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Basic inequality

recall basic inequality for convex differentiable f :

f (y) ≥ f (x) +∇f (x)T (y − x)

▶ first-order approximation of f at x is global underestimator

▶ (∇f (x),−1) supports epi f at (x , f (x))

what if f is not differentiable?
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Non-differentiable functions

are these functions differentiable?

▶ |t| for t ∈ R

▶ ∥x∥1 for x ∈ Rn

▶ ∥X∥∗ for X ∈ Rn×n

▶ maxi a
T
i x + bi for x ∈ Rn

▶ λmax(X ) for X ∈ Rn×n

▶ indicators of convex sets C

if not, where? can we find underestimators for them?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f (y) ≥ f (x) + gT (y − x) for all y

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x
Q: Can a function f have no subgradient at a point x?
A: Yes, if x does not lie on convex hull of f
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Subgradients and convexity

▶ g is a subgradient of f at x iff (g ,−1) supports epi f at (x , f (x))

▶ g is a subgradient iff f (x) + gT (y − x) is a global (affine) underestimator of f

▶ if f is convex and differentiable, ∇f (x) is a subgradient of f at x

subgradients come up in several contexts:

▶ algorithms for nondifferentiable convex optimization

▶ convex analysis, e.g., optimality conditions, duality for nondifferentiable
problems

(if f (y) ≤ f (x) + gT (y − x) for all y , then g is a supergradient)
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Subdifferential

set of all subgradients of f at x is called the subdifferential of f at x , denoted
∂f (x)

∂f (x) = {g : f (y) ≥ f (x) + gT (y − x) ∀y}

for any f ,

▶ ∂f (x) is a closed convex set (can be empty)

▶ ∂f (x) = ∅ if f (x) = ∞

proof: use the definition

if f is convex,

▶ ∂f (x) is nonempty, for x ∈ relint dom f

▶ ∂f (x) = {∇f (x)}, if f is differentiable at x

▶ if ∂f (x) = {g}, then f is differentiable at x and g = ∇f (x)
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Compute subgradient via definition

g ∈ ∂f (x) iff
f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom(f )

example. let f (x) = |x | for x ∈ R. suppose s ∈ sign(x), where

sign(x) =


{1} x > 0

[−1, 1] x = 0

−{1} x < 0.

then
f (y) = max(y ,−y) ≥ sy = s(x + y − x) = |x |+ s(y − x)

so sign(x) ⊆ ∂f (x) (in fact, holds with equality)

picture

8 / 59



Compute subgradient via definition

g ∈ ∂f (x) iff
f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom(f )

example. let f (x) = |x | for x ∈ R. suppose s ∈ sign(x), where

sign(x) =


{1} x > 0

[−1, 1] x = 0

−{1} x < 0.

then
f (y) = max(y ,−y) ≥ sy = s(x + y − x) = |x |+ s(y − x)

so sign(x) ⊆ ∂f (x) (in fact, holds with equality)

picture

8 / 59



Compute subgradient via definition

g ∈ ∂f (x) iff
f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom(f )

example. let f (x) = |x | for x ∈ R. suppose s ∈ sign(x), where

sign(x) =


{1} x > 0

[−1, 1] x = 0

−{1} x < 0.

then
f (y) = max(y ,−y) ≥ sy = s(x + y − x) = |x |+ s(y − x)

so sign(x) ⊆ ∂f (x) (in fact, holds with equality)

picture

8 / 59



Compute subgradient via definition
g ∈ ∂f (x) ⇐⇒ f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom(f )

example. let f (x) = maxi a
T
i x + bi .

then for any i ,

f (y) = max
i

aTi y + bi

≥ aTi y + bi

= aTi (x + y − x) + bi

= aTi x + bi + aTi (y − x)

= f (x) + aTi (y − x),

where the last line holds for i ∈ argmaxj a
T
j x + bj . so

▶ ai ∈ ∂f (x) for each i ∈ argmaxj a
T
j x + bj

▶ ∂f (x) is convex, so

Co{ai : i ∈ argmax
j

aTj x + bj} ⊆ ∂f (x)
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Compute subgradient via definition
g ∈ ∂f (x) ⇐⇒ f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom(f )

example. let f (X ) = λmax(X ).

then

f (Y ) = sup
∥v∥≤1

vTYv

= sup
∥v∥≤1

vT (X + Y − X )v , ∥v∥ ≤ 1

= sup
∥v∥≤1

(
vTXv + vT (Y − X )v

)
, ∥v∥ ≤ 1

= vTXv + tr(vvT (Y − X )), v ∈ argmax
∥v∥≤1

vTXv

= λmax(X ) + tr(vvT (Y − X )), v ∈ argmax
∥v∥≤1

vTXv

▶ vvT ∈ ∂f (X ) for each v ∈ argmax∥v∥≤1 v
TXv

▶ ∂f (x) is convex, so

Co{vvT : v ∈ argmax
∥v∥≤1

vTXv} ⊆ ∂f (x)
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Properties of subgradients

subgradient inequality:

g ∈ ∂f (x) ⇐⇒ f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom(f )

for convex f , we’ll show

▶ subgradients are monotone: for any x , y ∈ dom f , gy ∈ ∂f (y), and gx ∈ ∂f (x),

(gy − gx)
T (y − x) ≥ 0

▶ ∂f (x) is continuous: if f is (lower semi-)continuous, x (k) → x , g (k) → g , and
g (k) ∈ ∂f (x (k)) for each k, then g ∈ ∂f (x)

▶ ∂f (x) = argmax gT x − f (x)

these will help us compute subgradients

12 / 59



Subgradients are monotone

fact. for any x , y ∈ dom f , gy ∈ ∂f (y), and gx ∈ ∂f (x),

(gy − gx)
T (y − x) ≥ 0

proof. same as for differentiable case:

f (y) ≥ f (x) + gT
x (y − x) f (x) ≥ f (y) + gT

y (x − y)

add these to get
(gy − gx)

T (y − x) ≥ 0
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Subgradients are preserved under limits

subgradient inequality:

g ∈ ∂f (x) ⇐⇒ f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom(f )

fact. if f is (lower semi-)continuous, x (k) → x , g (k) → g , and g (k) ∈ ∂f (x (k)) for
each k , then g ∈ ∂f (x)

proof.

For each k and for every y ,

f (y) ≥ f (x (k)) + (g (k))T (y − x (k))

lim
k→∞

f (y) ≥ lim
k→∞

f (x (k)) + (g (k))T (y − x (k))

f (y) ≥ f (x) + gT (y − x)

moral. To find a subgradient g ∈ ∂f (x), find points x (k) → x where f is
differentiable, and let g = limk→∞∇f (x (k)).
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Subgradients are preserved under limits: example

consider f (x) = |x |. we know

∂f (x) =


{−1} x < 0
? x = 0
{1} x > 0

so

▶ limx→0+ ∇(x) = 1

▶ limx→0− ∇(x) = −1

hence

▶ −1 ∈ ∂f (0) and −1 ∈ ∂f (0)

▶ ∂f (0) is convex, so [−1, 1] ⊆ ∂f (0)

▶ and ∂f (0) is monotone, so [−1, 1] = ∂f (0)

15 / 59



Subgradients are preserved under limits: example

consider f (x) = |x |. we know

∂f (x) =


{−1} x < 0
? x = 0
{1} x > 0

so

▶ limx→0+ ∇(x) = 1

▶ limx→0− ∇(x) = −1

hence

▶ −1 ∈ ∂f (0) and −1 ∈ ∂f (0)

▶ ∂f (0) is convex, so [−1, 1] ⊆ ∂f (0)

▶ and ∂f (0) is monotone, so [−1, 1] = ∂f (0)

15 / 59



Convex functions can’t be very non-differentiable

Theorem

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is differentiable almost
everywhere on the interior of its domain.

corollary: pick x ∈ dom f uniformly at random. then f is differentiable at x w/prob
1.

corollary: For a convex function f and any x , there is a sequence of points
x (k) → x where f is differentiable.

16 / 59



Convex functions can’t be very non-differentiable

Theorem

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is differentiable almost
everywhere on the interior of its domain.

corollary: pick x ∈ dom f uniformly at random. then f is differentiable at x w/prob
1.

corollary: For a convex function f and any x , there is a sequence of points
x (k) → x where f is differentiable.

16 / 59



Convex functions can’t be very non-differentiable

Theorem

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is differentiable almost
everywhere on the interior of its domain.

corollary: pick x ∈ dom f uniformly at random. then f is differentiable at x w/prob
1.

corollary: For a convex function f and any x , there is a sequence of points
x (k) → x where f is differentiable.

16 / 59



Subgradients and fenchel conjugates

fact. g ∈ ∂f (x) ⇐⇒ f ∗(g) + f (x) = gT x

(recall the conjugate function f ∗(g) = supx g
T x − f (x).)
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Subgradients and fenchel conjugates

proof. if f ∗(g) + f (x) = gT x ,

f ∗(g) = sup
y

gT y − f (y)

≥ gT y − f (y) ∀y
f (y) ≥ gT y − f ∗(g) ∀y

= gT y − gT x + f (x) ∀y
= gT (y − x) + f (x) ∀y

so g ∈ ∂f (x). conversely, if g ∈ ∂f (x),

f (y) ≥ gT (y − x) + f (x)

gT x − f (x) ≥ gT y − f (y)

sup
y

gT x − f (x) ≥ sup
y

gT y − f (y)

gT x − f (x) ≥ f ∗(g)

so f ∗(g) + f (x) = gT x .
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Subgradients and fenchel conjugates

Conclusion.

g ∈ ∂f (x) ⇐⇒ f ∗(g) + f (x) = gT x

⇐⇒ x ∈ argmax
x

gT x − f (x)

consider the same implications for the function f ∗:

x ∈ ∂f ∗(g) ⇐⇒ f (x) + f ∗(g) = xTg

⇐⇒ g ∈ argmax
g

gT x − f ∗(g)

so all these conditions are equivalent, and g ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(g)!
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Compute subgradient via fenchel conjugate

∂f (x) = argmax
g

gT x − f ∗(g)

example. let f (x) = ∥x∥1. compute

f ∗(g) = sup
x

gT x − ∥x∥1

=

{
0 ∥g∥∞ ≤ 1

∞ otherwise

given x ,

∂f (x) = argmax
g

gT x − f ∗(g)

= argmax
∥g∥∞≤1

gT x

= sign(x)

where sign is computed elementwise.

20 / 59



Compute subgradient via fenchel conjugate

∂f (x) = argmax
g

gT x − f ∗(g)

example. let f (x) = ∥x∥1. compute

f ∗(g) = sup
x

gT x − ∥x∥1

=

{
0 ∥g∥∞ ≤ 1

∞ otherwise

given x ,

∂f (x) = argmax
g

gT x − f ∗(g)

= argmax
∥g∥∞≤1

gT x

= sign(x)

where sign is computed elementwise.

20 / 59



Compute subgradient via fenchel conjugate

∂f (x) = argmax
g

gT x − f ∗(g)

example. let f (x) = ∥x∥1. compute

f ∗(g) = sup
x

gT x − ∥x∥1

=

{
0 ∥g∥∞ ≤ 1

∞ otherwise

given x ,

∂f (x) = argmax
g

gT x − f ∗(g)

= argmax
∥g∥∞≤1

gT x

= sign(x)

where sign is computed elementwise.
20 / 59



Compute subgradient via fenchel conjugate
∂f (x) = argmax

g
gT x − f ∗(g)

example. let f (X ) = ∥X∥∗. compute

f ∗(G ) = sup
X

tr(G ,X )− ∥X∥∗

=

{
0 ∥G∥ ≤ 1

∞ otherwise

where ∥G∥ = σ1(G ) is the operator norm of G .

given X = U diag(σ)V T ,

∂f (x) = argmax
G

tr(G ,X )− f ∗(G )

= argmax
∥G∥≤1

tr(G ,X )

= U diag(sign(σ))V T

where sign is computed elementwise.
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Subgradient method

the subgradient method is a simple algorithm to minimize nondifferentiable convex
function f

x (k+1) = x (k) − αkg
(k)

▶ x (k) is the kth iterate

▶ g (k) is any subgradient of f at x (k)

▶ αk > 0 is the kth step size

warning: subgradient method is not a descent method.
instead, keep track of best point so far

f
(k)
best = min

i=1,...,k
f (x (i))
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How to avoid slow convergence

don’t use subgradient method for very high accuracy!

instead,

▶ for high accuracy: rewrite problem as LP or SDP; use IPM
▶ for medium accuracy:

▶ regularize your objective (so it’s strongly convex)

f̃ (x) = f (x) + α∥x − x0∥2

▶ smooth your objective (so it’s smooth)

f̃ (x) = Ey :∥y−x∥≤δf (y)

▶ infimal convolution (so it’s smooth and strongly convex):

f̃ (x) = inf
y
f (y) +

ρ

2
∥y − x∥2

▶ more on these later. . .
▶ for low accuracy: use a constant step size; terminate when you stop improving

much or get bored
24 / 59
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Proximal operator

define the proximal operator of the function f : Rd → R

proxf (x) = argmin
z

(f (z) +
1

2
∥z − x∥22)

▶ proxf : Rd → Rd

▶ generalized projection: if 1C is the indicator of set C ,

prox1C (w) = ΠC (w)

▶ implicit gradient step: if z = proxf (x)

∂f (z) + z − x = 0

z = x − ∂f (z)
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Maps from functions to functions

for a function f : Rd → R,

▶ prox maps f to a new function proxf : Rd → Rd

▶ proxf (x) evaluates this function at the point x

▶ ∇ maps f to a new function ∇f : Rd → Rd

▶ ∇f (x) evaluates this function at the point x
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : Rd → R

proxf (x) = argmin
z

(f (z) +
1

2
∥z − x∥22)

▶ f (x) = 0

(identity)

▶ f (x) = x2 (shrinkage)

▶ f (x) = |x | (soft-thresholding)
▶ f (x) = 1(x ≥ 0) (projection)

▶ f (x) =
∑d

i=1 fi (xi ) (separable)

▶ f (x) = ∥x∥1 (soft-thresholding on each index)

▶ f (X ) = ∥X∥∗ (soft-thresholding on singular values)
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Proxable functions

we say a function f is proxable if it’s easy to evaluate proxf (x)

all examples from previous slide are proxable
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Outline

Subgradients

Subgradient properties

Subgradient method

Proximal operators

Proximal gradient method

Relations

Fixed points

Averaged operators

Proximal method
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Proximal gradient method

suppose f is smooth, g is non-smooth. solve

minimize f (x) + g(x)

using proximal operators together with gradient steps?

idea:

x+ = proxtg (x − t∇f (x))

▶ the proximal operator steps towards the minimum of g

▶ gradient method steps towards minimum of f
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Proximal gradient: examples

with smooth loss f (x) = 1
2∥Ax − b∥22, regularize with

▶ projected gradient: g(x) = 1Ω(x)

▶ nonnegative least squares: g(x) = 1+(x)

▶ lasso: g(x) = λ∥x∥1
▶ . . .
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Functions

in much of what follows, we’ll need to assume functions are

▶ closed: epi(f ) is a closed set

▶ convex: f is convex

▶ proper: dom f is non-empty

which we abbreviate as CCP
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Relations

(x , ∂f (x)) and (x ,proxf (x)) define relations on Rn

▶ a relation R on Rn is a subset of Rn × Rn

▶ domR = {x : (x , y) ∈ R}
▶ let R(x) = {y : (x , y) ∈ R}
▶ if R(x) is always empty or a singleton, we say R is a function

▶ any function f : Rn → Rn defines a relation {(x , f (x)) : x ∈ dom f }
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Relations: examples

▶ empty relation: ∅
▶ full relation: Rn × Rn

▶ identity: {(x , x) : x ∈ Rn}
▶ zero: {(x , 0) : x ∈ Rn}
▶ subdifferential: ∂f = {(x , g : x ∈ dom f , g ∈ ∂f (x)}
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Operations on relations

if R and S are relations, define

▶ composition: RS = {(x , z) : (x , y) ∈ R, (y , z) ∈ S}
▶ addition: R + S = {(x , y + z) : (x , y) ∈ R, (x , z) ∈ S}
▶ inverses: R−1 = {(y , x) : (x , y) ∈ R}

use inequality on sets to mean the inequality holds for any element in the set, e.g.,

f (y) ≥ f (x) + ∂f T (y − x)
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Example: fenchel conjugates and the subdifferential

if f is CPP, (f ∗)∗ = f ∗∗ = f , so

(u, v) ∈ (∂f )−1 ⇐⇒ (v , u) ∈ ∂f

⇐⇒ u ∈ ∂f (v)

⇐⇒ 0 ∈ ∂f (v)− u

⇐⇒ v ∈ argmin
x

(f (x)− uT x)

⇐⇒ v ∈ argmax
x

(uT x − f (x))

⇐⇒ f (v) + f ∗(u) = uT v

⇐⇒ u ∈ argmax
y

(yT v − f ∗(y))

⇐⇒ 0 ∈ v − ∂f ∗(u))

⇐⇒ (u, v) ∈ ∂f ∗

this shows ∂f ∗ = ∂f −1
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Zeros of a relation

▶ x is a zero of R if 0 ∈ R(x)

▶ the zero set of R is R−1(0) = {x : (x , 0) ∈ R}

x is a zero of ∂f iff x solves minimize f (x)
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Lipschitz operators

relation F has Lipschitz constant L if for all (x , u) ∈ F and (y , v) ∈ F ,

∥u − v∥ ≤ L∥x − y∥

fact: if F is Lipschitz, then F is a function.
proof:

if (x , u) ∈ F and (x , v) ∈ F ,

∥u − v∥ ≤ L∥x − x∥ = 0

▶ the relation F is nonexpansive if L ≤ 1

▶ the relation F is contractive if L < 1
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Gradient update is contractive for SSC functions

suppose f is α-strongly convex and β-smooth. the relation

I − t∇f = {(x , x − t∇f (x)) : x ∈ dom f }

is Lipschitz with parameter L = max{|1− tα|, |1− tβ|}.

corollary: if t = 2
α+β ,

L = κ−1
κ+1

hint: use the fundamental theorem of calculus

(I − t∇f )(x)− (I − t∇f )(y) =

∫ 1

0
(I − t∇2f (θx + (1− θ)y))(x − y)dθ

and Jensen’s inequality

∥
∫ 1

0
v(t)dt∥ ≤

∫ 1

0
∥v(t)∥dt

source: Ryu and Yin (2022)
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Gradient update is contractive for SSC functions

suppose f is α-strongly convex and β-smooth. the relation

I − t∇f = {(x , x − t∇f (x)) : x ∈ dom f }
is Lipschitz with parameter L = max{|1− tα|, |1− tβ|}.

proof:

∥(I − t∇f )(x)− (I − t∇f )(y)∥

=

∥∥∥∥∫ 1

0
(I − t∇2f (θx + (1− θ)y))(x − y)dθ

∥∥∥∥
≤

∫ 1

0

∥∥(I − t∇2f (θx + (1− θ)y))(x − y)
∥∥ dθ

≤
∫ 1

0
max(|1− tα|, |1− tβ|)dθ ∥x − y∥

= max(|1− tα|, |1− tβ|) ∥x − y∥
last ineq uses αI ⪯ ∇2f ⪯ βI =⇒ (1− tβ)I ⪯ I − t∇2f ⪯ (1− tα)I

43 / 59



Gradient update is contractive for SSC functions

suppose f is α-strongly convex and β-smooth. the relation

I − t∇f = {(x , x − t∇f (x)) : x ∈ dom f }
is Lipschitz with parameter L = max{|1− tα|, |1− tβ|}.
proof:

∥(I − t∇f )(x)− (I − t∇f )(y)∥

=

∥∥∥∥∫ 1

0
(I − t∇2f (θx + (1− θ)y))(x − y)dθ

∥∥∥∥
≤

∫ 1

0

∥∥(I − t∇2f (θx + (1− θ)y))(x − y)
∥∥ dθ

≤
∫ 1

0
max(|1− tα|, |1− tβ|)dθ ∥x − y∥

= max(|1− tα|, |1− tβ|) ∥x − y∥
last ineq uses αI ⪯ ∇2f ⪯ βI =⇒ (1− tβ)I ⪯ I − t∇2f ⪯ (1− tα)I

43 / 59



Proximal map is nonexpansive

the proximal map of any convex function f is nonexpansive:

∥proxf (y)− proxf (x)∥ ≤ ∥y − x∥

proof: let u = proxf (x) and v = proxf (y), so

x − u ∈ ∂f (u), y − v ∈ ∂f (v)

then by the subgradient inequality,

f (v) ≥ f (u) + ⟨x − u, v − u⟩ and f (u) ≥ f (v) + ⟨y − v , u − v⟩

add these to show

0 ≥ ⟨y − x + u − v , u − v⟩
⟨x − y , u − v⟩ ≥ ∥u − v∥2

∥x − y∥ ≥ ∥u − v∥

▶ second line shows proxf is firmly nonexpansive
▶ third line uses Cauchy-Schwarz to show it is nonexpansive
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Proximal map is contractive for SC functions

the proximal map of an α-SC function f is 1
1+2α -contractive:

∥proxf (y)− proxf (x)∥ ≤ 1

1 + 2α
∥y − x∥

proof: let u = proxf (x) and v = proxf (y), so

x − u ∈ ∂f (u), y − v ∈ ∂f (v)

by strong convexity

f (v) ≥ f (u) + ⟨x − u, v − u⟩+ α∥v − u∥2

f (u) ≥ f (v) + ⟨y − v , u − v⟩+ α∥u − v∥2

add these to show

0 ≥ ⟨y − x + u − v , u − v⟩+ 2α∥u − v∥2

⟨x − y , u − v⟩ ≥ (1 + 2α)∥u − v∥2
1

1 + 2α
∥x − y∥ ≥ ∥u − v∥
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Fixed points

x is a fixed point of F if x = F (x)

examples:

▶ F (x) = x : every point is a fixed point

▶ F (x) = 0: only 0 is a fixed point

▶ a contractive operator on Rn can have at most one FP
proof: if x and y are FPs, ∥x − y∥ = ∥F (x)− F (y)∥ < ∥x − y∥ contradiction

▶ a nonexpansive operator F need not have a fixed point
proof: translation
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Fixed point iteration

to find a fixed point of F , try the fixed point iteration

x (k+1) = F (x (k))

Q: when does this converge?
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Fixed point iteration: contractive

Banach fixed point theorem: if F is a contraction, the iteration

x (k+1) = F (x (k))

converges to the unique fixed point of F

properties: if L is the Lipschitz constant of F ,

▶ distance to fixed point decreases monotonically:

∥x (k+1) − x⋆∥ = ∥F (x (k))− F (x⋆)∥ ≤ L∥x (k) − x⋆∥

(iteration is Fejer-monotone)

▶ linear convergence with rate L
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Proof

proof:

if F has Lipschitz constant L < 1,

▶ sequence x (k) is Cauchy:

∥x (k+ℓ) − x (k)∥ ≤ ∥x (k+ℓ) − x (k+ℓ−1)∥+ · · ·+ ∥x (k+1) − x (k)∥
≤ (Lℓ−1 + . . .+ 1)∥x (k+1) − x (k)∥

≤ 1

1− L
∥x (k+1) − x (k)∥

≤ Lk

1− L
∥x (1) − x (0)∥

▶ so it converges to a point x⋆. must be the (unique) FP!

▶ converges to x⋆ linearly with rate L

∥x (k) − x⋆∥ = ∥F (x (k−1))− F (x⋆)∥ ≤ L∥x (k−1) − x⋆∥ ≤ Lk∥x (0) − x⋆∥
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Fixed point iteration: nonexpansive

if F is nonexpansive, the iteration

x (k+1) = F (x (k))

need not converge to a fixed point even if one exists.

proof:

▶ let F rotate its argument by θ degrees around the origin.

▶ then F is nonexpansive and has a fixed point at x⋆ = 0.

▶ but if ∥x (0)∥ = r , then ∥F (x (k))∥ = r for all k.
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Averaged operators

an operator F is averaged if

F = θG + (1− θ)I

for θ ∈ (0, 1), G nonexpansive

fact: if F is averaged, then x if FP of F ⇐⇒ x is FP of G
proof:

x = Fx = θGx + (1− θ)Ix = θGx + (1− θ)x

θx = θGx

x = Gx

=⇒ if G is nonexpansive, F = 1
2 I +

1
2G is averaged with same FPs
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Fixed point iteration: averaged

if F = θG + (1− θ)I is averaged (θ ∈ (0, 1), G nonexpansive),
the iteration

x (k+1) = F (x (k))

converges to a fixed point if one exists.

(also called the damped, averaged, or Mann-Krasnosel’skii iteration.)

properties: Ryu and Boyd (2016)

▶ distance to fixed point decreases monotonically (Fejer-monotone)

▶ sublinear convergence of fixed point residual

∥Gx (k) − x (k)∥2 ≤ 1

(k + 1)θ(1− θ)
∥x (0) − x⋆∥2
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Gradient descent operator is averaged

follows Ryu and Yin (2022)

fact: if f : Rn → R is β-smooth, then I − 2
β∇f is non-expansive

proof: since f is β-smooth,

∥(I − 2

β
∇f )(x)− (I − 2

β
∇f )(y)∥2 = ∥x − y∥2 − 4

β

(
⟨x − y ,∇f (x)−∇f (y)⟩ − 1

β
∥∇f (x)−∇f (y)∥2

)
≤ ∥x − y∥2

corollary: if f : Rn → R is β-smooth, then I − t∇f is averaged for t ∈ (0, 2
β )

since I − t∇f = (1− tβ
2 )I +

tβ
2 (I −

2
β∇f )
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When does proximal gradient converge?

proximal gradient converges at rate O(1/k) when I − t∇f is averaged and proxtg is
nonexpansive

▶ if f is β-smooth and step size t ∈ (0, 2
β )

▶ and g is convex

proximal gradient converges linearly when, in addition, I − t∇f or proxtg is
contractive

▶ if f is β-smooth and α−strongly convex and max(|1− tα|, |1− tβ|) < 1

▶ or if g is strongly convex

Q: How fast does proximal gradient converge for the lasso? for elastic net? for
bounded least squares? for bounded least squares with an ℓ2 regularizer? for
ℓ2-regularized logistic regression?
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Proximal point method

fixed point iteration using prox is called proximal point method

x (k+1) = proxtf (x
(k))

properties:

▶ proxtf is 1
2 averaged for any t > 0, so

▶ converges for any t > 0

▶ to a zero of ∂f (= FPs of proxtf )

▶ if f is strongly convex, proxtf is a contraction,
so converges linearly

▶ not usually a practical method (often, as hard as solving original problem)
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Method of multipliers

consider
minimize f (x)
subject to Ax = b

let
g(µ) = −(inf

x
f (x) + µT (Ax − b)) = f ∗(−ATµ) + µTb

be the (negative) dual function, and consider the proximal point method for t > 0

y (k+1) = proxtg (y
(k))

▶ ∂g(v) = −A∂(f ∗(−AT v)) + b
▶ x ∈ ∂(f ∗(−AT v)) iff −AT v ∈ ∂f (x)
▶ so if v = proxtg (y) = (I + t∂g)−1(y), then

y ∈ v + t∂g(v)

y = v − α(Ax − b) for some x with − AT v ∈ ∂f (x)
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Method of multipliers

notice x minimizes the Augmented Lagrangian Lα(x , y)

0 ∈ ∂f (x) + AT (y + α(Ax − b))

x ∈ argmin
x

f (x) + yT (Ax − b) + α/2∥Ax − b∥2 = Lα(x , y)

so proximal point method for g is

x (k+1) ∈ argmin
x

Lα(x , y
(k))

y (k+1) = y (k) + α(Ax (k+1) − b)

also called the method of multipliers

properties:

▶ always converges
▶ if f is smooth, then g is strongly convex, proxtg is a contraction, and the

method of multipliers converges linearly
▶ useful if f is smooth and A is very sparse

(alternative: optimize over x ∈ x0 + (A)z ; but (A) is generally dense) 59 / 59
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