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Outline

Semidefinite programming
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Semidefinite program

A semidefinite program (SDP) is written as

minimize  (C, X)

subject to (A, X)=0b;, i=1,....m
X=0

variable X eS8"

where

» C,A; € S": symmetric matrices
> (A, B)=tr(ATB) = >_;j AijBjj: matrix inner product (linear in A and in B)
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Semidefinite program: applications

SDPs arise in various fields:

» Control theory: stability analysis via Lyapunov functions
» Combinatorial optimization: relaxations of NP-hard problems

» Eigenvalue optimization: maximizing or minimizing eigenvalues
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Semidefinite program: applications

SDPs arise in various fields:

» Control theory: stability analysis via Lyapunov functions
» Combinatorial optimization: relaxations of NP-hard problems
» Eigenvalue optimization: maximizing or minimizing eigenvalues

Advantages of SDPs:

» convex optimization: globally optimal solutions
> generalizes linear programming (LP)

> efficient algorithms (e.g., interior-point methods, first-order methods)
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Example: MaxCut

Given a graph G = (V, E) with edge weights wj;, the MaxCut problem seeks to

» partition V into two disjoint sets S and V' \ S
» maximize the total weight of edges crossing the cut
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Example: MaxCut

Given a graph G = (V, E) with edge weights wj;, the MaxCut problem seeks to

» partition V into two disjoint sets S and V' \ S
» maximize the total weight of edges crossing the cut

formulate as an integer quadratic program:
maximize 3 > wii(1 = xixj)
subject to x; € {—1,1}, i=1,...,n
where
» x; represents assignment of node / to a partition
interpretation:

> w; is value of cutting edge (1, /)

» objective is to maximize total cut value
5/20



SDP relaxation of MaxCut

Relax integer constraints by allowing x; to be unit vectors v; € R":
maximize 1. w;(1—vy))
4 iy U i)

subject to |lvi||=1, i=1,...,n
variable vi € R"
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SDP relaxation of MaxCut

Relax integer constraints by allowing x; to be unit vectors v; € R":

maximize % > wi(l— v v))
subject to |lvi||=1, i=1,...,n
variable vi € R"

Equivalent SDP formulation, defining Xj; = v,-ij:

maximize %ZIJ wii(1 = Xj)

subjectto X;j =1, i=1,...,n
X>=0

variable X € §"
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When is the relaxation tight?

The SDP relaxation is tight when X* is rank one: X* = x*(x*)"

> (x*(x*)T)i =1 = x* € {—1,1}, recovering integer solution
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https://math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf

When is the relaxation tight?

The SDP relaxation is tight when X* is rank one: X* = x*(x*)"
> (x*(x*)T)i =1 = x* € {—1,1}, recovering integer solution
in general:

» SDP provides an upper bound on MaxCut value

» Goemans-Williamson algorithm (1995) uses randomized rounding to obtain
integer solution with approximation ratio of 0.878

» this approximation ratio is optimal assuming

» the Unique Games conjecture and
> P £NP
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When is the relaxation tight?

The SDP relaxation is tight when X* is rank one: X* = x*(x*)"
> (x*(x*)T)i =1 = x* € {—1,1}, recovering integer solution
in general:

» SDP provides an upper bound on MaxCut value

» Goemans-Williamson algorithm (1995) uses randomized rounding to obtain
integer solution with approximation ratio of 0.878

» this approximation ratio is optimal assuming

» the Unique Games conjecture and
> P £NP

For details, see https://math.mit.edu/~goemans/PAPERS /maxcut-jacm.pdf
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Outline

Conic optimization
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Convex cone

Definition (Convex cone)

A convex set K C R” is a cone if for all x € K and a > 0, we have ax € K.
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Convex cone

Definition (Convex cone)

A convex set K C R” is a cone if for all x € K and a > 0, we have ax € K.

examples of convex cones:

>

VVvyVvYVvy

the zero cone {0}

the nonnegative orthant R, = {x € R" | x > 0}

the second-order cone {(x,t) € R" x R | ||x|| < t}

the positive semidefinite cone S” = {X € §" | X = 0}
the exponential cone {(x,y,z) € R® | ye*/¥ < z,y > 0}
sums of cones K1 + Ko = {x1 + x2 | x1 € K1,x € Kb}
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Conic optimization

Definition (Conic optimization)

A conic optimization problem is a convex optimization problem of the form
minimize ¢’ x
subjectto Ax+be K
variable x € R"

where K is a convex cone.
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Conic optimization

Definition (Conic optimization)

A conic optimization problem is a convex optimization problem of the form

minimize ¢’ x

subjectto Ax+be K
variable x € R”

where K is a convex cone.

» generalizes linear programming (K = R'")
» structured representation of constraints: no oracles needed!

» can be solved efficiently for many cones
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Conic duality

for cone K, replace
b—Ax>0 with b—Axe K

define slack vector s = b — Ax € K
for weak duality, dual y must satisfy

(y,s) >0 VseK
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Dual cones

this inequality defines the dual cone K*:

Definition (dual cone)

the dual cone K* of a cone K is the set of vectors y such that

(y,s) >0 VseK

12/20



Dual cones

this inequality defines the dual cone K*:

Definition (dual cone)

the dual cone K* of a cone K is the set of vectors y such that

(y,s) >0 VseK

examples of cones and their duals:
» K acute, K* obtuse
» K=RT, K*=RT
> K={xeR™ [|xtnl <xas1}, K*={y €R"[|ly]l < v}
> K={XeS"|X>0}, K={YeS"|Y =0}
inner product (X, Y) =tr(XTY) = 22 XijYij for X, Y € 8"
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Conic duality

primal problem with solution x* € R”, optimal value p*, variable x € R":

minimize  (c, x)
subjectto b—Axe K: yeK*
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Conic duality

primal problem with solution x* € R”, optimal value p*, variable x € R":

minimize  (c, x)

subjectto b—Axe K: ye K* (P)

for y € K*, construct Lagrangian L(x,y) = (c,x) — (y, b — Ax), ensure value is
better (lower) when x and y are feasible
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Conic duality

primal problem with solution x* € R”, optimal value p*, variable x € R":

minimize  (c, x) (P)
subjectto b—Axe K: ye K*

for y € K*, construct Lagrangian L(x,y) = (c,x) — (y, b — Ax), ensure value is
better (lower) when x and y are feasible

[’(Xay) = <C7X> - <yvb_AX>
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Conic duality

primal problem with solution x* € R”, optimal value p*, variable x € R":
minimize  (c, x) P)
subjectto b—Axe K: ye K*

for y € K*, construct Lagrangian L(x,y) = (c,x) — (y, b — Ax), ensure value is

better (lower) when x and y are feasible
['(X,_)/) <C7X>_<yvb_AX>
* inf (c,x) — (y, b — Ax)

P x feas

> inf(c,x) — (y,b— Ax)
(y,—b) +ir)1<f(c—|—A*y,x>

v
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Conic duality

primal problem with solution x* € R”, optimal value p*, variable x € R":
minimize  (c, x) P)
subjectto b—Axe K: ye K*

for y € K*, construct Lagrangian L(x,y) = (c,x) — (y, b — Ax), ensure value is

better (lower) when x and y are feasible
['(X,_)/) <C7X>_<yvb_AX>

P* inf <C7X>_<y7b_AX>
x feas

> inf(c,x) — (y,b— Ax)
(y,—b) +ir)1<f(c—|—A*y,x>

v

which is —oo unless ¢ + A*y =0, so
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Conic duality

primal problem with solution x* € R”, optimal value p*, variable x € R":
minimize  (c, x) P)
subjectto b—Axe K: ye K*

for y € K*, construct Lagrangian L(x,y) = (c,x) — (y, b — Ax), ensure value is

better (lower) when x and y are feasible
['(X,_)/) <C7X>_<yvb_AX>
P* inf <C7X>_<y7b_AX>
x feas
> inf(c,x) — (y, b— Ax)
(y,—b) + ir)](f(c + Ay, x)

so define the dual problem with variable y € K*:

v

which is —oo unless ¢ + A*y = 0,
maximize (y,—b)
subjectto c+ A*y =0 (D)

13/20



Conic duality

primal problem with solution x* € R”, optimal value p*, variable x € R":
minimize  (c, x) P)
subjectto b—Axe K: ye K*

for y € K*, construct Lagrangian L(x,y) = (c,x) — (y, b — Ax), ensure value is

better (lower) when x and y are feasible
['(X,_)/) <C7X>_<yvb_AX>
P* inf <C7X>_<y7b_AX>
x feas
> inf(c,x) — (y, b— Ax)
(y,—b) + ir)](f(c + Ay, x)

so define the dual problem with variable y € K*:

v

which is —oo unless ¢ + A*y = 0,
maximize (y,—b)
subjectto c+ A*y =0 (D)

again we have weak duality p* > d* and (under constraint qual) strong duality 13/20
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Conic form
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Conic form: LP example

we can represent many functions as the solution to a conic-form problem using an
epigraph transformation, by lifting the problem to a higher dimension:

Xl =
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Conic form: LP example

we can represent many functions as the solution to a conic-form problem using an
epigraph transformation, by lifting the problem to a higher dimension:
- min 17s
'™ subjectto —s<x<s
min 17s
= subjectto s—x € R

we say that ||x]||1 is LP-representable since this conic representation is a linear
program.
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Conic form: SOC example

many functions involving quadratics can be represented using the second-order cone:
for example, for x € R”,

x| =
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Conic form: SOC example

many functions involving quadratics can be represented using the second-order cone:

for example, for x € R”,

minimize t

2 _
™ = subject to  ||(2x,t —1)[2 <t+1 < (2x,t—1,t+1) € SOC
since
jext- Dz < t+1
0 < (t+12—[(2xt—1)[3=(t+1)*—4llx|* — (t - 1)°
— 4t a2
Ix* <t

we say that ||x||? is SOC-representable since this conic representation is a
second-order cone program.
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Conic form: SDP example

many functions of the eigenvalues of a matrix can be represented as a semidefinite
program: for example, for X € S7,

/\maX(X) =
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Conic form: SDP example

many functions of the eigenvalues of a matrix can be represented as a semidefinite
program: for example, for X € S7,

minimize t

Amax(X) = subjectto t/ — X =0

we say that Apax(X) is SDP-representable since this conic representation is a
semidefinite program.

» particularly useful in controls, where we may have the constraint
X = Zf’;l x;A;, where A; are known matrices

17/20



Conic form constraints

which of the following is a convex constraint?

[z <1 or ixlliz=1
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Conic form constraints

which of the following is a convex constraint?

i<l o xli>1

epigraph is preserved by conic transformation

{Cat) [Ixli <ty ={(xt)[t>1Ts, —s<x<s}
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Conic form constraints

which of the following is a convex constraint?

i<l o xli>1

epigraph is preserved by conic transformation
{0 [lIxlh <83 ={(x, ) [t>1Ts, —s<x<s}
intersection of epigraph with hyperplane {t | t < 1} is convex:
{6 Ixh <t t<1y={(x,t)|t<1, t>1Ts, —s<x<s}

so convex constraint ||x||1 < 1 is also LP-representable
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Example: transforming a problem to conic form

consider the square-root Lasso problem: minimize regularized loss with A > 0 fixed:

minimize ||Ax — blj2 + Al|x]1
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Example: transforming a problem to conic form

consider the square-root Lasso problem: minimize regularized loss with A > 0 fixed:
minimize ||Ax — b||2 + Al|x]1

Q: Transform this problem to conic form.

19/20



Example: transforming a problem to conic form

consider the square-root Lasso problem: minimize regularized loss with A > 0 fixed:
minimize ||Ax — b||2 + Al|x]1
Q: Transform this problem to conic form.

minimize t+17s

subjectto —s < x<s LP constraints
r = Ax — b zero-cone constraints
rll2 <t SOC constraint
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Solving conic programs

modeling conic programs:

» CVX, cvxpy, Convex.jl reformulate problems as conic programs
» (gurobipy, pyomo, JuMP do the same for (MI)LPs)

solvers specialize in solving conic programs with different cones:

» solvers compatible with cvxpy
» Mosek and COpt: excellent commercial conic solvers

» Clarabel: open-source conic solver, with Julia and Rust implementations
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https://www.cvxpy.org/tutorial/solvers/index.html
https://github.com/oxfordcontrol/Clarabel.jl?tab=readme-ov-file
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