CME 307 / MS&E 311 / OIT 676: Optimization

Conic optimization

Professor Udell

Management Science and Engineering
Stanford

November 18, 2024

Outline

Semidefinite programming

Conic optimization

Conic forn

Semidefinite program

A semidefinite program (SDP) is written as

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i, \quad i = 1, \dots, m$
 $X \succeq 0$
variable $X \in \mathbf{S}^n$

where

- $ightharpoonup C, A_i \in \mathbf{S}^n$: symmetric matrices
- $\langle A, B \rangle = \mathbf{tr}(A^T B) = \sum_{ij} A_{ij} B_{ij}$: matrix inner product (linear in A and in B)

Semidefinite program: applications

SDPs arise in various fields:

- ▶ Control theory: stability analysis via Lyapunov functions
- ▶ **Combinatorial optimization**: relaxations of NP-hard problems
- ▶ Eigenvalue optimization: maximizing or minimizing eigenvalues

Semidefinite program: applications

SDPs arise in various fields:

- ▶ Control theory: stability analysis via Lyapunov functions
- ▶ Combinatorial optimization: relaxations of NP-hard problems
- ▶ Eigenvalue optimization: maximizing or minimizing eigenvalues

Advantages of SDPs:

- convex optimization: globally optimal solutions
- generalizes linear programming (LP)
- efficient algorithms (e.g., interior-point methods, first-order methods)

Example: MaxCut

Given a graph G = (V, E) with edge weights w_{ij} , the **MaxCut** problem seeks to

- ightharpoonup partition V into two disjoint sets S and $V \setminus S$
- maximize the total weight of edges crossing the cut

Example: MaxCut

Given a graph G = (V, E) with edge weights w_{ij} , the **MaxCut** problem seeks to

- **Partition** V into two disjoint sets S and $V \setminus S$
- maximize the total weight of edges crossing the cut

formulate as an integer quadratic program:

maximize
$$\frac{1}{4}\sum_{i,j} w_{ij}(1-x_ix_j)$$

subject to $x_i \in \{-1,1\}, i=1,\ldots,n$

where

 \triangleright x_i represents assignment of node i to a partition

interpretation:

- \triangleright w_{ij} is value of cutting edge (i,j)
- objective is to maximize total cut value

SDP relaxation of MaxCut

Relax integer constraints by allowing x_i to be unit vectors $v_i \in \mathbf{R}^n$:

maximize
$$\frac{1}{4} \sum_{i,j} w_{ij} (1 - v_i^T v_j)$$

subject to $||v_i|| = 1, \quad i = 1, \dots, n$
variable $v_i \in \mathbf{R}^n$

SDP relaxation of MaxCut

Relax integer constraints by allowing x_i to be unit vectors $v_i \in \mathbf{R}^n$:

maximize
$$\frac{1}{4} \sum_{i,j} w_{ij} (1 - v_i^T v_j)$$

subject to $||v_i|| = 1, \quad i = 1, \dots, n$
variable $v_i \in \mathbf{R}^n$

Equivalent SDP formulation, defining $X_{ij} = v_i^T v_j$:

maximize
$$\frac{1}{4}\sum_{i,j}w_{ij}(1-X_{ij})$$

subject to $X_{ii}=1, \quad i=1,\ldots,n$
 $X\succeq 0$
variable $X\in \mathbf{S}^n$

When is the relaxation tight?

The SDP relaxation is **tight** when X^* is rank one: $X^* = x^*(x^*)^T$

 $(x^*(x^*)^T)_{ii} = 1 \implies x_i^* \in \{-1,1\}$, recovering integer solution

When is the relaxation tight?

The SDP relaxation is **tight** when X^* is rank one: $X^* = x^*(x^*)^T$

 $(x^*(x^*)^T)_{ii} = 1 \implies x_i^* \in \{-1,1\},$ recovering integer solution

in general:

- SDP provides an upper bound on MaxCut value
- ► Goemans-Williamson algorithm (1995) uses randomized rounding to obtain integer solution with approximation ratio of 0.878
- this approximation ratio is optimal assuming
 - the Unique Games conjecture and
 - \triangleright P \neq NP

When is the relaxation tight?

The SDP relaxation is **tight** when X^* is rank one: $X^* = x^*(x^*)^T$

 $(x^*(x^*)^T)_{ii} = 1 \implies x_i^* \in \{-1,1\}$, recovering integer solution

in general:

- SDP provides an upper bound on MaxCut value
- ► Goemans-Williamson algorithm (1995) uses randomized rounding to obtain integer solution with approximation ratio of 0.878
- this approximation ratio is optimal assuming
 - the Unique Games conjecture and
 - \triangleright P \neq NP

For details, see https://math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf

Outline

Semidefinite programming

Conic optimization

Conic form

Convex cone

Definition (Convex cone)

A convex set $K \subseteq \mathbf{R}^n$ is a **cone** if for all $x \in K$ and $\alpha \ge 0$, we have $\alpha x \in K$.

Convex cone

Definition (Convex cone)

A convex set $K \subseteq \mathbb{R}^n$ is a **cone** if for all $x \in K$ and $\alpha \ge 0$, we have $\alpha x \in K$.

examples of convex cones:

- ▶ the zero cone {0}
- ▶ the nonnegative orthant $\mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x \geq 0\}$
- ▶ the second-order cone $\{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \le t\}$
- ▶ the positive semidefinite cone $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$
- ▶ the exponential cone $\{(x, y, z) \in \mathbb{R}^3 \mid ye^{x/y} \le z, y > 0\}$
- ▶ sums of cones $K_1 + K_2 = \{x_1 + x_2 \mid x_1 \in K_1, x_2 \in K_2\}$

Conic optimization

Definition (Conic optimization)

A conic optimization problem is a convex optimization problem of the form

minimize $c^T x$ subject to $Ax + b \in K$ variable $x \in \mathbf{R}^n$

where K is a convex cone.

Conic optimization

Definition (Conic optimization)

A conic optimization problem is a convex optimization problem of the form

minimize
$$c^T x$$

subject to $Ax + b \in K$
variable $x \in \mathbf{R}^n$

where K is a convex cone.

- ightharpoonup generalizes linear programming $(K = \mathbf{R}_{+}^{m})$
- structured representation of constraints: no oracles needed!
- can be solved efficiently for many cones

for cone K, replace

$$b - Ax \ge 0$$
 with $b - Ax \in K$

define **slack vector** $s = b - Ax \in K$ for weak duality, dual y must satisfy

$$\langle y,s\rangle \geq 0 \quad \forall s \in K$$

Dual cones

this inequality defines the **dual cone** K^* :

Definition (dual cone)

the dual cone K^* of a cone K is the set of vectors y such that

$$\langle y, s \rangle \geq 0 \quad \forall s \in K$$

Dual cones

this inequality defines the **dual cone** K^* :

Definition (dual cone)

the dual cone K^* of a cone K is the set of vectors y such that

$$\langle y, s \rangle \ge 0 \quad \forall s \in K$$

examples of cones and their duals:

- ► K acute, K* obtuse
- $ightharpoonup K = \mathbf{R}_{+}^{m}, K^{*} = \mathbf{R}_{+}^{m}$
- $K = \{x \in \mathbf{R}^{n+1} \mid ||x_{1:n}|| \le x_{n+1}\}, K^* = \{y \in \mathbf{R}^n \mid ||y|| \le y_0\}$
- ► $K = \{X \in \mathbf{S}^n \mid X \succeq 0\}, K^* = \{Y \in \mathbf{S}^n \mid Y \succeq 0\}$

inner product $\langle X, Y \rangle = \operatorname{tr}(X^T Y) = \sum_{ij} X_{ij} Y_{ij}$ for $X, Y \in \mathbf{S}^n$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* , variable $x \in \mathbf{R}^n$:

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* , variable $x \in \mathbf{R}^n$:

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

primal problem with solution $x^* \in \mathbb{R}^n$, optimal value p^* , variable $x \in \mathbb{R}^n$:

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

primal problem with solution $x^* \in \mathbb{R}^n$, optimal value p^* , variable $x \in \mathbb{R}^n$:

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas} \\ x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x \text{ foas} \\ x \text{ foas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{\substack{x \text{ foas} \\ x \text{ foas}}} \langle c + A^*y, x \rangle$$

primal problem with solution $x^* \in \mathbb{R}^n$, optimal value p^* , variable $x \in \mathbb{R}^n$:

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{x \text{ feas}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{x} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \langle c + A^*y, x \rangle$$

which is $-\infty$ unless $c + A^*y = 0$, so

primal problem with solution $x^* \in \mathbb{R}^n$, optimal value p^* , variable $x \in \mathbb{R}^n$:

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{x \text{ feas}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{x} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \langle c + A^*y, x \rangle$$

which is $-\infty$ unless $c + A^*y = 0$, so define the **dual problem** with variable $y \in K^*$:

maximize
$$\langle y, -b \rangle$$

subject to $c + A^*y = 0$ (\mathcal{D})

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* , variable $x \in \mathbf{R}^n$:

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x \text{ } \\ x}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{\substack{x \text{ } \\ x}} \langle c + A^*y, x \rangle$$

which is $-\infty$ unless $c + A^*y = 0$, so define the **dual problem** with variable $y \in K^*$:

maximize
$$\langle y, -b \rangle$$

subject to $c + A^* y = 0$ (\mathcal{D})

13 / 20

again we have weak duality $p^* \geq d^*$ and (under constraint qual) strong duality

Outline

Semidefinite programming

Conic optimization

Conic form

Conic form: LP example

we can represent many functions as the solution to a conic-form problem using an epigraph transformation, by **lifting** the problem to a higher dimension:

$$||x||_1 =$$

Conic form: LP example

we can represent many functions as the solution to a conic-form problem using an epigraph transformation, by **lifting** the problem to a higher dimension:

$$||x||_1 = \min_{\substack{\text{subject to} \\ \text{subject to}}} \mathbf{1}^T s$$

$$= \min_{\substack{\text{subject to} \\ \text{s} + x \in \mathbf{R}_+^n}} \mathbf{1}^T s$$

we say that $||x||_1$ is **LP-representable** since this conic representation is a linear program.

Conic form: SOC example

many functions involving quadratics can be represented using the second-order cone: for example, for $x \in \mathbb{R}^n$,

$$||x||^2 =$$

Conic form: SOC example

many functions involving quadratics can be represented using the second-order cone: for example, for $x \in \mathbf{R}^n$,

$$\|x\|^2 = \min t$$
 subject to $\|(2x, t-1)\|_2 \le t+1 \iff (2x, t-1, t+1) \in SOC$

since

$$||(2x, t-1)||_{2} \leq t+1$$

$$0 \leq (t+1)^{2} - ||(2x, t-1)||_{2}^{2} = (t+1)^{2} - 4||x||^{2} - (t-1)^{2}$$

$$= 4t - 4||x||^{2}$$

$$||x||^{2} \leq t$$

we say that $||x||^2$ is **SOC-representable** since this conic representation is a second-order cone program.

Conic form: SDP example

many functions of the eigenvalues of a matrix can be represented as a semidefinite program: for example, for $X \in \mathbf{S}^n_+$,

$$\lambda_{\max}(X) =$$

Conic form: SDP example

many functions of the eigenvalues of a matrix can be represented as a semidefinite program: for example, for $X \in \mathbf{S}_{+}^{n}$,

$$\lambda_{\max}(X) = \begin{array}{c} \text{minimize} & t \\ \text{subject to} & tI - X \succeq 0 \end{array}$$

we say that $\lambda_{\max}(X)$ is **SDP-representable** since this conic representation is a semidefinite program.

▶ particularly useful in controls, where we may have the constraint $X = \sum_{i=1}^{m} x_i A_i$, where A_i are known matrices

Conic form constraints

which of the following is a convex constraint?

$$||x||_1 \le 1$$
 or $||x||_1 \ge 1$

Conic form constraints

which of the following is a convex constraint?

$$||x||_1 \le 1$$
 or $||x||_1 \ge 1$

epigraph is preserved by conic transformation

$$\{(x,t) \mid ||x||_1 \le t\} = \{(x,t) \mid t \ge \mathbf{1}^T s, -s \le x \le s\}$$

Conic form constraints

which of the following is a convex constraint?

$$||x||_1 \le 1$$
 or $||x||_1 \ge 1$

epigraph is preserved by conic transformation

$$\{(x,t) \mid ||x||_1 \le t\} = \{(x,t) \mid t \ge \mathbf{1}^T s, -s \le x \le s\}$$

intersection of epigraph with hyperplane $\{t \mid t \leq 1\}$ is convex:

$$\{(x,t) \mid ||x||_1 \le t, \ t \le 1\} = \{(x,t) \mid t \le 1, \ t \ge \mathbf{1}^T s, \ -s \le x \le s\}$$

so convex constraint $||x||_1 \le 1$ is also LP-representable

Example: transforming a problem to conic form

consider the square-root Lasso problem: minimize regularized loss with $\lambda > 0$ fixed:

minimize
$$||Ax - b||_2 + \lambda ||x||_1$$

Example: transforming a problem to conic form

consider the square-root Lasso problem: minimize regularized loss with $\lambda > 0$ fixed:

minimize
$$||Ax - b||_2 + \lambda ||x||_1$$

Q: Transform this problem to conic form.

Example: transforming a problem to conic form

consider the square-root Lasso problem: minimize regularized loss with $\lambda>0$ fixed:

minimize
$$||Ax - b||_2 + \lambda ||x||_1$$

Q: Transform this problem to conic form.

$$\begin{array}{ll} \text{minimize} & t+1^T s\\ \text{subject to} & -s \leq x \leq s\\ & r = Ax - b \end{array} \quad \begin{array}{ll} \text{LP constraints}\\ & |r|_2 \leq t \end{array}$$

Solving conic programs

modeling conic programs:

- CVX, cvxpy, Convex.jl reformulate problems as conic programs
- (gurobipy, pyomo, JuMP do the same for (MI)LPs)

solvers specialize in solving conic programs with different cones:

- solvers compatible with cvxpy
- ▶ Mosek and COpt: excellent commercial conic solvers
- ► Clarabel: open-source conic solver, with Julia and Rust implementations