
CME 307 / MS&E 311 / OIT 676: Optimization

LP geometry, modeling and solution techniques

Professor Udell

Management Science and Engineering
Stanford

November 18, 2024

1 / 38

Course survey

you’re interested in:

▶ modeling real-world problems, from political science and economics to energy
and desalination!

▶ robustness and modeling under uncertainty

▶ understanding core optimization concepts like duality and KKT conditions

▶ . . .

questions:

▶ recommended resource for linear algebra?

▶ how to ask questions in class?

requests:

▶ slower on proofs, please!

2 / 38

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

3 / 38

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or ±∞

Q: if p⋆ = −∞, does a solution exist?
Q: if p⋆ =∞, does a solution exist?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 38

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or ±∞

Q: if p⋆ = −∞, does a solution exist?

Q: if p⋆ =∞, does a solution exist?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 38

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or ±∞

Q: if p⋆ = −∞, does a solution exist?
Q: if p⋆ =∞, does a solution exist?

henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 38

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or ±∞

Q: if p⋆ = −∞, does a solution exist?
Q: if p⋆ =∞, does a solution exist?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?

A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 38

Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or ±∞

Q: if p⋆ = −∞, does a solution exist?
Q: if p⋆ =∞, does a solution exist?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove

4 / 38

LP example: diet problem

▶ xj servings of food j , j = 1, . . . , n

▶ cj cost per serving

▶ aij amount of nutrient i in food j

▶ bi required amount of nutrient i , i = 1, . . . ,m

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes? x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? Ax + s = b, l ≤ s ≤ u

5 / 38

LP example: diet problem

▶ xj servings of food j , j = 1, . . . , n

▶ cj cost per serving

▶ aij amount of nutrient i in food j

▶ bi required amount of nutrient i , i = 1, . . . ,m

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes? x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? Ax + s = b, l ≤ s ≤ u

5 / 38

LP example: diet problem

▶ xj servings of food j , j = 1, . . . , n

▶ cj cost per serving

▶ aij amount of nutrient i in food j

▶ bi required amount of nutrient i , i = 1, . . . ,m

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes? x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? Ax + s = b, l ≤ s ≤ u

5 / 38

LP example: diet problem

▶ xj servings of food j , j = 1, . . . , n

▶ cj cost per serving

▶ aij amount of nutrient i in food j

▶ bi required amount of nutrient i , i = 1, . . . ,m

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes? x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? Ax + s = b, l ≤ s ≤ u

5 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.

interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.
interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.
interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.
interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b}

(dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.
interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.
interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}

▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.
interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant

6 / 38

Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.
interpretation: conic hull

▶ define the cone generated by A = [a1, . . . an]:

{Ax | x ≥ 0} =

{
n∑

i=1

aixi | x ≥ 0

}
= cone(a1, . . . , an)

▶ LP is feasible if b ∈ cone(a1, . . . , an)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant
6 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]

▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex
▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex
▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex
▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex
▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex

▶ a halfspace is convex
▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex

▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex
▶ the intersection of convex sets is convex

▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]
▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex
▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex

7 / 38

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

8 / 38

LP inequality form

another useful form for LP is inequality form

minimize cT x
subject to Ax ≤ b

interpretation: halfspaces

▶ aTi x ≤ bi defines a halfspace

▶ Ax ≤ b defines a polyhedron: intersection of halfspaces

▶ LP is feasible if polyhedron {x | Ax ≤ b} is nonempty

9 / 38

LP inequality form

another useful form for LP is inequality form

minimize cT x
subject to Ax ≤ b

interpretation: halfspaces

▶ aTi x ≤ bi defines a halfspace

▶ Ax ≤ b defines a polyhedron: intersection of halfspaces

▶ LP is feasible if polyhedron {x | Ax ≤ b} is nonempty

9 / 38

LP example: production planning

▶ xi units of product i

▶ ci cost per unit

▶ aij amount of resource j used by product i

▶ bj amount of resource j available

▶ di demand for product i

minimize cT x
subject to Ax ≤ b

0 ≤ x ≤ d

extensions:

▶ fixed cost for producing product i at all?
cT x + f T z , zi ∈ {0, 1}, xi ≤ Mzi for M large

10 / 38

LP example: production planning

▶ xi units of product i

▶ ci cost per unit

▶ aij amount of resource j used by product i

▶ bj amount of resource j available

▶ di demand for product i

minimize cT x
subject to Ax ≤ b

0 ≤ x ≤ d

extensions:

▶ fixed cost for producing product i at all?

cT x + f T z , zi ∈ {0, 1}, xi ≤ Mzi for M large

10 / 38

LP example: production planning

▶ xi units of product i

▶ ci cost per unit

▶ aij amount of resource j used by product i

▶ bj amount of resource j available

▶ di demand for product i

minimize cT x
subject to Ax ≤ b

0 ≤ x ≤ d

extensions:

▶ fixed cost for producing product i at all?
cT x + f T z , zi ∈ {0, 1}, xi ≤ Mzi for M large

10 / 38

LP inequality form to standard form

standard form to inequality form

minimize cT x
subject to Ax = b

x ≥ 0
→

minimize cT x
subject to Ax ≤ b

Ax ≥ b
−x ≤ 0

inequality form to standard form

minimize cT x
subject to Ax ≤ b

→
minimize cT (x+ − x−)
subject to A(x+ − x−) + s = b

s, x+, x− ≥ 0

so both forms have the same expressive power, and feasible sets are polyhedra

11 / 38

LP inequality form to standard form

standard form to inequality form

minimize cT x
subject to Ax = b

x ≥ 0
→

minimize cT x
subject to Ax ≤ b

Ax ≥ b
−x ≤ 0

inequality form to standard form

minimize cT x
subject to Ax ≤ b

→
minimize cT (x+ − x−)
subject to A(x+ − x−) + s = b

s, x+, x− ≥ 0

so both forms have the same expressive power, and feasible sets are polyhedra

11 / 38

LP inequality form to standard form

standard form to inequality form

minimize cT x
subject to Ax = b

x ≥ 0
→

minimize cT x
subject to Ax ≤ b

Ax ≥ b
−x ≤ 0

inequality form to standard form

minimize cT x
subject to Ax ≤ b

→

minimize cT (x+ − x−)
subject to A(x+ − x−) + s = b

s, x+, x− ≥ 0

so both forms have the same expressive power, and feasible sets are polyhedra

11 / 38

LP inequality form to standard form

standard form to inequality form

minimize cT x
subject to Ax = b

x ≥ 0
→

minimize cT x
subject to Ax ≤ b

Ax ≥ b
−x ≤ 0

inequality form to standard form

minimize cT x
subject to Ax ≤ b

→
minimize cT (x+ − x−)
subject to A(x+ − x−) + s = b

s, x+, x− ≥ 0

so both forms have the same expressive power, and feasible sets are polyhedra

11 / 38

Active constraints

for constraint set Ax ≤ b, an active constraint at x is one that holds with equality:

aTi x = bi

▶ the active set at x is the set of indices of active constraints {i | aTi x = bi}

for nonnegative variable x ≥ 0, xi is active if xi > 0

example: active slack variables are dual to active constraints

Ax ≤ b ⇐⇒ Ax + s = b, s ≥ 0

aTi x = bi ⇐⇒ si = 0

constraint i is active ⇐⇒ slack variable si is inactive

12 / 38

Active constraints

for constraint set Ax ≤ b, an active constraint at x is one that holds with equality:

aTi x = bi

▶ the active set at x is the set of indices of active constraints {i | aTi x = bi}

for nonnegative variable x ≥ 0, xi is active if xi > 0

example: active slack variables are dual to active constraints

Ax ≤ b ⇐⇒ Ax + s = b, s ≥ 0

aTi x = bi ⇐⇒ si = 0

constraint i is active ⇐⇒ slack variable si is inactive

12 / 38

Active constraints

for constraint set Ax ≤ b, an active constraint at x is one that holds with equality:

aTi x = bi

▶ the active set at x is the set of indices of active constraints {i | aTi x = bi}

for nonnegative variable x ≥ 0, xi is active if xi > 0

example: active slack variables are dual to active constraints

Ax ≤ b ⇐⇒ Ax + s = b, s ≥ 0

aTi x = bi ⇐⇒ si = 0

constraint i is active ⇐⇒ slack variable si is inactive

12 / 38

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

13 / 38

Extreme points

define extreme point: x ∈ Rn is extreme in C ⊂ Rn if it cannot be written as a
convex combination of other points in C : for θ ∈ [0, 1],

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

fact: if x⋆ is the unique optimal solution of minimizex∈S cT x ,
then x⋆ is extreme in the set S .
proof: suppose by way of contradiction that x⋆ is not extreme in S :

x⋆ = θy + (1− θ)z for y , z ∈ S , θ ∈ (0, 1)

p⋆ := cT x⋆ = θcT y + (1− θ)cT z > θp⋆ + (1− θ)p⋆ = p⋆

where the inequality follows from the (unique) optimality of x⋆. Contradiction!

Q: Example of a problem with a non-extreme solution?
Q: Does there always exist an extreme solution?

14 / 38

Extreme points

define extreme point: x ∈ Rn is extreme in C ⊂ Rn if it cannot be written as a
convex combination of other points in C : for θ ∈ [0, 1],

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

fact: if x⋆ is the unique optimal solution of minimizex∈S cT x ,
then x⋆ is extreme in the set S .

proof: suppose by way of contradiction that x⋆ is not extreme in S :

x⋆ = θy + (1− θ)z for y , z ∈ S , θ ∈ (0, 1)

p⋆ := cT x⋆ = θcT y + (1− θ)cT z > θp⋆ + (1− θ)p⋆ = p⋆

where the inequality follows from the (unique) optimality of x⋆. Contradiction!

Q: Example of a problem with a non-extreme solution?
Q: Does there always exist an extreme solution?

14 / 38

Extreme points

define extreme point: x ∈ Rn is extreme in C ⊂ Rn if it cannot be written as a
convex combination of other points in C : for θ ∈ [0, 1],

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

fact: if x⋆ is the unique optimal solution of minimizex∈S cT x ,
then x⋆ is extreme in the set S .
proof: suppose by way of contradiction that x⋆ is not extreme in S :

x⋆ = θy + (1− θ)z for y , z ∈ S , θ ∈ (0, 1)

p⋆ := cT x⋆ = θcT y + (1− θ)cT z > θp⋆ + (1− θ)p⋆ = p⋆

where the inequality follows from the (unique) optimality of x⋆. Contradiction!

Q: Example of a problem with a non-extreme solution?
Q: Does there always exist an extreme solution?

14 / 38

Extreme points

define extreme point: x ∈ Rn is extreme in C ⊂ Rn if it cannot be written as a
convex combination of other points in C : for θ ∈ [0, 1],

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

fact: if x⋆ is the unique optimal solution of minimizex∈S cT x ,
then x⋆ is extreme in the set S .
proof: suppose by way of contradiction that x⋆ is not extreme in S :

x⋆ = θy + (1− θ)z for y , z ∈ S , θ ∈ (0, 1)

p⋆ := cT x⋆ = θcT y + (1− θ)cT z > θp⋆ + (1− θ)p⋆ = p⋆

where the inequality follows from the (unique) optimality of x⋆. Contradiction!

Q: Example of a problem with a non-extreme solution?

Q: Does there always exist an extreme solution?

14 / 38

Extreme points

define extreme point: x ∈ Rn is extreme in C ⊂ Rn if it cannot be written as a
convex combination of other points in C : for θ ∈ [0, 1],

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

fact: if x⋆ is the unique optimal solution of minimizex∈S cT x ,
then x⋆ is extreme in the set S .
proof: suppose by way of contradiction that x⋆ is not extreme in S :

x⋆ = θy + (1− θ)z for y , z ∈ S , θ ∈ (0, 1)

p⋆ := cT x⋆ = θcT y + (1− θ)cT z > θp⋆ + (1− θ)p⋆ = p⋆

where the inequality follows from the (unique) optimality of x⋆. Contradiction!

Q: Example of a problem with a non-extreme solution?
Q: Does there always exist an extreme solution?

14 / 38

Vertices

define vertex: x ∈ Rn is a vertex of set S ⊂ Rn if for some vector c ∈ Rn,

cT x < cT y ∀y ∈ S \ {x}

interpretation: {z : cT z = cT x} is a hyperplane that intersects S only at x .
we say this hyperplane supports S at x

fact: x is a vertex of S =⇒ x is an extreme point of S
proof: x is a vertex of S . suppose its defining vector is c and consider the
optimization problem

minimize cT x
subject to x ∈ S

x is the unique optimum of this problem, so the proof of this statement follows from
the previous proof.

15 / 38

Vertices

define vertex: x ∈ Rn is a vertex of set S ⊂ Rn if for some vector c ∈ Rn,

cT x < cT y ∀y ∈ S \ {x}

interpretation: {z : cT z = cT x} is a hyperplane that intersects S only at x .
we say this hyperplane supports S at x

fact: x is a vertex of S =⇒ x is an extreme point of S
proof: x is a vertex of S . suppose its defining vector is c and consider the
optimization problem

minimize cT x
subject to x ∈ S

x is the unique optimum of this problem, so the proof of this statement follows from
the previous proof.

15 / 38

Vertices

define vertex: x ∈ Rn is a vertex of set S ⊂ Rn if for some vector c ∈ Rn,

cT x < cT y ∀y ∈ S \ {x}

interpretation: {z : cT z = cT x} is a hyperplane that intersects S only at x .
we say this hyperplane supports S at x

fact: x is a vertex of S =⇒ x is an extreme point of S

proof: x is a vertex of S . suppose its defining vector is c and consider the
optimization problem

minimize cT x
subject to x ∈ S

x is the unique optimum of this problem, so the proof of this statement follows from
the previous proof.

15 / 38

Vertices

define vertex: x ∈ Rn is a vertex of set S ⊂ Rn if for some vector c ∈ Rn,

cT x < cT y ∀y ∈ S \ {x}

interpretation: {z : cT z = cT x} is a hyperplane that intersects S only at x .
we say this hyperplane supports S at x

fact: x is a vertex of S =⇒ x is an extreme point of S
proof:

x is a vertex of S . suppose its defining vector is c and consider the
optimization problem

minimize cT x
subject to x ∈ S

x is the unique optimum of this problem, so the proof of this statement follows from
the previous proof.

15 / 38

Vertices

define vertex: x ∈ Rn is a vertex of set S ⊂ Rn if for some vector c ∈ Rn,

cT x < cT y ∀y ∈ S \ {x}

interpretation: {z : cT z = cT x} is a hyperplane that intersects S only at x .
we say this hyperplane supports S at x

fact: x is a vertex of S =⇒ x is an extreme point of S
proof: x is a vertex of S . suppose its defining vector is c and consider the
optimization problem

minimize cT x
subject to x ∈ S

x is the unique optimum of this problem, so the proof of this statement follows from
the previous proof.

15 / 38

Vertices

define vertex: x ∈ Rn is a vertex of set S ⊂ Rn if for some vector c ∈ Rn,

cT x < cT y ∀y ∈ S \ {x}

interpretation: {z : cT z = cT x} is a hyperplane that intersects S only at x .
we say this hyperplane supports S at x

fact: x is a vertex of S =⇒ x is an extreme point of S
proof: x is a vertex of S . suppose its defining vector is c and consider the
optimization problem

minimize cT x
subject to x ∈ S

x is the unique optimum of this problem, so the proof of this statement follows from
the previous proof.

15 / 38

Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38

Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m is submatrix of A with columns in S

▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38

Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38

Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38

Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?

A: choose m linearly independent columns of A and set x = A−1
S b; check x ≥ 0.

16 / 38

Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.
16 / 38

Extreme point ⇐⇒ vertex ⇐⇒ BFS

fact. consider the feasible set F = {x | Ax = b, x ≥ 0} in Rn. the following are
equivalent:

▶ x is an extreme point of F

▶ x is a vertex of F

▶ x is a BFS of F

implications: since any polyhedron Ax ≤ b can be written as Ax = b, x ≥ 0,

▶ (BFS =⇒) a polyhedron has a finite number of extreme points

▶ (extreme point =⇒) BFS are independent of the representation of the feasible
set

we have already shown that vertex =⇒ extreme point. need to show

▶ extreme point =⇒ BFS

▶ BFS =⇒ vertex

17 / 38

Extreme point ⇐⇒ vertex ⇐⇒ BFS

fact. consider the feasible set F = {x | Ax = b, x ≥ 0} in Rn. the following are
equivalent:

▶ x is an extreme point of F

▶ x is a vertex of F

▶ x is a BFS of F

implications: since any polyhedron Ax ≤ b can be written as Ax = b, x ≥ 0,

▶ (BFS =⇒) a polyhedron has a finite number of extreme points

▶ (extreme point =⇒) BFS are independent of the representation of the feasible
set

we have already shown that vertex =⇒ extreme point. need to show

▶ extreme point =⇒ BFS

▶ BFS =⇒ vertex

17 / 38

Extreme point ⇐⇒ vertex ⇐⇒ BFS

fact. consider the feasible set F = {x | Ax = b, x ≥ 0} in Rn. the following are
equivalent:

▶ x is an extreme point of F

▶ x is a vertex of F

▶ x is a BFS of F

implications: since any polyhedron Ax ≤ b can be written as Ax = b, x ≥ 0,

▶ (BFS =⇒) a polyhedron has a finite number of extreme points

▶ (extreme point =⇒) BFS are independent of the representation of the feasible
set

we have already shown that vertex =⇒ extreme point. need to show

▶ extreme point =⇒ BFS

▶ BFS =⇒ vertex
17 / 38

Extreme point =⇒ BFS

we will show the contrapositive: x is not a BFS =⇒ x is not an extreme point

suppose that x⋆ ∈ F but is not a BFS:
there is no S ⊆ [n] so that AS is invertible, x⋆S = A−1

S b, and x⋆
S̄
= 0.

consider I = {i : x⋆i > 0}, the active set of variables in x⋆.

▶ if AI were full rank |I |, we could complete AI to an invertible AS ,
▶ so there is some dI ∈ nullspace(AI), dI ̸= 0.

extend this vector to d ∈ Rn with dĪ = 0, so Ad = AIdI = 0.
now for ϵ ≤ mini x

⋆
i /maxi |di |, define x+, x− ∈ Rn as

x+ = x⋆ + ϵd , x− = x⋆ − ϵd .

these are feasible:

▶ x+, x− ≥ 0 by our choice of ϵ,
▶ Ax+ = Ax− = b since Ad = 0.

so x⋆ = 1
2x

+ + 1
2x

− is not extreme in F .

18 / 38

Extreme point =⇒ BFS

we will show the contrapositive: x is not a BFS =⇒ x is not an extreme point

suppose that x⋆ ∈ F but is not a BFS:
there is no S ⊆ [n] so that AS is invertible, x⋆S = A−1

S b, and x⋆
S̄
= 0.

consider I = {i : x⋆i > 0}, the active set of variables in x⋆.

▶ if AI were full rank |I |, we could complete AI to an invertible AS ,
▶ so there is some dI ∈ nullspace(AI), dI ̸= 0.

extend this vector to d ∈ Rn with dĪ = 0, so Ad = AIdI = 0.
now for ϵ ≤ mini x

⋆
i /maxi |di |, define x+, x− ∈ Rn as

x+ = x⋆ + ϵd , x− = x⋆ − ϵd .

these are feasible:

▶ x+, x− ≥ 0 by our choice of ϵ,
▶ Ax+ = Ax− = b since Ad = 0.

so x⋆ = 1
2x

+ + 1
2x

− is not extreme in F .

18 / 38

Extreme point =⇒ BFS

we will show the contrapositive: x is not a BFS =⇒ x is not an extreme point

suppose that x⋆ ∈ F but is not a BFS:
there is no S ⊆ [n] so that AS is invertible, x⋆S = A−1

S b, and x⋆
S̄
= 0.

consider I = {i : x⋆i > 0}, the active set of variables in x⋆.

▶ if AI were full rank |I |, we could complete AI to an invertible AS ,
▶ so there is some dI ∈ nullspace(AI), dI ̸= 0.

extend this vector to d ∈ Rn with dĪ = 0, so Ad = AIdI = 0.
now for ϵ ≤ mini x

⋆
i /maxi |di |, define x+, x− ∈ Rn as

x+ = x⋆ + ϵd , x− = x⋆ − ϵd .

these are feasible:

▶ x+, x− ≥ 0 by our choice of ϵ,
▶ Ax+ = Ax− = b since Ad = 0.

so x⋆ = 1
2x

+ + 1
2x

− is not extreme in F .

18 / 38

Extreme point =⇒ BFS

we will show the contrapositive: x is not a BFS =⇒ x is not an extreme point

suppose that x⋆ ∈ F but is not a BFS:
there is no S ⊆ [n] so that AS is invertible, x⋆S = A−1

S b, and x⋆
S̄
= 0.

consider I = {i : x⋆i > 0}, the active set of variables in x⋆.

▶ if AI were full rank |I |, we could complete AI to an invertible AS ,
▶ so there is some dI ∈ nullspace(AI), dI ̸= 0.

extend this vector to d ∈ Rn with dĪ = 0, so Ad = AIdI = 0.
now for ϵ ≤ mini x

⋆
i /maxi |di |, define x+, x− ∈ Rn as

x+ = x⋆ + ϵd , x− = x⋆ − ϵd .

these are feasible:

▶ x+, x− ≥ 0 by our choice of ϵ,
▶ Ax+ = Ax− = b since Ad = 0.

so x⋆ = 1
2x

+ + 1
2x

− is not extreme in F .

18 / 38

Extreme point =⇒ BFS

we will show the contrapositive: x is not a BFS =⇒ x is not an extreme point

suppose that x⋆ ∈ F but is not a BFS:
there is no S ⊆ [n] so that AS is invertible, x⋆S = A−1

S b, and x⋆
S̄
= 0.

consider I = {i : x⋆i > 0}, the active set of variables in x⋆.

▶ if AI were full rank |I |, we could complete AI to an invertible AS ,
▶ so there is some dI ∈ nullspace(AI), dI ̸= 0.

extend this vector to d ∈ Rn with dĪ = 0, so Ad = AIdI = 0.
now for ϵ ≤ mini x

⋆
i /maxi |di |, define x+, x− ∈ Rn as

x+ = x⋆ + ϵd , x− = x⋆ − ϵd .

these are feasible:

▶ x+, x− ≥ 0 by our choice of ϵ,
▶ Ax+ = Ax− = b since Ad = 0.

so x⋆ = 1
2x

+ + 1
2x

− is not extreme in F .
18 / 38

BFS =⇒ vertex

suppose x⋆ is a BFS of F with active set S and AS invertible. define c ∈ Rn as

ci =

{
0 if i ∈ S

1 otherwise

so cT x⋆ = 0.

▶ x⋆ is the only point in F supported on S , as nullspace(AS) = 0,

▶ so any other feasible point x ∈ F has a positive objective value cT x > 0.

hence x⋆ is a vertex of F with defining vector c .

19 / 38

BFS =⇒ vertex

suppose x⋆ is a BFS of F with active set S and AS invertible. define c ∈ Rn as

ci =

{
0 if i ∈ S

1 otherwise

so cT x⋆ = 0.

▶ x⋆ is the only point in F supported on S , as nullspace(AS) = 0,

▶ so any other feasible point x ∈ F has a positive objective value cT x > 0.

hence x⋆ is a vertex of F with defining vector c .

19 / 38

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

20 / 38

Solving LPs

algorithms:

▶ enumerate all vertices and check
▶ fourier-motzkin elimination
▶ simplex method
▶ ellipsoid method
▶ interior point methods
▶ first-order methods
▶ . . .

remarks:

▶ enumeration and elimination are simple but not practical
▶ simplex was the first practical algorithm; still used today
▶ ellipsoid method is the first polynomial-time algorithm; not practical
▶ interior point methods are polynomial-time and practical
▶ first-order methods are practical and scale to large problems

21 / 38

Solving LPs

algorithms:

▶ enumerate all vertices and check
▶ fourier-motzkin elimination
▶ simplex method
▶ ellipsoid method
▶ interior point methods
▶ first-order methods
▶ . . .

remarks:

▶ enumeration and elimination are simple but not practical
▶ simplex was the first practical algorithm; still used today
▶ ellipsoid method is the first polynomial-time algorithm; not practical
▶ interior point methods are polynomial-time and practical
▶ first-order methods are practical and scale to large problems

21 / 38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1 + 2x2 ≤ 4

−x1 + x2 ≤ 1

x1, x2 ≥ 0

we can collect inequalities on x1 into those bounding it above and below:

{0, x2 − 1} ≤ x1 ≤ 4− 2x2

by appending all pairwise inequalities to existing inequalities on x2, we recover the
feasible set for x2:

0 ≤ 4− 2x2

x2 − 1 ≤ 4− 2x2

x2 ≥ 0

=⇒ x2 ∈ [0, 5/3].

elimination method also shows projection of a polyhedron is a (closed) polyhedron

22 / 38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1 + 2x2 ≤ 4

−x1 + x2 ≤ 1

x1, x2 ≥ 0

we can collect inequalities on x1 into those bounding it above and below:

{0, x2 − 1} ≤ x1 ≤ 4− 2x2

by appending all pairwise inequalities to existing inequalities on x2, we recover the
feasible set for x2:

0 ≤ 4− 2x2

x2 − 1 ≤ 4− 2x2

x2 ≥ 0

=⇒ x2 ∈ [0, 5/3].

elimination method also shows projection of a polyhedron is a (closed) polyhedron

22 / 38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1 + 2x2 ≤ 4

−x1 + x2 ≤ 1

x1, x2 ≥ 0

we can collect inequalities on x1 into those bounding it above and below:

{0, x2 − 1} ≤ x1 ≤ 4− 2x2

by appending all pairwise inequalities to existing inequalities on x2, we recover the
feasible set for x2:

0 ≤ 4− 2x2

x2 − 1 ≤ 4− 2x2

x2 ≥ 0

=⇒ x2 ∈ [0, 5/3].

elimination method also shows projection of a polyhedron is a (closed) polyhedron

22 / 38

Example of Fourier-Motzkin elimination

consider the system of inequalities

x1 + 2x2 ≤ 4

−x1 + x2 ≤ 1

x1, x2 ≥ 0

we can collect inequalities on x1 into those bounding it above and below:

{0, x2 − 1} ≤ x1 ≤ 4− 2x2

by appending all pairwise inequalities to existing inequalities on x2, we recover the
feasible set for x2:

0 ≤ 4− 2x2

x2 − 1 ≤ 4− 2x2

x2 ≥ 0

=⇒ x2 ∈ [0, 5/3].

elimination method also shows projection of a polyhedron is a (closed) polyhedron 22 / 38

Enumerate vertices of LP

can generate all extreme points of LP: for each S ⊆ {1, . . . , n} with |S | = m,

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ solve ASxS = b for xS and set xS̄ = 0

▶ if xS ≥ 0, then x is a BFS

▶ evaluate objective cT x

the best BFS is optimal!

problem: how many BFSs are there?
n choose m is

(n
m

)
= n!

m!(n−m)! (“exponentially many”)

23 / 38

Enumerate vertices of LP

can generate all extreme points of LP: for each S ⊆ {1, . . . , n} with |S | = m,

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ solve ASxS = b for xS and set xS̄ = 0

▶ if xS ≥ 0, then x is a BFS

▶ evaluate objective cT x

the best BFS is optimal!

problem: how many BFSs are there?

n choose m is
(n
m

)
= n!

m!(n−m)! (“exponentially many”)

23 / 38

Enumerate vertices of LP

can generate all extreme points of LP: for each S ⊆ {1, . . . , n} with |S | = m,

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ solve ASxS = b for xS and set xS̄ = 0

▶ if xS ≥ 0, then x is a BFS

▶ evaluate objective cT x

the best BFS is optimal!

problem: how many BFSs are there?
n choose m is

(n
m

)
= n!

m!(n−m)! (“exponentially many”)

23 / 38

Simplex algorithm

basic idea: local search on the vertices of the feasible set

▶ start at BFS x and evaluate objective cT x

▶ move to a neighboring BFS x ′ with better objective cT x ′

▶ repeat until no improvement possible

discuss in groups:

▶ how to find an initial BFS?

▶ how to find a neighboring BFS with better objective?

▶ how to prove optimality?

24 / 38

Simplex algorithm

basic idea: local search on the vertices of the feasible set

▶ start at BFS x and evaluate objective cT x

▶ move to a neighboring BFS x ′ with better objective cT x ′

▶ repeat until no improvement possible

discuss in groups:

▶ how to find an initial BFS?

▶ how to find a neighboring BFS with better objective?

▶ how to prove optimality?

24 / 38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
∑m

i=1 zi
subject to Ax + Dz = b

x , z ≥ 0

where D ∈ Rm×m is a diagonal matrix with Dii = sign(bi) for i = 1, . . . ,m.

▶ x = 0, z = |b| is a BFS of this problem

▶ (x , z) = (x , 0) is a BFS of this problem ⇐⇒ x is a BFS of the original problem

25 / 38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
∑m

i=1 zi
subject to Ax + Dz = b

x , z ≥ 0

where D ∈ Rm×m is a diagonal matrix with Dii = sign(bi) for i = 1, . . . ,m.

▶ x = 0, z = |b| is a BFS of this problem

▶ (x , z) = (x , 0) is a BFS of this problem ⇐⇒ x is a BFS of the original problem

25 / 38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
∑m

i=1 zi
subject to Ax + Dz = b

x , z ≥ 0

where D ∈ Rm×m is a diagonal matrix with Dii = sign(bi) for i = 1, . . . ,m.

▶ x = 0, z = |b| is a BFS of this problem

▶ (x , z) = (x , 0) is a BFS of this problem ⇐⇒ x is a BFS of the original problem

25 / 38

Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
∑m

i=1 zi
subject to Ax + Dz = b

x , z ≥ 0

where D ∈ Rm×m is a diagonal matrix with Dii = sign(bi) for i = 1, . . . ,m.

▶ x = 0, z = |b| is a BFS of this problem

▶ (x , z) = (x , 0) is a BFS of this problem ⇐⇒ x is a BFS of the original problem

25 / 38

Find a better neighboring BFS

start with BFS x with active set S , xS > 0. (called a non-degenerate BFS.)
construct the jth basic direction d j by turning on variable j ̸∈ S

x+ ← x + θd j , θ > 0

where d j
j = 1 and d j

i = 0 for i ̸∈ S ∪ {j}. need to solve for d j
S .

▶ need to stay feasible wrt equality constraints, so need

0 = Ad j = ASd
j
S + aj =⇒ d j

S = −A−1
S aj

▶ as xS > 0 is non-degenerate, ∃θ > 0 st x+ ≥ 0

▶ how does objective change if we move to x+ = x + θd j?

cT x+ − cT x = θcTd j = θcj − θcTS A−1
S aj

26 / 38

Find a better neighboring BFS

start with BFS x with active set S , xS > 0. (called a non-degenerate BFS.)
construct the jth basic direction d j by turning on variable j ̸∈ S

x+ ← x + θd j , θ > 0

where d j
j = 1 and d j

i = 0 for i ̸∈ S ∪ {j}. need to solve for d j
S .

▶ need to stay feasible wrt equality constraints, so need

0 = Ad j = ASd
j
S + aj =⇒ d j

S = −A−1
S aj

▶ as xS > 0 is non-degenerate, ∃θ > 0 st x+ ≥ 0

▶ how does objective change if we move to x+ = x + θd j?

cT x+ − cT x = θcTd j = θcj − θcTS A−1
S aj

26 / 38

Find a better neighboring BFS

start with BFS x with active set S , xS > 0. (called a non-degenerate BFS.)
construct the jth basic direction d j by turning on variable j ̸∈ S

x+ ← x + θd j , θ > 0

where d j
j = 1 and d j

i = 0 for i ̸∈ S ∪ {j}. need to solve for d j
S .

▶ need to stay feasible wrt equality constraints, so need

0 = Ad j = ASd
j
S + aj =⇒ d j

S = −A−1
S aj

▶ as xS > 0 is non-degenerate, ∃θ > 0 st x+ ≥ 0

▶ how does objective change if we move to x+ = x + θd j?

cT x+ − cT x = θcTd j = θcj − θcTS A−1
S aj

26 / 38

Find a better neighboring BFS

start with BFS x with active set S , xS > 0. (called a non-degenerate BFS.)
construct the jth basic direction d j by turning on variable j ̸∈ S

x+ ← x + θd j , θ > 0

where d j
j = 1 and d j

i = 0 for i ̸∈ S ∪ {j}. need to solve for d j
S .

▶ need to stay feasible wrt equality constraints, so need

0 = Ad j = ASd
j
S + aj =⇒ d j

S = −A−1
S aj

▶ as xS > 0 is non-degenerate, ∃θ > 0 st x+ ≥ 0

▶ how does objective change if we move to x+ = x + θd j?

cT x+ − cT x = θcTd j = θcj − θcTS A−1
S aj

26 / 38

Reduced cost

define reduced cost c̄j = cj − cTS A−1
S aj , j ̸∈ S

fact:

▶ if c̄ ≥ 0, x is optimal

▶ if x is optimal and nondegenerate (xS > 0), then c̄ ≥ 0

why might x be degenerate? why might that pose a problem?

27 / 38

Reduced cost

define reduced cost c̄j = cj − cTS A−1
S aj , j ̸∈ S

fact:

▶ if c̄ ≥ 0, x is optimal

▶ if x is optimal and nondegenerate (xS > 0), then c̄ ≥ 0

why might x be degenerate? why might that pose a problem?

27 / 38

if c̄ ≥ 0, x is optimal

three steps to the proof:

▶ every feasible direction at x is contained in cone({dj | j ̸∈ S})

feasible directions d must satisfy, for some θ ≥ 0,

A(x + θd) = b, x + θd ≥ 0

▶ nonnegativity requires dj ≥ 0 for j ̸∈ S
▶ feasibility requires 0 = Ad = A(dS +

∑
j ̸∈S αjej) for some α ≥ 0

▶ solve: dS = −A−1
S

∑
j ̸∈S αjAj =

∑
j ̸∈S αj(−A−1

S Aj) =
∑

j ̸∈S αjd
j
S

▶ so d =
∑

j ̸∈S αj(d
j
S + ej) =

∑
j ̸∈S αjd

j

▶ the feasible set F = {x | Ax = b, x ≥ 0} ⊆ x + cone({dj | j ̸∈ S}) by convexity
▶ so

p⋆ = min
x ′∈F

cT x ′ ≥ min
α≥0

cT (x +
∑
j ̸∈S

αjdj)

= cT x +min
α≥0

∑
j ̸∈S

αj c̄j = cT x

28 / 38

if c̄ ≥ 0, x is optimal

three steps to the proof:

▶ every feasible direction at x is contained in cone({dj | j ̸∈ S})
feasible directions d must satisfy, for some θ ≥ 0,

A(x + θd) = b, x + θd ≥ 0

▶ nonnegativity requires dj ≥ 0 for j ̸∈ S
▶ feasibility requires 0 = Ad = A(dS +

∑
j ̸∈S αjej) for some α ≥ 0

▶ solve: dS = −A−1
S

∑
j ̸∈S αjAj =

∑
j ̸∈S αj(−A−1

S Aj) =
∑

j ̸∈S αjd
j
S

▶ so d =
∑

j ̸∈S αj(d
j
S + ej) =

∑
j ̸∈S αjd

j

▶ the feasible set F = {x | Ax = b, x ≥ 0} ⊆ x + cone({dj | j ̸∈ S}) by convexity
▶ so

p⋆ = min
x ′∈F

cT x ′ ≥ min
α≥0

cT (x +
∑
j ̸∈S

αjdj)

= cT x +min
α≥0

∑
j ̸∈S

αj c̄j = cT x

28 / 38

if c̄ ≥ 0, x is optimal

three steps to the proof:

▶ every feasible direction at x is contained in cone({dj | j ̸∈ S})
feasible directions d must satisfy, for some θ ≥ 0,

A(x + θd) = b, x + θd ≥ 0

▶ nonnegativity requires dj ≥ 0 for j ̸∈ S
▶ feasibility requires 0 = Ad = A(dS +

∑
j ̸∈S αjej) for some α ≥ 0

▶ solve: dS = −A−1
S

∑
j ̸∈S αjAj =

∑
j ̸∈S αj(−A−1

S Aj) =
∑

j ̸∈S αjd
j
S

▶ so d =
∑

j ̸∈S αj(d
j
S + ej) =

∑
j ̸∈S αjd

j

▶ the feasible set F = {x | Ax = b, x ≥ 0} ⊆ x + cone({dj | j ̸∈ S})

by convexity
▶ so

p⋆ = min
x ′∈F

cT x ′ ≥ min
α≥0

cT (x +
∑
j ̸∈S

αjdj)

= cT x +min
α≥0

∑
j ̸∈S

αj c̄j = cT x

28 / 38

if c̄ ≥ 0, x is optimal

three steps to the proof:

▶ every feasible direction at x is contained in cone({dj | j ̸∈ S})
feasible directions d must satisfy, for some θ ≥ 0,

A(x + θd) = b, x + θd ≥ 0

▶ nonnegativity requires dj ≥ 0 for j ̸∈ S
▶ feasibility requires 0 = Ad = A(dS +

∑
j ̸∈S αjej) for some α ≥ 0

▶ solve: dS = −A−1
S

∑
j ̸∈S αjAj =

∑
j ̸∈S αj(−A−1

S Aj) =
∑

j ̸∈S αjd
j
S

▶ so d =
∑

j ̸∈S αj(d
j
S + ej) =

∑
j ̸∈S αjd

j

▶ the feasible set F = {x | Ax = b, x ≥ 0} ⊆ x + cone({dj | j ̸∈ S}) by convexity

▶ so

p⋆ = min
x ′∈F

cT x ′ ≥ min
α≥0

cT (x +
∑
j ̸∈S

αjdj)

= cT x +min
α≥0

∑
j ̸∈S

αj c̄j = cT x

28 / 38

if c̄ ≥ 0, x is optimal

three steps to the proof:

▶ every feasible direction at x is contained in cone({dj | j ̸∈ S})
feasible directions d must satisfy, for some θ ≥ 0,

A(x + θd) = b, x + θd ≥ 0

▶ nonnegativity requires dj ≥ 0 for j ̸∈ S
▶ feasibility requires 0 = Ad = A(dS +

∑
j ̸∈S αjej) for some α ≥ 0

▶ solve: dS = −A−1
S

∑
j ̸∈S αjAj =

∑
j ̸∈S αj(−A−1

S Aj) =
∑

j ̸∈S αjd
j
S

▶ so d =
∑

j ̸∈S αj(d
j
S + ej) =

∑
j ̸∈S αjd

j

▶ the feasible set F = {x | Ax = b, x ≥ 0} ⊆ x + cone({dj | j ̸∈ S}) by convexity
▶ so

p⋆ = min
x ′∈F

cT x ′ ≥ min
α≥0

cT (x +
∑
j ̸∈S

αjdj)

= cT x +min
α≥0

∑
j ̸∈S

αj c̄j = cT x
28 / 38

Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

29 / 38

Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications

demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

Oro Verde case + tutorial

https://github.com/stanford-cme-307/demos/tree/main/gurobipy

31 / 38

https://github.com/stanford-cme-307/demos/tree/main/gurobipy

Modeling challenges

model the following as standard form LPs:

1. inequality constraints. Ax ≤ b

2. free variable. x ∈ R

3. absolute value. constraint |x | ≤ 10

4. piecewise linear. objective max(x1, x2)

5. assignment. e.g., every class is assigned exactly one classroom

6. logic. e.g., class enrollment ≤ capacity of assigned room

7. (big-M). Ax ≤ b if x ≥ 10

8. flow. e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see
https://github.com/stanford-cme-307/demos/blob/main/
Mullticast Routing Demonstration.ipynb for a detailed treatment of a flow problem.)

32 / 38

https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb
https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb

Modeling challenges

model the following as standard form LPs:

1. inequality constraints. Ax ≤ b

2. free variable. x ∈ R

3. absolute value. constraint |x | ≤ 10

4. piecewise linear. objective max(x1, x2)

5. assignment. e.g., every class is assigned exactly one classroom

6. logic. e.g., class enrollment ≤ capacity of assigned room

7. (big-M). Ax ≤ b if x ≥ 10

8. flow. e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see
https://github.com/stanford-cme-307/demos/blob/main/
Mullticast Routing Demonstration.ipynb for a detailed treatment of a flow problem.)

32 / 38

https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb
https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize cT x
subject to Ax ≤ b

x ≥ 0

introduce slack variable s ∈ Rm: Ax + s = b, s ≥ 0 ⇐⇒ Ax ≤ b

minimize cT x + 0T s
subject to Ax + s = b

x , s ≥ 0

33 / 38

Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize cT x
subject to Ax ≤ b

x ≥ 0

introduce slack variable s ∈ Rm: Ax + s = b, s ≥ 0 ⇐⇒ Ax ≤ b

minimize cT x + 0T s
subject to Ax + s = b

x , s ≥ 0

33 / 38

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize cT x
subject to Ax = b

introduce positive variables x+, x− so x = x+ − x−:

minimize cT x+ − cT x−
subject to Ax+ − Ax− = b

x+, x− ≥ 0

34 / 38

Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize cT x
subject to Ax = b

introduce positive variables x+, x− so x = x+ − x−:

minimize cT x+ − cT x−
subject to Ax+ − Ax− = b

x+, x− ≥ 0

34 / 38

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize ∥x∥1 =
∑n

i=1 |xi |
subject to Ax = b

x ≥ 0

introduce epigraph variable t ∈ Rn so |xi | ≤ ti :

minimize 1T t
subject to Ax = b

−t ≤ x ≤ t
x , t ≥ 0

verify these constraints ensure |xi | ≤ ti .
Q: Why does this work? For what kinds of functions can we use this trick?

35 / 38

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize ∥x∥1 =
∑n

i=1 |xi |
subject to Ax = b

x ≥ 0

introduce epigraph variable t ∈ Rn so |xi | ≤ ti :

minimize 1T t
subject to Ax = b

−t ≤ x ≤ t
x , t ≥ 0

verify these constraints ensure |xi | ≤ ti .

Q: Why does this work? For what kinds of functions can we use this trick?

35 / 38

Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize ∥x∥1 =
∑n

i=1 |xi |
subject to Ax = b

x ≥ 0

introduce epigraph variable t ∈ Rn so |xi | ≤ ti :

minimize 1T t
subject to Ax = b

−t ≤ x ≤ t
x , t ≥ 0

verify these constraints ensure |xi | ≤ ti .
Q: Why does this work? For what kinds of functions can we use this trick?

35 / 38

Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

now solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑m

j=1 Xij = 1, ∀i (every class assigned one room)∑n
i=1 Xij ≤ 1, ∀j(no more than one class per room)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

36 / 38

Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

now solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑m

j=1 Xij = 1, ∀i (every class assigned one room)∑n
i=1 Xij ≤ 1, ∀j(no more than one class per room)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

36 / 38

Use binary variables to handle logic

model class enrollment pi ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑m

j=1 Xij = 1, ∀i (every class assigned one room)∑n
i=1 Xij ≤ 1, ∀j(no more than one class per room)∑n
i=1 piXij ≤ cj , ∀j (capacity constraint)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

what if we want enrollment p to be a variable, too?

37 / 38

Use binary variables to handle logic

model class enrollment pi ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑m

j=1 Xij = 1, ∀i (every class assigned one room)∑n
i=1 Xij ≤ 1, ∀j(no more than one class per room)∑n
i=1 piXij ≤ cj , ∀j (capacity constraint)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

what if we want enrollment p to be a variable, too?

37 / 38

Use binary variables to handle logic

model class enrollment pi ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑m

j=1 Xij = 1, ∀i (every class assigned one room)∑n
i=1 Xij ≤ 1, ∀j(no more than one class per room)∑n
i=1 piXij ≤ cj , ∀j (capacity constraint)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

what if we want enrollment p to be a variable, too?
37 / 38

. . . or use a big-M relaxation!

model class enrollment pi ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

suppose M is a very large number.

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)

pi ≤ cj + (1− Xij)M, ∀i , j (capacity constraint)
Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

38 / 38

. . . or use a big-M relaxation!

model class enrollment pi ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

suppose M is a very large number. solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)

pi ≤ cj + (1− Xij)M, ∀i , j (capacity constraint)
Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .
38 / 38

	LP standard form
	LP inequality form
	What kinds of points can be optimal?
	Solving LPs
	Modeling

