O(1/k2).
µ-strongly convex and L-smooth: O((1−

√
µ/L)k).

When to Use: For smooth, convex problems needing faster convergence than
standard GD and provable rates.

Stochastic Gradient Descent (SGD) Description: Computes the gradient based on a subset of data at each itera-
tion.
Convergence Rates:
Convex and Lipschitz continuous: O(1/

√
k) with decaying step size ηk =

O(1/
√
k).

µ-strongly convex, L-smooth:

1. linear to a ball centered at the optimum of radius O(ϵ), when using ap-
propriate fixed step size equal to O(ϵ).

2. O(1/k) with decaying step size ηk = O(1/k).

When to Use: Large-scale or online learning problems where full gradient
computation is intractable.

Stochastic Variance Reduced Gradient (SVRG) Description: Mitigates gradient variance in SGD by periodically computing
a full gradient.
Convergence Rates:
L-smooth and convex: O(1/k).
µ-strongly convex and L-smooth: Linear, O((1− µ/L)k).
When to Use: Large-scale learning with variance reduction needs, feasible
when full gradient computation intermittently is affordable.

Projected Gradient Descent Description: Extends GD by projecting onto the feasible set after each iter-
ation.
Convergence Rates:
Convex and L-smooth: O(1/k).
µ-strongly convex and L-smooth: Linear O((1− µ/L)k).
When to Use: Constrained optimization within a convex feasible set with an
easy-to-compute projection operator.


