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Semidefinite program

A semidefinite program (SDP) is written as

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m

X ⪰ 0
variable X ∈ Sn

where

▶ C ,Ai ∈ Sn: symmetric matrices

▶ ⟨A,B⟩ = tr(ATB) =
∑

ij AijBij : matrix inner product (linear in A and in B)
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Semidefinite program: applications

SDPs arise in various fields:

▶ Control theory: stability analysis via Lyapunov functions

▶ Combinatorial optimization: relaxations of NP-hard problems

▶ Eigenvalue optimization: maximizing or minimizing eigenvalues

Advantages of SDPs:

▶ convex optimization: globally optimal solutions

▶ generalizes linear programming (LP)

▶ efficient algorithms (e.g., interior-point methods, first-order methods)
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Example: MaxCut

Given a graph G = (V ,E ) with edge weights wij , the MaxCut problem seeks to

▶ partition V into two disjoint sets S and V \ S
▶ maximize the total weight of edges crossing the cut

formulate as an integer quadratic program:

maximize 1
4

∑
i ,j wij(1− xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n

where

▶ xi represents assignment of node i to a partition

interpretation:

▶ wij is value of cutting edge (i , j)

▶ objective is to maximize total cut value
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SDP relaxation of MaxCut

Relax integer constraints by allowing xi to be unit vectors vi ∈ Rn:

maximize 1
4

∑
i ,j wij(1− vTi vj)

subject to ∥vi∥ = 1, i = 1, . . . , n
variable vi ∈ Rn

Equivalent SDP formulation, defining Xij = vTi vj :

maximize 1
4

∑
i ,j wij(1− Xij)

subject to Xii = 1, i = 1, . . . , n
X ⪰ 0

variable X ∈ Sn
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When is the relaxation tight?

The SDP relaxation is tight when X ⋆ is rank one: X ⋆ = x⋆(x⋆)T

▶ (x⋆(x⋆)T )ii = 1 =⇒ x⋆i ∈ {−1, 1}, recovering integer solution

in general:

▶ SDP provides an upper bound on MaxCut value

▶ Goemans-Williamson algorithm (1995) uses randomized rounding to obtain
integer solution with approximation ratio of 0.878

▶ this approximation ratio is optimal assuming
▶ the Unique Games conjecture and
▶ P ̸= NP

For details, see https://math.mit.edu/∼goemans/PAPERS/maxcut-jacm.pdf
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Convex cone

Definition (Convex cone)

A convex set K ⊆ Rn is a cone if for all x ∈ K and α ≥ 0, we have αx ∈ K .

examples of convex cones:

▶ the zero cone {0}
▶ the nonnegative orthant Rn

+ = {x ∈ Rn | x ≥ 0}
▶ the second-order cone {(x , t) ∈ Rn × R | ∥x∥ ≤ t}
▶ the positive semidefinite cone Sn

+ = {X ∈ Sn | X ⪰ 0}
▶ the exponential cone {(x , y , z) ∈ R3 | yex/y ≤ z , y > 0}
▶ sums of cones K1 + K2 = {x1 + x2 | x1 ∈ K1, x2 ∈ K2}
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Conic optimization

Definition (Conic optimization)

A conic optimization problem is a convex optimization problem of the form

minimize cT x
subject to Ax + b ∈ K
variable x ∈ Rn

where K is a convex cone.

▶ generalizes linear programming (K = Rm
+)

▶ structured representation of constraints: no oracles needed!

▶ can be solved efficiently for many cones
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Conic duality

for cone K , replace
b − Ax ≥ 0 with b − Ax ∈ K

define slack vector s = b − Ax ∈ K
for weak duality, dual y must satisfy

⟨y , s⟩ ≥ 0 ∀s ∈ K
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Dual cones

this inequality defines the dual cone K ∗:

Definition (dual cone)

the dual cone K ∗ of a cone K is the set of vectors y such that

⟨y , s⟩ ≥ 0 ∀s ∈ K

examples of cones and their duals:

▶ K acute, K ∗ obtuse

▶ K = Rm
+, K

∗ = Rm
+

▶ K = {x ∈ Rn+1 | ∥x1:n∥ ≤ xn+1}, K ∗ = {y ∈ Rn | ∥y∥ ≤ y0}
▶ K = {X ∈ Sn | X ⪰ 0}, K ∗ = {Y ∈ Sn | Y ⪰ 0}

inner product ⟨X ,Y ⟩ = tr(XTY ) =
∑

ij XijYij for X ,Y ∈ Sn
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Conic duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆, variable x ∈ Rn:

minimize ⟨c , x⟩
subject to b − Ax ∈ K : y ∈ K ∗ (P)

for y ∈ K ∗, construct Lagrangian L(x , y) = ⟨c, x⟩ − ⟨y , b − Ax⟩, ensure value is
better (lower) when x and y are feasible

L(x , y) := ⟨c , x⟩ − ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
⟨c , x⟩ − ⟨y , b − Ax⟩

≥ inf
x
⟨c , x⟩ − ⟨y , b − Ax⟩

= ⟨y ,−b⟩+ inf
x
⟨c + A∗y , x⟩

which is −∞ unless c + A∗y = 0, so define the dual problem with variable y ∈ K ∗:

maximize ⟨y ,−b⟩
subject to c + A∗y = 0

(D)

again we have weak duality p⋆ ≥ d⋆ and (under constraint qual) strong duality
p⋆ = d⋆
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Conic form: LP example

we can represent many functions as the solution to a conic-form problem using an
epigraph transformation, by lifting the problem to a higher dimension:

∥x∥1 =

min 1T s
subject to −s ≤ x ≤ s

=
min 1T s
subject to s − x ∈ Rn

+

s + x ∈ Rn
+

we say that ∥x∥1 is LP-representable since this conic representation is a linear
program.
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Conic form: SOC example

many functions involving quadratics can be represented using the second-order cone:
for example, for x ∈ Rn,

∥x∥2 =

minimize t
subject to ∥(2x , t − 1)∥2 ≤ t + 1 ⇐⇒ (2x , t − 1, t + 1) ∈ SOC

since

∥(2x , t − 1)∥2 ≤ t + 1

0 ≤ (t + 1)2 − ∥(2x , t − 1)∥22 = (t + 1)2 − 4∥x∥2 − (t − 1)2

= 4t − 4∥x∥2

∥x∥2 ≤ t

we say that ∥x∥2 is SOC-representable since this conic representation is a
second-order cone program.
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Conic form: SDP example

many functions of the eigenvalues of a matrix can be represented as a semidefinite
program: for example, for X ∈ Sn

+,

λmax(X ) =

minimize t
subject to tI − X ⪰ 0

we say that λmax(X ) is SDP-representable since this conic representation is a
semidefinite program.

▶ particularly useful in controls, where we may have the constraint
X =

∑m
i=1 xiAi , where Ai are known matrices
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Conic form constraints

which of the following is a convex constraint?

∥x∥1 ≤ 1 or ∥x∥1 ≥ 1

epigraph is preserved by conic transformation

{(x , t) | ∥x∥1 ≤ t} = {(x , t) | t ≥ 1T s, − s ≤ x ≤ s}

intersection of epigraph with hyperplane {t | t ≤ 1} is convex:

{(x , t) | ∥x∥1 ≤ t, t ≤ 1} = {(x , t) | t ≤ 1, t ≥ 1T s, − s ≤ x ≤ s}

so convex constraint ∥x∥1 ≤ 1 is also LP-representable
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Example: transforming a problem to conic form

consider the square-root Lasso problem: minimize regularized loss with λ > 0 fixed:

minimize ∥Ax − b∥2 + λ∥x∥1

Q: Transform this problem to conic form.

minimize t + 1T s
subject to −s ≤ x ≤ s LP constraints

r = Ax − b zero-cone constraints
∥r∥2 ≤ t SOC constraint
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Solving conic programs

modeling conic programs:

▶ CVX, cvxpy, Convex.jl reformulate problems as conic programs

▶ (gurobipy, pyomo, JuMP do the same for (MI)LPs)

solvers specialize in solving conic programs with different cones:

▶ solvers compatible with cvxpy

▶ Mosek and COpt: excellent commercial conic solvers

▶ Clarabel: open-source conic solver, with Julia and Rust implementations
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https://www.cvxpy.org/tutorial/solvers/index.html
https://github.com/oxfordcontrol/Clarabel.jl?tab=readme-ov-file
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