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Unconstrained minimization

minimize f(x)

» f:R" — R differentiable
» assume optimal value f* = inf, f(x) is attained (and finite)

> assume a starting point x(9) is known

unconstrained minimization methods

> produce sequence of points x(K), k =0,1,... with
F(x9) — £

(we hope)
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Gradient descent

minimize f(x)

idea: go downbhill

Algorithm Gradient descent

Given: f: RY — R, stepsize t, maxiters
Initialize: x = 0 (or anything you'd like)
For: kK =1,..., maxiters
» update x:
x < x — tVf(x)
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Gradient descent: choosing a step-size

> constant step-size. t(K) = t (constant)
> decreasing step-size. t(X) = 1/k

> line search. try different possibilities for t(%) until objective at new iterate
f(x)) = F(x1) — g f(x(k1)))

decreases enough.

tradeoff: line search requires evaluating f(x) (can be expensive)
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Line search
define x* = x — tVf(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(x) < f(x) = ctl| V()|

for some c € (0,1), e.g,, c = .01.
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Line search
define x™ = x — tV£(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(xT) < F(x) = ctl|VF(x)|
for some ¢ € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:

> sett=1
> if step decreases objective value sufficiently, accept xT:

f(xT) < f(x) — Ct||Vf(X)||2 —  x<x"

otherwise, halve the stepsize t + t/2 and try again
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Line search
define x™ = x — tV£(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(xT) < F(x) = ctl|VF(x)|
for some ¢ € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:

> sett=1
> if step decreases objective value sufficiently, accept xT:

f(xT) < f(x) — ct|VF(X)]|? = x+x*
otherwise, halve the stepsize t + t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo
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Demo: gradient descent

https://github.com /stanford-cme-307 /demos/blob/main/gradient-descent.ipynb
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https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

How well does GD work?

for x € R",
> f(x)=x"x
> f(x)=xTAx for A= 0
f(x) = ||x|l1 (nonsmooth but differentiable almost everywhere)
(x) =

f(x) =1/x on x > 0 (strictly convex but not strongly convex)

https:
//github.com/stanford-cme-307 /demos/blob/main/gradient-descent-contours.ipynb
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https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
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Quadratic approximation

Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:

Fy) % F6) + TFG)T(y = x) + 50 = )T F(x)(y — x).

If f is a quadratic function, V2f(x) = H is constant.
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Quadratic approximation

Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:

1
F(y) = f(x) + V)T (y —x) + S = x)TV2E(x)(y = x)-
If f is a quadratic function, V2f(x) = H is constant.
Quadratic approximations are useful because quadratics are easy to minimize:

o= argmin F(x)+ V) (y = x) + %(y —x)TH(y — x)

= VFf(x)+H(ly*—x)=0
y* = x—HYVF(X)).
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Quadratic approximation
Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:
1
f(y) » F(x) + V) Ty = x) + 5y =) TVl = %).

If f is a quadratic function, V2f(x) = H is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

o= argmin F(x)+ V) (y = x) + %(y —x)TH(y — x)

= VFf(x)+H(ly*—x)=0
y* = x—HYVF(X)).

If we approximate the Hessian of f by H = %I for some t > 0 and choose x* to
minimize the quadratic approximation, we obtain the gradient descent update with
step size t:

xT =x+ —tVf(x)
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Quadratic upper bound

Definition (Smooth)
A function f : R — R is L-smooth if for all x,y € R,

F(y) < £+ VA)T(y =)+ 5 lly = xI

Equivalently, assuming the derivatives exist,
» the operator %Vf is L-Lipschitz continuous:
IVE(y) = VI < Llly = x|

> V2f(x) < LI for all x € domf.
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Quadratic upper bound

Definition (Smooth)
A function f : R — R is L-smooth if for all x,y € R,

L
Fly) < f(x)+ V()T (y — x) + Slly = x|1?.
Equivalently, assuming the derivatives exist,
» the operator %Vf is L-Lipschitz continuous:
IVE(y) = V) < Ly — ||

> V2f(x) < LI for all x € domf.

Q: For A = 0, the quadratic function f(x) = 1x" Ax is ?-smooth
A: \pax(A)-smooth
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Quadratic lower bound

Definition (Strongly convex)

A function f : R — R is u-strongly convex for ;1 > 0 if for all x,y € R,
Fy) 2 F(x) + V)T (y =) + Slly = xII%.

Equivalently, assuming the derivatives exist,
» the operator %Vf is u-coercive:
IVF(y) = V) = plly — x|

» V2f(x) = ul for all x € domf.
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Quadratic lower bound

Definition (Strongly convex)
A function f : R — R is u-strongly convex for ;1 > 0 if for all x,y € R,

Fy) 2 F(x) + V)T (y =) + Slly = xII%.
Equivalently, assuming the derivatives exist,
» the operator %Vf is u-coercive:
IVF(y) = V) = plly — x|
» V2f(x) = ul for all x € domf.

Q: For A > 0, the quadratic function f(x) = %XTAX is ?-strongly convex
A: \pin(A)-strongly convex
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Some important functions

for Ac R™" b R™ x € R",

» Quadratic loss. ||Ax — b|?

> Logistic loss. f(x) = >, log(1+ exp (bja] x))
where a; is ith row of A
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Some important functions

for Ac R™" b R™ x € R",

» Quadratic loss. ||Ax — b|?
> Logistic loss. f(x) = >, log(1+ exp (bja] x))
where a; is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.

Q: Which of these are strongly convex? Under what conditions?

A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.
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Optimizing the upper bound
start at x(9). suppose f is L-smooth, so for all y € R,
y) < F) + VAT (y £ 4 Sy — O
let’s choose next iterate x(!) to minimize this upper bound:
X0 = argmin () + V)T (y )+ 5y — X

y
— VF(x) 4+ 1(xM) - x@) =0

Ne X(O)_%W(Xm))
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Optimizing the upper bound
start at x(9). suppose f is L-smooth, so for all y € R,
y) < F<) + VAT (y —xO) + Sy — O
let’s choose next iterate x(!) to minimize this upper bound:

JULC) p— argmin f(x) + Vf(x)T(y —x)+ gHy — XH2
y

LU (0 %w(Xm))

» gradient descent update with step size t = %

» lower bound ensures true optimum can’t be too far away, and can be used to
prove convergence
14/32



Outline

Analysis via Polyak-Lojasiewicz condition
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R — R satisfies the Polyak-Lojasiewicz condition if

SIVAIR > () — £4)
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R — R satisfies the Polyak-Lojasiewicz condition if
1
SIVECI = u(F(x) - %)

Theorem ( 2016)])

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex and A: R" — R™ is
linear. Then f is Polyak-Lojasiewicz.
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The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R — R satisfies the Polyak-Lojasiewicz condition if
1
SIVECI = u(F(x) - %)

Theorem ( 2016)])

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex and A: R" — R™ is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity

and yields simpler proofs 16/32



River valley

f(x,y) = (v —sin(x))?

3D Plot of (Y - np.sin(X))**2 + .2*X

Azimuth

Elevation |
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PL and invexity

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a
Polyak-Lojasiewicz function is globally optimal.)
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PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a
Polyak-Lojasiewicz function is globally optimal.)
proof: if Vf(x) =0, then
1
0= SIVFCIP > u(F() ~ )= 0

= f(x) = f* is the global optimum.
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strong convexity —- Polyak-Lojasiewicz

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.
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strong convexity —- Polyak-Lojasiewicz

Theorem

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y:

min f(y) > min (£(x) + VF()T(y = x)+ Slly = )

. 1
=z f(X)—ﬂIIW(X)H2

since y = x — Vf(x)/u minimizes the strong convexity upper bound
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Types of convergence

» objective converges
f(xK) — £

» iterates converge

k) *

xK) s x
under

» strong convexity: objective converges —> iterates converge
proof: use strong convexity with x = x* and y = x(k):

F() = £ > ZJxt) — 2
» Polyak-Lojasiewicz: not necessarily true (x* may not be unique)
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Rates of convergence

» linear convergence with rate ¢

F(xK) — £ < H(F(x) — £%)

» looks like a line on a semi-log plot
P> example: gradient descent on smooth strongly convex function

» sublinear convergence

> looks slower than a line (curves up) on a semi-log plot
> example: 1/k convergence

F(xW) — F* < O(1/k)

» example: gradient descent on smooth convex function
» example: stochastic gradient descent
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Gradient descent converges linearly

Theorem

If f : R" — R is u-Polyak-Lojasiewicz, L-smooth, and x* = argmin, f(x) exists,
then gradient descent with stepsize L

(k1) (k) _ %Vf(x(k))

converges linearly to f* with rate (1 — ).

22/32



Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

F (Y — (xR

<

IN

IN

vf(x(k))T(X(kJrl) - X(k)) + é‘|x(k+1) o X(k)||2

1 1

(=7 + IV

L 2L
1
IV A2

H *
~E ) — )

> (using PL)
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Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

D) — F(x(0) < TF(xU) T (kD) _ )y éHX(kH) VO

1 1
< (I 4 = (k)y(2
< (L Ly

1
IV A2

IN

< —%(f(x(k)) —f*) > (using PL)
decrement proportional to error = linear convergence:

W) = < (= PIFE) = )

< (1 - %)k (F(x©@) — £+
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Practical convergence

» Gradient descent with optimal stepsize converges even faster.

FOUDY —inf £(x(0 — aVF(xR))) < F(x) %Vf(x(k)))
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Practical convergence

» Gradient descent with optimal stepsize converges even faster.

FOUDY —inf £(x(0 — aVF(xR))) < F(x) %Vf(x(k)))

» Local vs global convergence
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Quiz

» A strongly convex function always satisfies the Polyak-Lojasiewicz condition

A. true
B. false

» Suppose f : R — R is L-smooth and satisfies the Polyak-Lojasiewicz condition.

Then any stationary point Vf(x) = 0 of f is a global optimum:
f(x) = argmin, f(y) =: f*.

A. true

B. false

» Suppose f : R — R is L-smooth and satisfies the Polyak-Lojasiewicz condition.

Then gradient descent on f converges linearly from any starting point.

A. true
B. false
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Applications of quadratic programs
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Quadratic program: application

Markowitz portfolio optimization problem:

minimize  yxTIx —p’x
subject to ), x; =1

Ax =0
variable x € R"

where

> ¥ c R™": asset covariance matrix
» 1 € R": asset return vector

» ~ € R: risk aversion parameter
> rows of A € R™*" correspond to other portfolios

P ensures new portfolio is independent, e.g., of market returns
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Quadratic program: application

control system design problem:

xT = Ax + Bu

> x € R": state (e.g., position, velocity)

» u e R™: control (e.g., force, torque)

minimize Ethl x! Qxt + u/ Ruy
subject to x¢11 = Ax¢+Buy, t=0,...,T—1

X0 = Xinit
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Classification
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Application: classification

classification problem: m data points

» feature vector 3; € R", i=1,....m
» label b € {-1,1},i=1,....m

choose decision boundary a” x = 0 to separate data points into two classes

> a'x >0 = predict class 1
> a'x <0 = predict class -1

classification is correct if bja’x > 0
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Application: classification

classification problem: m data points

» feature vector 3; € R", i=1,....m
» label b € {-1,1},i=1,....m

choose decision boundary a” x = 0 to separate data points into two classes

> a'x >0 = predict class 1
> a'x <0 = predict class -1

classification is correct if bja’x > 0

» projective transformation transforms affine boundary to linear boundary

» classification is invariant to scalar multiplication of x
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Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize Y 7, log(1 + exp (—b,-a,-Tx)) + r(x)
variable x € R”"

where

> b; € {—1,1},3;6 R"

» r:R" — Ris a regularizer, e.g., ||x]|? or ||x||1
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Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a] x) + 7||x]?
variable x € R"

where b; € {—1,1} and a; € R".
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Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a] x) + 7||x]?
variable x € R"

where b; € {—1,1} and a; € R". not differentiable!

how to solve?

» use subgradient method
» transform to conic form
» solve dual problem instead

» smooth the objective
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