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Constrained vs unconstrained optimization

constrained optimization

▶ examples: scheduling, routing, packing, logistics, scheduling, control

▶ what’s hard: finding a feasible point

unconstrained optimization

▶ examples: data fitting, statistical/machine learning

▶ what’s hard: reducing the objective

both are necessary for real-world problems!
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Unconstrained smooth optimization

for f : Rn → R ctsly differentiable,

minimize f (x)
variable x ∈ Rn

examples:

▶ least squares

▶ logistic regression

▶ neural network training (with smooth activation like tanh, ELU, GeLU, . . . )

▶ . . .
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Oracles

an optimization oracle is your interface for accessing the problem data:
e.g., an oracle for f : Rn → R can evaluate for any x ∈ Rn:

▶ zero-order: f0(x)

▶ first-order: f0(x) and ∇f0(x)

▶ second-order: f0(x), ∇f0(x), and ∇2f0(x)

why oracles?

▶ can optimize real systems based on observed output (not just models)

▶ can use and extend old or complex but trusted code (e.g., NASA, PDE
simulations, . . . )

▶ can prove lower bounds on the oracle complexity of a problem class

source: Nesterov 2004 “Introductory Lectures on Convex Optimization”
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Solution of an optimization problem

minimize f (x)

for f : D → R. x⋆ is a

▶ global minimizer if f (x) ≥ f (x⋆) for all x ∈ D.

▶ local minimizer if there is a neighborhood N around x⋆ so that f (x) ≥ f (x⋆)
for all x ∈ N .

▶ isolated local minimizer if the neighborhood N contains no other local
minimizers.

▶ unique minimizer if it is the only global minimizer.

pictures!
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First order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a differentiable function f : Rn → R, then
∇f (x⋆) = 0.

proof: suppose by contradiction that ∇f (x⋆) ̸= 0. consider points of the form
xα = x⋆ − α∇f (x⋆) for α > 0. by definition of the gradient,

lim
α→0

f (xα)− f (x⋆)

α
= −∇f (x⋆)⊤∇f (x⋆) = −∥∇f (x⋆)∥2 < 0

so for any sufficiently small α > 0, we have f (xα) < f (x⋆), which contradicts the
fact that x⋆ is a local minimizer.
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Second order optimality condition

Theorem

If x⋆ ∈ Rn is a local minimizer of a twice differentiable function f : Rn → R, then
∇2f (x⋆) ⪰ 0.

proof: similar to the previous proof. use the fact that the second order
approximation

f (xα) ≈ f (x⋆) +∇f (x⋆)⊤(xα − x⋆) +
1

2
(xα − x⋆)⊤∇2f (x⋆)(xα − x⋆)

is accurate locally to show a contradiction unless ∇2f (x⋆) ⪰ 0: if not, there is a
direction v such that vT∇2f (x⋆)v < 0. then f (x + αv) < f (x⋆) for α arbitrarily
small, which contradicts the fact that x⋆ is a local minimizer.
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix Q ∈ Rn×n is positive semidefinite (psd) if xTQx ≥ 0 for all
x ∈ Rn.

these matrices are so important that there are many ways to write them! for
Q ∈ Rn×n,

Q ∈ Sn
+ ⇐⇒ Q ⪰ 0 ⇐⇒ Q = QT , λmin(Q) ≥ 0 ⇐⇒ vTQv ≥ 0 ∀v ∈ Rn

Q ∈ Sn
++ is symmetric positive definite (spd) (Q ≻ 0) if xTQx > 0 for all x ̸= 0.

why care about psd matrices Q?

▶ least-squares objective has a psd Q = ATA
▶ level sets of xTQx are (bounded) ellipsoids
▶ the quadratic form xTQx is a metric iff Q ≻ 0
▶ eigenvalue decomp and svd coincide for psd matrices
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Convex sets

Definition

A set S ⊆ Rn is convex if it contains every chord: for all θ ∈ [0, 1], w , v ∈ S ,

θw + (1− θ)v ∈ S

Q: Which of these are convex?
ellipsoid, crescent moon, . . .
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Operations that preserve convexity

if S and T are convex, then so are:

▶ intersection: S ∩ T

▶ sum: S + T = {s + t | s ∈ S , t ∈ T}
▶ projection: {x : (x , y) ∈ S}
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Convex functions

a function f : Rn → R is convex iff

▶ Chords. it never lies above its chord: ∀θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

▶ Epigraph. epi(f ) = {(x , t) : t ≥ f (x)} is convex

▶ First order condition. if f is differentiable,

f (v) ≥ f (w) +∇f (w)⊤(v − w), ∀w , v ∈ Rn

▶ Second order condition. If f is twice differentiable, its Hessian is always psd:

λmin(∇2f (x)) ≥ 0, ∀x ∈ Rn
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Convexity examples

Q: Which of these functions are convex?

▶ quadratic function f (x) = x2 for x ∈ R

▶ absolute value function f (x) = |x | for x ∈ R

▶ quadratic function f (x) = xTAx , x ∈ Rn, A ⪰ 0

▶ quadratic function f (x) = xTAx , A indefinite

▶ rollercoaster function (cubic) f (x) = (x − 1)(x − 3)(x − 5)

▶ hyperbolic function f (x) = 1/x for x > 0

▶ jump function f (x) = 1 if x ≥ 0, f (x) = 0 otherwise

▶ jump to infinity function f (x) = 1 if x ∈ [−1, 1], f (x) = ∞ otherwise
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Operations that preserve convexity

if f : Rn → R and g : Rn → R are convex, then so are:

▶ cf for c ≥ 0

▶ f (Ax + b) for A ∈ Rn ×m, b ∈ Rn

▶ f + g

▶ max{f , g}

Q: Pick one and assume f and g are twice-differentiable. What is the easiest way
to prove convexity?
most general rule:

f ◦ g(x) = f (g(x)) is convex if g is convex and f is convex and nondecreasing

since
(f ◦ g)′′(x) = f ′′(g(x))(g ′(x))2 + f ′(g(x))g ′′(x)
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Jensen’s inequality

Jensen’s inequality generalizes the first-order condition to distribution of points:

Theorem

If f : Rn → R is convex and X is a random variable, then

f (E[X ]) ≤ E[f (X )]
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Sublevel set

Definition

The sublevel set of a function f : Rn → R at level t is

St = {x ∈ Rn | f (x) ≤ t}

Theorem

A convex function f : Rn → R has convex sublevel sets.

proof: Jensen’s inequality. if x , y ∈ St , then for θ ∈ [0, 1],

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y) ≤ θt + (1− θ)t = t

so θx + (1− θ)y ∈ St .
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Quasiconvexity

converse is not true: a function can have all sublevel sets convex, and still be
non-convex.

Definition

A function f : Rn → R is quasiconvex if its sublevel sets are convex.

examples of functions that are quasiconvex but not convex?
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Supporting hyperplane

Definition

A supporting hyperplane to a set S ⊆ Rn at a point x ∈ S is a hyperplane that
touches S at x and lies entirely on one side of S :

H = {y ∈ Rn | a⊤y = b} supports S at x if
a⊤x = b
a⊤y ≥ b ∀y ∈ S

Theorem (Supporting hyperplane)

Any nonempty convex set has a supporting hyperplane at every boundary point.
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Supporting hyperplane condition for convexity

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary
point, then it is convex.

Theorem

A function f : Rn → R is convex ⇐⇒ for all x ∈ relint dom f , the epigraph of f
has a supporting hyperplane at (x , f (x)): for some g ∈ Rn,

f (y) ≥ f (x) + g⊤(y − x) ∀y ∈ Rn

generalizes first-order condition for convexity to non-differentiable functions!

Definition

A vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ Rn if
f (y) ≥ f (x) + g⊤(y − x) for all y ∈ Rn.
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Example: subgradients

f = max{f1, f2}, with f1, f2 convex and differentiable

Q: Where is the function f differentiable? Where is the subgradient unique?
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Subdifferential

set of all subgradients of f at x is called the subdifferential ∂f (x)

∂f (x) = {g : f (y) ≥ f (x) + gT (y − x) ∀y}

for any f ,

▶ ∂f (x) is a closed convex set (can be empty)

▶ ∂f (x) = ∅ if f (x) = ∞

proof: use the definition

if f is convex,

▶ ∂f (x) is nonempty, for x ∈ relint dom f

▶ ∂f (x) = {∇f (x)}, if f is differentiable at x

▶ if ∂f (x) = {g}, then f is differentiable at x and g = ∇f (x)
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Convex optimization

an optimization problem is convex if:

▶ Geometrically: the feasible set and the epigraph of the objective are convex

▶ NLP: the objective and inequality constraints are convex functions, and the
equality constraints are affine

why convex optimization?

▶ relatively complete theory

▶ efficient solvers

▶ conceptual tools that generalize linear programming:
duality, stopping conditions, . . .

▶ a function f is concave if −f is convex

▶ concave maximization =⇒ a convex optimization problem
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Local minima are global for convex functions

Theorem

If x⋆ is a local minimizer of a convex function f , then x⋆ is a global minimizer.

proof? suppose by contradiction that another point x ′ is a global minimizer, with
f (x ′) < f (x⋆). draw the chord between x ′ and x⋆. since the chord lies above f ,
every convex combination x = θx⋆ + (1− θ)x ′ of x ′ and x⋆ for θ ∈ (0, 1) has a value
f (x) < f (x⋆). this is true even for x → x⋆, contradicting our assumption that x⋆ is
a local minimizer.
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Corollary

Corollary

If f is convex and differentiable and ∇f (x⋆) = 0, then x⋆ is a global minimizer.

Q: Is a global minimizer of a convex function always unique?
A: No. Picture.
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First-order condition

Definition

x⋆ ∈ Rn is a stationary point of a differentiable function f : Rn → R if ∇f (x⋆) = 0.

Q: Can a global minimum have a non-zero gradient?
A: No.
Q: Is a stationary point always a global minimum?
A: No.
Q: . . . for convex functions?
A: Yes.

∇f (x⋆) = 0 is the first-order (necessary) condition for optimality.
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Invex function

Definition

A differentiable function f : Rn → R is invex if for some vector-valued function
η : Rn × Rn → Rn,

f (x)− f (u) ≥ η(x , u)⊤∇f (u) ∀u ∈ Rn, x ∈ dom f

Theorem (Craven and Glover, Ben-Israel and Mond)

A function is invex iff every stationary point is a global minimum.

why invex?

▶ generalizes convexity

▶ broadest class of functions for which every stationary point is a global minimum
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