CME 307 / MS&E 311 / OIT 676: Optimization

LP geometry, modeling and solution techniques

Professor Udell

Management Science and Engineering
Stanford

November 18, 2024

1/38

you

>

4
>

Course survey

're interested in:
modeling real-world problems, from political science and economics to energy
and desalination!
robustness and modeling under uncertainty

understanding core optimization concepts like duality and KKT conditions

> ...

questions:

>
>

recommended resource for linear algebra?

how to ask questions in class?

requests:

| 2

slower on proofs, please!

2/38

Outline

LP standard form

3/38

Linear programming: standard form

standard form linear program (LP)
minimize ¢’ x
subject to Ax=b
x>0

optimal value p*, solution x* (if it exists)
» any x with Ax = b and x > 0 is called a feasible point
» if problem is infeasible, we say p* = oo
» p* can be finite or 00

4/38

Linear programming: standard form

standard form linear program (LP)
minimize ¢’ x
subject to Ax=b
x>0

optimal value p*, solution x* (if it exists)
» any x with Ax = b and x > 0 is called a feasible point
» if problem is infeasible, we say p* = oo
» p* can be finite or 00

Q: if p* = —o0, does a solution exist?

4/38

Linear programming: standard form

standard form linear program (LP)

minimize ¢’ x

subject to Ax=b
x>0

optimal value p*, solution x* (if it exists)
» any x with Ax = b and x > 0 is called a feasible point
» if problem is infeasible, we say p* = oo
» p* can be finite or 00

Q: if p* = —o0, does a solution exist?
Q: if p* = 00, does a solution exist?

4/38

Linear programming: standard form

standard form linear program (LP)

minimize ¢’ x
subject to Ax=b

x>0

optimal value p*, solution x* (if it exists)
» any x with Ax = b and x > 0 is called a feasible point
» if problem is infeasible, we say p* = oo
» p* can be finite or 00

Q: if p* = —o0, does a solution exist?

Q: if p* = 00, does a solution exist?

henceforth assume A € R™*" has full row rank m
Q: why? how to check?

4/38

Linear programming: standard form

standard form linear program (LP)

minimize ¢’ x
subject to Ax=b

x>0

optimal value p*, solution x* (if it exists)
» any x with Ax = b and x > 0 is called a feasible point
» if problem is infeasible, we say p* = oo
» p* can be finite or 00

Q: if p* = —o0, does a solution exist?

Q: if p* = 00, does a solution exist?

henceforth assume A € R™*" has full row rank m

Q: why? how to check?

A: otherwise infeasible or redundant rows; use gaussian elimination to check and

remove
4/38

LP example: diet problem

> x; servings of food j, j=1,...,n
» ¢ cost per serving

» a; amount of nutrient / in food j

» b; required amount of nutrient /, i =1,...

minimize c¢'x

subjectto Ax=0b
x>0

5/38

LP example: diet problem

» x; servings of food j, j=1,....n L
J & JrJ DR minimize c¢'x

subjectto Ax=0b
» a; amount of nutrient / in food j x>0

> ¢; cost per serving

» b; required amount of nutrient /, i=1,....m

extensions:

» foods come from recipes? x = By

5/38

LP example: diet problem

» x; servings of food j, j=1,....n L
J & JrJ DR minimize c¢'x

subjectto Ax=0b
» a; amount of nutrient / in food j x>0

> ¢; cost per serving

» b; required amount of nutrient /, i=1,....m

extensions:

» foods come from recipes? x = By
» ensure diversity in diet? y < u

5/38

LP example: diet problem

» x; servings of food j, j=1,....n L
J & JrJ DR minimize c¢'x

subjectto Ax=0b
» a; amount of nutrient / in food j x>0

> ¢; cost per serving

» b; required amount of nutrient /, i=1,....m

extensions:

» foods come from recipes? x = By
» ensure diversity in diet? y < u
» ranges of nutrients? Ax +s=b, | <s<u

5/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.

6/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.
interpretation: conic hull

» define the cone generated by A = [ay,. .. ap:

n
{Ax | x>0} = {Za,-x,-\xzo} = cone(ay, ..., an)

i=1

6/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.
interpretation: conic hull

» define the cone generated by A = [ay,. .. ap:

n
{Ax | x>0} = {Za,-x,-\xzo} = cone(ay, ..., an)

i=1

» LP is feasible if b € cone(ay,...,an)

6/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.

interpretation: conic hull

» define the cone generated by A = [ay,. .. ap:
n
{Ax | x>0} = {Za,-x,- | x > O} = cone(ay, ..., an)
i=1

» LP is feasible if b € cone(ay,...,an)
interpretation: intersection of hyperplane and halfspaces

» define a hyperplane {x | Ax = b}

6/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.

interpretation: conic hull

» define the cone generated by A = [ay,. .. ap:
n
{Ax | x>0} = {Za,-x,- | x > O} = cone(ay, ..., an)
i=1

» LP is feasible if b € cone(ay,...,an)
interpretation: intersection of hyperplane and halfspaces

» define a hyperplane {x | Ax = b} (dimension?)

6/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.

interpretation: conic hull

» define the cone generated by A = [ay,. .. ap:

n
{Ax | x>0} = {Za,-x,- | x > O} = cone(ay, ..., an)
i=1
» LP is feasible if b € cone(ay,...,an)
interpretation: intersection of hyperplane and halfspaces

» define a hyperplane {x | Ax = b} (dimension?)
> define a halfspace {x | a’ x > b}

6/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.

interpretation: conic hull

» define the cone generated by A = [ay,. .. ap:

n
{Ax | x>0} = {Za,-x,- | x > O} = cone(ay, ..., an)
i=1
» LP is feasible if b € cone(ay,...,an)
interpretation: intersection of hyperplane and halfspaces

» define a hyperplane {x | Ax = b} (dimension?)
> define a halfspace {x | a’ x > b}
» the positive orthant x > 0 is an intersection of halfspaces

6/38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x > 0} that satisfy all constraints.

interpretation: conic hull

» define the cone generated by A = [ay,. .. ap:

n
{Ax | x>0} = {Za,-x,- | x > O} = cone(ay, ..., an)
i=1
» LP is feasible if b € cone(ay,...,an)
interpretation: intersection of hyperplane and halfspaces
» define a hyperplane {x | Ax = b} (dimension?)
> define a halfspace {x | a’ x > b}

» the positive orthant x > 0 is an intersection of halfspaces
» LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6/38

Geometry of LP: convexity

> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]

7/38

Geometry of LP: convexity

> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]
» define convex set: C is convex if for any x,y € C,

Ox+(1—0)yecC, 6elo1]

7/38

Geometry of LP: convexity

> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]
» define convex set: C is convex if for any x,y € C,
Ox+(1—-0)y € C, 0 €[0,1]

» define the convex hull of a set S:

k K
conv(S) = {ZQ;X,- | xi€ S, 6; >0, Zei = 1}
i=1 i=1

7/38

Geometry of LP: convexity

> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]
» define convex set: C is convex if for any x,y € C,

Ox+(1—-0)y € C, 0 €[0,1]
» define the convex hull of a set S:

k K
conv(S) = {ZQ;X,- | xi€ S, 6; >0, Zei = 1}
i=1 i=1

> define polytope: the convex hull of a finite set: conv({xy,...,xx})

some useful convex sets:

7/38

Geometry of LP: convexity

> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]
» define convex set: C is convex if for any x,y € C,

Ox+(1—-0)y € C, 0 €[0,1]
» define the convex hull of a set S:
k k
COHV(S):{ZQ;X; ’X;ES, 0; >0, 29;:1}
i=1 i=1

> define polytope: the convex hull of a finite set: conv({xi, ..., xk})
some useful convex sets:

» a hyperplane is convex

7/38

Geometry of LP: convexity

> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]
» define convex set: C is convex if for any x,y € C,

Ox+(1—-0)y € C, 0 €[0,1]
» define the convex hull of a set S:
k k
COHV(S):{ZQ;X; ’X;ES, 0; >0, 29;:1}
i=1 i=1

> define polytope: the convex hull of a finite set: conv({xi, ..., xk})
some useful convex sets:

» a hyperplane is convex
» a halfspace is convex

7/38

Geometry of LP: convexity

> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]
» define convex set: C is convex if for any x,y € C,

Ox+(1—0)yecC, 6elo1]

» define the convex hull of a set S:
k k
COHV(S):{ZQ;X; ’X;ES, 0; >0, 29;:1}
i=1 i=1

> define polytope: the convex hull of a finite set: conv({xi, ..., xk})
some useful convex sets:

» a hyperplane is convex
» a halfspace is convex
» the intersection of convex sets is convex

7/38

Geometry of LP: convexity
> define convex combination of x, y € R": Ox + (1 — 0)y for 6 € [0, 1]
» define convex set: C is convex if for any x,y € C,
Ox+(1—-0)y € C, 0 €[0,1]

» define the convex hull of a set S:
k k
COHV(S):{ZQ;X; ’X;ES, 0; >0, 29;:1}
i=1 i=1

> define polytope: the convex hull of a finite set: conv({xi, ..., xk})
some useful convex sets:

» a hyperplane is convex
» a halfspace is convex
» the intersection of convex sets is convex

> the feasible set {x : Ax = b, x > 0} is convex s

Outline

LP inequality form

8/38

LP inequality form

another useful form for LP is inequality form
minimize ¢’x
subjectto Ax < b

9/38

LP inequality form

another useful form for LP is inequality form
minimize ¢’x
subjectto Ax < b
interpretation: halfspaces

» a] x < b; defines a halfspace
» Ax < b defines a polyhedron: intersection of halfspaces

» LP is feasible if polyhedron {x | Ax < b} is nonempty

9/38

vVvyVvyYVvyy

LP example: production planning

X; units of product i

c; cost per unit

ajj amount of resource j used by product i
b; amount of resource j available

d; demand for product i

minimize ¢’ x
subjectto Ax< b

0<x<d

10/38

LP example: production planning

X; units of product i
c; cost per unit
ajj amount of resource j used by product i

b; amount of resource j available

vVvyVvyYVvyy

d; demand for product i

extensions:

» fixed cost for producing product i at all?

minimize ¢’ x

subjectto Ax< b
0<x<d

10/38

LP example: production planning

X; units of product i
c; cost per unit
ajj amount of resource j used by product i

b; amount of resource j available

vVvyVvyYVvyy

d; demand for product i

extensions:

» fixed cost for producing product i at all?
c"x+fTz 2z €{0,1}, x; < Mz; for M large

minimize ¢’ x

subjectto Ax< b
0<x<d

10/38

LP inequality form to standard form

standard form to inequality form

minimize c¢'x
subject to Ax = b —
x>0

11/38

LP inequality form to standard form

standard form to inequality form

minimize ¢’ x minimize ¢’ x
) subject to Ax < b
subject to Ax = b —
>0 Ax > b
- —x <0

11/38

LP inequality form to standard form

standard form to inequality form

minimize ¢’ x minimize ¢’ x
) subject to Ax < b
subject to Ax = b —
>0 Ax > b
- —x <0

inequality form to standard form

minimize ¢’ x

subjectto Ax < b

11/38

LP inequality form to standard form

standard form to inequality form

minimize T x minimize ¢’ x

; subject to Ax < b
subject to Ax = b N
x>0 Ax > b
= =0
inequality form to standard form
L T
L min e
minimize c’x I llmIZE cl(xy —x2)
— subject to A(xy —x_)+s=b

subjectto Ax < b
) - S, xy,x—= >0

so both forms have the same expressive power, and feasible sets are polyhedra

11/38

Active constraints

for constraint set Ax < b, an active constraint at x is one that holds with equality:

a-Tx = b,'

12/38

Active constraints

for constraint set Ax < b, an active constraint at x is one that holds with equality:

a-Tx = b,'

> the active set at x is the set of indices of active constraints {i | a/ x = b;}

12/38

Active constraints

for constraint set Ax < b, an active constraint at x is one that holds with equality:

a-x:b,-

> the active set at x is the set of indices of active constraints {i | a/ x = b;}
for nonnegative variable x > 0, x; is active if x; > 0
example: active slack variables are dual to active constraints
Ax<b <— Ax+s=b,s>0
alx=b <<= =0

constraint / is active <= slack variable s; is inactive

12/38

Outline

What kinds of points can be optimal?

13/38

Extreme points

define extreme point: x € R" is extreme in C C R" if it cannot be written as a
convex combination of other points in C: for 6 € [0, 1],

xeC and x=0y+(1-0)z = x=y=1z

14/38

Extreme points

define extreme point: x € R" is extreme in C C R" if it cannot be written as a
convex combination of other points in C: for 6 € [0, 1],

xeC and x=0y+(1-0)z = x=y=1z

fact: if x* is the unique optimal solution of minimize,cs ¢’ x,
then x* is extreme in the set S.

14/38

Extreme points

define extreme point: x € R" is extreme in C C R" if it cannot be written as a
convex combination of other points in C: for 6 € [0, 1],

xeC and x=0y+(1-0)z = x=y=1z

fact: if x* is the unique optimal solution of minimize,cs ¢’ x,
then x* is extreme in the set S.
proof: suppose by way of contradiction that x* is not extreme in S:

x* = Oy+(1-0)z fory,ze S,0€(0,1)
p* = ch* = QCTy+(1—9)CTZ>9p*+(1—9)p*:p*

where the inequality follows from the (unique) optimality of x*. Contradiction!

14/38

Extreme points

define extreme point: x € R" is extreme in C C R" if it cannot be written as a
convex combination of other points in C: for 6 € [0, 1],

xeC and x=0y+(1-0)z = x=y=1z

fact: if x* is the unique optimal solution of minimize,cs ¢’ x,
then x* is extreme in the set S.
proof: suppose by way of contradiction that x* is not extreme in S:

x* = Oy+(1-0)z fory,ze S,0€(0,1)
p* = ch* = QCTy+(1—9)CTZ>9p*+(1—9)p*:p*

where the inequality follows from the (unique) optimality of x*. Contradiction!

Q: Example of a problem with a non-extreme solution?

14/38

Extreme points

define extreme point: x € R" is extreme in C C R" if it cannot be written as a
convex combination of other points in C: for 6 € [0, 1],

xeC and x=0y+(1-0)z = x=y=1z

fact: if x* is the unique optimal solution of minimize,cs ¢’ x,
then x* is extreme in the set S.
proof: suppose by way of contradiction that x* is not extreme in S:

x* = Oy+(1-0)z fory,ze 5,0€(0,1)
pri=c'x* = OcTy+(1—-60)c"z>0p +(1—0)p*=p*
where the inequality follows from the (unique) optimality of x*. Contradiction!

Q: Example of a problem with a non-extreme solution?

Q: Does there always exist an extreme solution?
14/38

Vertices

define vertex: x € R" is a vertex of set S C R" if for some vector ¢ € R”,

c’™x<cy VyesS\{x}

15/38

Vertices

define vertex: x € R" is a vertex of set S C R" if for some vector ¢ € R”,

c’™x<cy VyesS\{x}
interpretation: {z:c’
we say this hyperplane supports S at x

z = c"x} is a hyperplane that intersects S only at x.

15/38

Vertices

define vertex: x € R" is a vertex of set S C R" if for some vector ¢ € R”,

c’™x<cy VyesS\{x}

interpretation: {z:c’

we say this hyperplane supports S at x

fact: x is a vertex of S = x is an extreme point of S

z = c"x} is a hyperplane that intersects S only at x.

15/38

Vertices

define vertex: x € R" is a vertex of set S C R" if for some vector ¢ € R”,

c’™x<cy VyesS\{x}
interpretation: {z:c’
we say this hyperplane supports S at x

fact: x is a vertex of S = x is an extreme point of S
proof:

z = c"x} is a hyperplane that intersects S only at x.

15/38

Vertices

define vertex: x € R" is a vertex of set S C R" if for some vector ¢ € R”,

c’™x<cy VyesS\{x}
interpretation: {z: c’z = c"x} is a hyperplane that intersects S only at x.
we say this hyperplane supports S at x

fact: x is a vertex of S = x is an extreme point of S
proof: x is a vertex of S. suppose its defining vector is ¢ and consider the
optimization problem

minimize ¢’ x

subjectto x€ S

15/38

Vertices

define vertex: x € R" is a vertex of set S C R" if for some vector ¢ € R”,

c’™x<cy VyesS\{x}

interpretation: {z: c’z = c"x} is a hyperplane that intersects S only at x.

we say this hyperplane supports S at x

fact: x is a vertex of S = x is an extreme point of S
proof: x is a vertex of S. suppose its defining vector is ¢ and consider the

optimization problem

minimize c¢’x

subjectto x€ S

X is the unique optimum of this problem, so the proof of this statement follows from
the previous proof.

15/38

Basic feasible solution

recall the standard form LP

minimize ¢’ x
subject to Ax =b (LP)
x>0

16/38

Basic feasible solution

recall the standard form LP
minimize ¢’ x
subjectto Ax=b
x>0

define: x € R" is a basic feasible solution (BFS) of (LP) if there is a set
S c{1,...,n} of m columns so that As € R™*" is invertible and

xs = Ag'b, xs =0, x> 0.

> As € R™™ is submatrix of A with columns in S

16/38

Basic feasible solution

recall the standard form LP
minimize ¢’ x
subjectto Ax=b
x>0

define: x € R" is a basic feasible solution (BFS) of (LP) if there is a set
S c{1,...,n} of m columns so that As € R™*" is invertible and

xs = Ag'b, xs =0, x> 0.

> As € R™™ is submatrix of A with columns in S

» two BFS with S, S’ are neighbors if they share all but one columns:
ISNS|=m-1

16/38

Basic feasible solution

recall the standard form LP
minimize ¢’ x
subjectto Ax=b
x>0

define: x € R" is a basic feasible solution (BFS) of (LP) if there is a set
S c{1,...,n} of m columns so that As € R™*" is invertible and

xs = Ag'b, xs =0, x> 0.

> As € R™™ is submatrix of A with columns in S

» two BFS with S, S’ are neighbors if they share all but one columns:
ISNS|=m-1

16/38

Basic feasible solution

recall the standard form LP

minimize ¢’ x

subjectto Ax=b
x>0

define: x € R" is a basic feasible solution (BFS) of (LP) if there is a set
S c{1,...,n} of m columns so that As € R™*" is invertible and

xs = Ag'b, xs =0, x> 0.

> As € R™™ is submatrix of A with columns in S

» two BFS with S, S’ are neighbors if they share all but one columns:
ISNS|=m-1

Q: how to find a BFS?

16/38

Basic feasible solution

recall the standard form LP

minimize ¢’ x
subject to Ax =b (LP)
x>0

define: x € R" is a basic feasible solution (BFS) of (LP) if there is a set
S c{1,...,n} of m columns so that As € R™*" is invertible and

xs = Ag'b, xs =0, x> 0.

> As € R™™ is submatrix of A with columns in S

» two BFS with S, S’ are neighbors if they share all but one columns:
ISNS|=m-1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = Aglb; check x > 0.

16/38

Extreme point < vertex <= BFS
fact. consider the feasible set F = {x | Ax = b, x > 0} in R". the following are
equivalent:

» x is an extreme point of F
> x is a vertex of F
» xisa BFS of F

17/38

Extreme point <= vertex < BFS
fact. consider the feasible set F = {x | Ax = b, x > 0} in R". the following are
equivalent:

» x is an extreme point of F
> x is a vertex of F
» xisa BFS of F

implications: since any polyhedron Ax < b can be written as Ax = b, x > 0,

» (BFS =) a polyhedron has a finite number of extreme points

> (extreme point =) BFS are independent of the representation of the feasible
set

17/38

Extreme point <= vertex < BFS
fact. consider the feasible set F = {x | Ax = b, x > 0} in R". the following are
equivalent:

» x is an extreme point of F
> x is a vertex of F
» xisa BFS of F

implications: since any polyhedron Ax < b can be written as Ax = b, x > 0,

» (BFS =) a polyhedron has a finite number of extreme points

> (extreme point =) BFS are independent of the representation of the feasible
set

we have already shown that vertex = extreme point. need to show

» extreme point = BFS
» BFS — vertex

17/38

Extreme point — BFS

we will show the contrapositive: x is not a BFS = x is not an extreme point

18/38

Extreme point — BFS

we will show the contrapositive: x is not a BFS = x is not an extreme point

suppose that x* € F but is not a BFS:
there is no S C [n] so that Ag is invertible, xZ = Aglb, and XE = 0.

18/38

Extreme point — BFS

we will show the contrapositive: x is not a BFS = x is not an extreme point

suppose that x* € F but is not a BFS:
there is no S C [n] so that Ag is invertible, xZ = Aglb, and xg = 0.
consider | = {i : x* > 0}, the active set of variables in x*.

» if A; were full rank |/|, we could complete A; to an invertible Ag,
» so there is some d; € nullspace(A/), d; # 0.

18/38

Extreme point — BFS

we will show the contrapositive: x is not a BFS = x is not an extreme point

suppose that x* € F but is not a BFS:
there is no S C [n] so that Ag is invertible, xZ = Aglb, and xg = 0.
consider | = {i : x* > 0}, the active set of variables in x*.

» if A; were full rank |/|, we could complete A; to an invertible Ag,
» so there is some d; € nullspace(A/), d; # 0.

extend this vector to d € R" with d; =0, so Ad = A;d; = 0.
now for € < min; x*/ max; |d;|, define x*,x~ € R" as

xT =x*+ed, X~ =x"—ed.
these are feasible:

> xT,x~ >0 by our choice of ¢,
» AxT = Ax~ = b since Ad = 0.

18/38

Extreme point — BFS

we will show the contrapositive: x is not a BFS = x is not an extreme point

suppose that x* € F but is not a BFS:
there is no S C [n] so that Ag is invertible, xZ = Aglb, and xg = 0.
consider | = {i : x* > 0}, the active set of variables in x*.

» if A; were full rank |/|, we could complete A; to an invertible Ag,
» so there is some d; € nullspace(A/), d; # 0.

extend this vector to d € R" with d; =0, so Ad = A;d; = 0.
now for € < min; x*/ max; |d;|, define x*,x~ € R" as

xT =x*+ed, X~ =x"—ed.
these are feasible:
> xT,x~ >0 by our choice of ¢,
» AxT = Ax~ = b since Ad = 0.
so xX* = %X+ + %x‘ is not extreme in F.
18/38

BFS — vertex

suppose x* is a BFS of F with active set S and Ag invertible. define ¢ € R" as

{o ifies
C =

1 otherwise

soc'x*=0.

19/38

BFS — vertex

suppose x* is a BFS of F with active set S and Ag invertible. define ¢ € R" as

{o ifies
C =

1 otherwise

soc'x*=0.

» x* is the only point in F supported on S, as nullspace(As) = 0,

» so any other feasible point x € F has a positive objective value ¢’ x > 0.

hence x* is a vertex of F with defining vector c.

19/38

Outline

Solving LPs

20/38

Solving LPs

algorithms:

>

VVYyVVYYVY

enumerate all vertices and check
fourier-motzkin elimination
simplex method

ellipsoid method

interior point methods
first-order methods

21/38

Solving LPs

algorithms:
» enumerate all vertices and check
» fourier-motzkin elimination
» simplex method
» ellipsoid method
» interior point methods
» first-order methods
> ...
remarks:
» enumeration and elimination are simple but not practical
» simplex was the first practical algorithm; still used today
» ellipsoid method is the first polynomial-time algorithm; not practical
» interior point methods are polynomial-time and practical
» first-order methods are practical and scale to large problems

21/38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1+2x < 4
—x1+x <
x,x2 > 0

22/38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1+2x < 4
—x1+x < 1
x;,x2 > 0

we can collect inequalities on x7 into those bounding it above and below:

{0, —1} <x3 <4—-2x

22/38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1+2x < 4
—x1+x < 1
x;,x > 0

we can collect inequalities on x7 into those bounding it above and below:
{0, —1} <x3 <4—-2x

by appending all pairwise inequalities to existing inequalities on x2, we recover the
feasible set for x»:

0 < 4-2x
X2 — 1 < 4 — 2XQ
X2 22 0

= x2 € [0,5/3].

22/38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1+2x < 4
—x1+x < 1
x,x2 > 0

we can collect inequalities on x7 into those bounding it above and below:
{0, —1} <x3 <4—-2x

by appending all pairwise inequalities to existing inequalities on x2, we recover the
feasible set for x»:

0 < 4-2x%
X2 — 1 < 4 — 2%@
X2 22 0

= x2 € [0,5/3].

elimination method also shows projection of a polyhedron is a (closed) polyhedron

22/38

Enumerate vertices of LP

can generate all extreme points of LP: for each S C {1,..., n} with |S| = m,

» Ags € R™™ submatrix of A with columns in S, is invertible
» solve Asxs = b for x5 and set xg = 0
» if x¢ > 0, then x is a BFS

» evaluate objective ¢’ x

the best BFS is optimal!

23/38

Enumerate vertices of LP

can generate all extreme points of LP: for each S C {1,..., n} with |S| = m,

» Ags € R™™ submatrix of A with columns in S, is invertible
» solve Asxs = b for x5 and set xg = 0

» if x¢ > 0, then x is a BFS

> evaluate objective ¢’ x

the best BFS is optimal!

problem: how many BFSs are there?

23/38

Enumerate vertices of LP

can generate all extreme points of LP: for each S C {1,..., n} with |S| = m,

» Ags € R™™ submatrix of A with columns in S, is invertible
» solve Asxs = b for x5 and set xg = 0
» if x¢ > 0, then x is a BFS

> evaluate objective ¢’ x

the best BFS is optimal!

problem: how many BFSs are there?
n choose mis () = #lm), (“exponentially many”)

23/38

Simplex algorithm

basic idea: local search on the vertices of the feasible set

» start at BFS x and evaluate objective ¢’ x

> move to a neighboring BFS x’ with better objective ¢’ x’

» repeat until no improvement possible

24 /38

Simplex algorithm

basic idea: local search on the vertices of the feasible set
» start at BFS x and evaluate objective ¢’ x

> move to a neighboring BFS x’ with better objective ¢’ x’

» repeat until no improvement possible

discuss in groups:

» how to find an initial BFS?
» how to find a neighboring BFS with better objective?

» how to prove optimality?

24 /38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

25/38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:
minimize Y 7, z
subjectto Ax+ Dz=05b
x,z>0

where D € R™*™ is a diagonal matrix with D;; = sign(b;) for i=1,...,m.

25/38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:
minimize Y 7, z
subjectto Ax+ Dz=05b
x,z>0

where D € R™*™ is a diagonal matrix with D;; = sign(b;) for i=1,...,m.

» x =0, z=|b| is a BFS of this problem

25/38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize Y 7, z
subjectto Ax+ Dz=05b
x,z>0
where D € R™*™ is a diagonal matrix with D;; = sign(b;) for i=1,...,m.

» x =0, z=|b| is a BFS of this problem
» (x,z) = (x,0) is a BFS of this problem <= x is a BFS of the original problem

25/38

Find a better neighboring BFS

start with BFS x with active set S, xs > 0. (called a non-degenerate BFS.)
construct the jth basic direction ¢’ by turning on variable j ¢ S

xt x4+ 0d, 0>0

where dJJ =1 and d{ =0fori¢ SU{j}. need to solve for dg.

26 /38

Find a better neighboring BFS

start with BFS x with active set S, xs > 0. (called a non-degenerate BFS.)
construct the jth basic direction ¢’ by turning on variable j ¢ S

xT — x+0d, 0>0

where dJJ =1 and d{ =0fori¢ SU{j}. need to solve for dg.

» need to stay feasible wrt equality constraints, so need

0=Ad = Asdl +a; = df = —Acly

26 /38

Find a better neighboring BFS

start with BFS x with active set S, xs > 0. (called a non-degenerate BFS.)
construct the jth basic direction ¢’ by turning on variable j ¢ S

xT — x+0d, 0>0

where dJJ =1 and d{ =0fori¢ SU{j}. need to solve for dg.

» need to stay feasible wrt equality constraints, so need

0=Ad = Asdl +a; = df = —Acly

» as xs > 0 is non-degenerate, 39 > 0 st x* >0

26 /38

Find a better neighboring BFS

start with BFS x with active set S, xs > 0. (called a non-degenerate BFS.)
construct the jth basic direction ¢’ by turning on variable j ¢ S

xTex+0d, 60>0
where dJJ =1 and d{ =0fori¢ SU{j}. need to solve for dg.
» need to stay feasible wrt equality constraints, so need

0=Ad = Asdl +a; = df = —Acly

» as xs > 0 is non-degenerate, 39 > 0 st x* >0
» how does objective change if we move to xT = x + 0d/?

Tt _ T 0 T4i —pr —peTA=1,.
c' x c'x=0c d =0c;—0cs A5 a;

26 /38

Reduced cost

define reduced cost ¢; = ¢; — csTAglaj, JE€S

27/38

Reduced cost

define reduced cost ¢; = ¢; — csTAglaj, JE€S

fact:

» if ¢ >0, x is optimal
> if x is optimal and nondegenerate (xs > 0), then ¢ > 0

why might x be degenerate? why might that pose a problem?

27/38

if ¢ > 0, x is optimal

three steps to the proof:

> every feasible direction at x is contained in cone({d; | j & S})

28/38

if ¢ > 0, x is optimal

three steps to the proof:

> every feasible direction at x is contained in cone({d; | j & S})
feasible directions d must satisfy, for some 6 > 0,

A(x +0d)=b, x+0d>0

> nonnegativity requires d; > 0 for j & S
> feasibility requires 0 = Ad = A(ds + > 45 @j€;) for some a > 0

> solve: ds = —Ag' 305 A = Y5 ai(—ASTA) = X s adg
> sod =3 s(ds + &) =345

28/38

if ¢ > 0, x is optimal

three steps to the proof:

> every feasible direction at x is contained in cone({d; | j & S})
feasible directions d must satisfy, for some 6 > 0,

A(x +0d)=b, x+0d>0

> nonnegativity requires d; > 0 for j & S
> feasibility requires 0 = Ad = A(ds + > 45 @j€;) for some a > 0

> solve: ds = —Ag’ S ies AT = D as aj(—ASTA) = s ds

> sod=3 s O‘J'(d.é +&)=2jgs ajd
> the feasible set F = {x | Ax =b, x >0} C x+cone({d; | j & S})

28/38

if ¢ > 0, x is optimal

three steps to the proof:

> every feasible direction at x is contained in cone({d; | j & S})
feasible directions d must satisfy, for some 6 > 0,

A(x+60d)=b, x+0d>0

> nonnegativity requires d; > 0 for j & S
> feasibility requires 0 = Ad = A(ds + > 45 @j€;) for some a > 0

> solve: ds = _Agl ngs ajAj = ngzs aj(_AglAj) = ngs ads

> sod= ngzs O‘J'(d.é + &) = ngzs O‘J'dj
> the feasible set F = {x | Ax = b, x >0} C x+cone({d; | j & S}) by convexity

28/38

if ¢ > 0, x is optimal

three steps to the proof:

> every feasible direction at x is contained in cone({d; | j & S})
feasible directions d must satisfy, for some 6 > 0,

A(x+60d)=b, x+0d>0

> nonnegativity requires d; > 0 for j & S

> feasibility requires 0 = Ad = A(ds + > 45 @j€;) for some a > 0

> solve: ds = —Ag" 355 ajA; = 35 (A5 A)) = Xjgs 0y

> sod =3 gs(ds + &) =345
> the feasible set F = {x | Ax = b, x >0} C x+cone({d; | j & S}) by convexity
> so

p* = minc’x’ > m|nc x+§ ajd;
x'eF
J#S
= ch+minE aJ-Ej:ch
a>0

2V e 28/38

Outline

Modeling

29/38

Let’s do some modeling!

practical solvers for MILP:

» Gurobi and COPT are state-of-the-art commercial solvers
» GLPK and SCIP are free solvers that are not as fast

30/38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

» Gurobi and COPT are state-of-the-art commercial solvers
» GLPK and SCIP are free solvers that are not as fast
» gurobipy is a python interface to Gurobi

» CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

30/38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

| 2

>
>
>

v

Gurobi and COPT are state-of-the-art commercial solvers

GLPK and SCIP are free solvers that are not as fast

gurobipy is a python interface to Gurobi

CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

30/38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

| 2

>
>
>

v

Gurobi and COPT are state-of-the-art commercial solvers

GLPK and SCIP are free solvers that are not as fast

gurobipy is a python interface to Gurobi

CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com /dashboard

JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications

30/38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

| 2

>
>
>

v

Gurobi and COPT are state-of-the-art commercial solvers

GLPK and SCIP are free solvers that are not as fast

gurobipy is a python interface to Gurobi

CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com /dashboard

JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
> power systems
https://jump.dev/JuMP.jl /stable/tutorials/applications/power_systems/
> multicast routing https://colab.research.google.com/drive/
1iOn1T1Muh51KaA7mf7UIQOdhSFZhZyry?usp=sharing

30/38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Oro Verde case + tutorial

https://github.com /stanford-cme-307 /demos/tree/main/gurobipy

31/38

https://github.com/stanford-cme-307/demos/tree/main/gurobipy

Modeling challenges

model the following as standard form LPs:

O N O Ok

inequality constraints. Ax < b

free variable. x € R

absolute value. constraint |x| < 10

piecewise linear. objective max(xi, x2)

assighment. e.g., every class is assigned exactly one classroom
logic. e.g., class enrollment < capacity of assigned room
(big-M). Ax < b if x > 10

flow. e.g., the least cost way to ship an item from s to t

32/38

https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb
https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb

Modeling challenges

model the following as standard form LPs:

1. inequality constraints. Ax < b

2. free variable. x € R

3. absolute value. constraint |x| < 10

4. piecewise linear. objective max(xi, x2)
5.
6
7
8

assighment. e.g., every class is assigned exactly one classroom

. logic. e.g., class enrollment < capacity of assigned room
. (big-M). Ax < bif x> 10

. flow. e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1-6. see
https://github.com /stanford-cme-307 /demos/blob/main/

Mullticast_Routing_Demonstration.ipynb for a detailed treatment of a flow problem.)

32/38

https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb
https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize ¢’ x
subjectto Ax < b

x>0

33/38

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize ¢’ x
subjectto Ax < b

x>0

introduce slack variable s € R™: Ax +s=b,5s>0 < Ax<b
minimize ¢'x+0"s
subjectto Ax+s=b
x,s >0

33/38

Split variable into parts to represent free variables

to represent the following problem in standard form,
minimize ¢’ x
subjectto Ax=b

34/38

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize ¢’ x
subjectto Ax=b

introduce positive variables x;,x_ so x = x; — x_:
minimize ¢’xy —cTx_

subject to Axy —Ax_ =b
Xp,x- >0

34/38

Use epigraph variables to handle absolute value

to represent the following problem in standard form,
minimize ||x||1 = Y1 x|

subject to Ax=b
x>0

35/38

Use epigraph variables to handle absolute value
to represent the following problem in standard form,

minimize ||x||1 = Y1 x|
subject to Ax=b
x>0

introduce epigraph variable t € R" so |x;| < t;:
minimize 17t
subject to Ax=b

—t<x<t
x,t>0

verify these constraints ensure |x;| < t;.

35/38

Use epigraph variables to handle absolute value
to represent the following problem in standard form,

minimize ||x||1 = Y1 x|
subject to Ax=b
x>0

introduce epigraph variable t € R" so |x;| < t;:

minimize 17t
subject to Ax=b
—t<x<t
x,t >0
verify these constraints ensure |x;| < t;.

Q: Why does this work? For what kinds of functions can we use this trick?

35/38

Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise

36/38

Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise

now solve the problem

minimize 77, >, GiXj

subject to Zj'il Xjj =1, Vi (every class assigned one room)
> Xiji <1, Vj(no more than one class per room)
Xjj € {0,1} (binary variables)

where Cj; is the cost of assigning class i to room j.

36/38

Use binary variables to handle logic

model class enrollment p; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise

37/38

Use binary variables to handle logic

model class enrollment p; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise

solve the problem

minimize 377, 7 CiXj

subject to ijzl Xjj =1, Vi (every class assigned one room
>, Xij <1, Vj(no more than one class per room
Yo pPiXi <, Y (capacity constraint
Xij € {0,1} (binary variables

— — N N

where Cj; is the cost of assigning class i to room j.

37/38

Use binary variables to handle logic

model class enrollment p; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j
Xij = _
0 otherwise

solve the problem
minimize 377, 7 CiXj
subject to ijzl Xjj =1, Vi (every class assigned one room
>, Xij <1, Vj(no more than one class per room
Yo pPiXi <, Y (capacity constraint
Xij € {0,1} (binary variables

— — N N

where Cj; is the cost of assigning class i to room j.

what if we want enrollment p to be a variable, too?
37/38

...or use a big-M relaxation!

model class enrollment p; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

1 class i is assigned to room j

0 otherwise

suppose M is a very large number.

38/38

...or use a big-M relaxation!

model class enrollment p; < capacity ¢; of assigned room:
define variable Xj; € {0,1} for each class i =1,...,nand room j=1,...,m

{1 class i is assigned to room j
i =

0 otherwise

suppose M is a very large number. solve the problem

minimize 377, 7 CiXj

subject to > ; Xjj =1, Vj (every class assigned one room
> 21 Xij =1, Vi(no more than one class per room
pi < ¢+ (1—Xj)M, Vi,j (capacity constraint
Xij € {0,1} (binary variables

~— N

where Cj; is the cost of assigning class i to room j.
38/38

	LP standard form
	LP inequality form
	What kinds of points can be optimal?
	Solving LPs
	Modeling

