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Quadratic approximation
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Minimize quadratic approximation

minimize  f(x)
Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:
f(x) ~ (x5 VFENT (x — xK)
1
+§(x — xUNTG2f(xK)(x — xK))
1
~ (xR + VF(xK)Ts + 5sTBks = mi(x)

where s = x — x(¥) is the search direction and B, ~ V?f(x(¥)) is the Hessian
approximation.
If By = 0, my is convex. to minimize,

Bes + VIi(xW)y=0
if By is invertible,

s =B Vf(xh)
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Why do we need B, - 07

1
xkt) = argmin my(x) = argmin f(x) + Vf(x(k))Ts + ESTBkS
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1
x 1) = argmin my(x) = argmin f(x) + VF(x¥))Ts + ESTBks

Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if By is not invertible?

A: Not clear how far to go in flat directions.

in practice
» make it psd. modify By to be positive definite

> Newton-CG. use conjugate gradient to solve Bys = —V £ (x{¥)). if you solve it,
take the step; otherwise, CG gives a direction of negative curvature; take it!
See https://arxiv.org/abs/1803.02924 for more details.
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Why do we need B, - 07

1
x 1) = argmin my(x) = argmin f(x) + VF(x¥))Ts + ESTBks

Q: What happens if By is indefinite?

A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if By is not invertible?

A: Not clear how far to go in flat directions.

in practice

» make it psd. modify By to be positive definite

> Newton-CG. use conjugate gradient to solve Bys = —V £ (x{¥)). if you solve it,
take the step; otherwise, CG gives a direction of negative curvature; take it!
See https://arxiv.org/abs/1803.02924 for more details.

» trust region method. minimize nonconvex my over a ball
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Trust region methods
suppose By is indefinite. solution to model problem is unbounded!

argmin my (x) = argmin f(x) + V£(x))T's + %STB;(S

trust region method chooses x(k*1) to solve trust region subproblem

minimize  my(x)
subject to  ||x — x(K)|| < 4,

» limits step length to dy
» subproblem is nonconvex quadratically constrained quadratic program (QCQP)
» can solve with generalized eigenvalue solver

source: https://www.math.uwaterloo.ca/ hwolkowi/henry/reports/previews.d/trsalgorithm10.pdf
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Which quadratic approximation?

» Gradient descent. use B, = %l for some t > 0.
s =—tVf(x)
» Newton’s method. use By = V2f(x).
s = —(V?f(x))"IVF(x)
> Quasi-Newton methods. use B, ~ V2f(x(K).
s=—B, 'Vf(x)

if f is convex (and the appropriate derivatives exist) and By = 0, we have global
convergence as long as my(x) > f(x) for all x. but how fast?
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Outline

Newton's method
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Convergence rates

» linear convergence.

e
0 em e — €€ (O
» superlinear convergence.
X — x|
m ————— =
k—00 Hx(k_l) — x*”
» quadratic convergence.
(k) _ x*
jim =Xy

o =D — x| 2
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Newton’s method converges quadratically

Theorem (Local rate of convergence)

Suppose f is twice ctsly differentiable and V?f(x) is L-Lipschitz in a neighborhood
of a strict local minimizer x* € argmin f(x). Then Newton's method converges to
x* quadratically near x*.

recall an operator F is L-Lipschitz if

IF(x) = FD)II < Llix =yl
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Taylor’s theorem

since f is twice continuously differentiable,
1
V(y) - VF(x) = / V2 (x + t(y — X))y — x)dt
0

source: https://www.cambridge.org/core/books/optimization-for-data-
analysis/C02C3708905D236AA354D1CE1739A6A2
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Newton’s method converges quadratically (1)

proof: x* is strict local min, so Vf(x*) =0 and V2f(x*) > 0.
KD R k)
xK) —x* — BV F(x) > (Newton’s method)
(B()~1 (B(k)(x(k) ~x*) - vf(x(k)))

by Taylor's theorem, V£ (x(k)) = fol V2F(x* 4 t(x*) — x*))(xK) — x*)dt, so

K (x(K) — x*) — VF(xK)) = /1 (va(x(k) V2f(x* + t(x{ *))) (xR — x*)dt
IBR (0 —x*) = v < / IV2F(x A0 4 t(x ) =) x50 — x* e
< /O Lelx®) — x*|[2de
< Ik xR
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Newton’s method converges quadratically (1)
now choose r € R small enough that for ||x(K) — x*|| < r,

ICV2F UM T < 20 (V2O 7,

which is possible since V2f(x*) = 0.
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Newton’s method converges quadratically (1)

now choose r € R small enough that for ||x(K) — x*|| < r,
I(V2F(xR)) M < 2 (V) s
which is possible since V2f(x*) = 0. then complete the proof:

L -
D =t < ST ) — 2
< LIVRFG) M I =2

constant
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Outline

Quasi-Newton methods
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Quasi-Newton methods

what's the problem with Newton's method? V2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite
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quasi-Newton method: use a matrix By ~ V2(x(¥)) (or Hy = B;l) that is

» easy to update
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» guaranteed to be positive definite

update By at each iteration to improve/maintain approximation

14/30



Quasi-Newton methods

what's the problem with Newton's method? V2f(x) is

» expensive to compute
» expensive to invert

» not always positive definite

quasi-Newton method: use a matrix By ~ V2(x(¥)) (or Hy = B;l) that is

» easy to update
» easy to invert

» guaranteed to be positive definite

update By at each iteration to improve/maintain approximation

can still get superlinear convergence!
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BFGS

BFGS is the most popular quasi-Newton method. idea:
> take step with length ax > 0 chosen by line search
(k1) — (k) ak(—B,:lVf(x(k))) = x(K) 4 (k)

> define p = x — x(kt1). new model will be

miia(x) = FRD) £ VD) Tt 2 pT Biap

want gradient of my; to match f at x(¥) and x(k+1):

» match at x(k*1) by construction
» match at x(K if

V(xR = Vmyp (x5 — xFDY = O (xEFDY 4 By (x(K) — x(k+1)y
VF(x*H)) — v (xK)) = Biyg (xk+) — x(K))
y(k) = Bk+15(k) > (secant equation)

where y(K) = V£ (x(kt1D)) — VF(x(K), s(k) = x(k+1) _ 5 (k) 15/30



Secant equation

y ¥ = Bijyst)
where y(K) = V£ (x(kt1D)) — v f(x(F), s(k) = x(k+1) _ 5 (k).
» need s()Ty (k) > 0 (otherwise Byy1 is not positive definite)

> (*)if f is strongly convex, then s(K)Ty(K) > 0 for all k
(pf on next slide)
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https://www.ime.usp.br/~walterfm/orientacao/bfgs.pdf

Secant equation

yK) = B s
where y(k) = Vf(x(k+1)) — Vf(x(k)), s(k) = x(kt1) _ (k).

» need s()Ty (k) > 0 (otherwise Byy1 is not positive definite)

> (*)if f is strongly convex, then s(K)Ty(K) > 0 for all k
(pf on next slide)

> for nonconvex f, can enforce st T y(K) > 0 by using a line search that satisfies
the Wolfe conditions: for search direction p(k) = —BI:lVf(x(k)), constants
C1,C € (0, 1),

F(x) + apthy — £(x(R)y
V(x5 + apk)T pk)

ac V(x5 )T pk) > (Armijo)

>
> V(x9N T plk) > (Curvature condition)

(but BFGS is not guaranteed to converge for nonconvex f even with exact linesearch
https://www.ime.usp.br/~walterfm /orientacao/bfgs.pdf)
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Proof of (*)

Lemma (*)

if f is strongly convex, then y(MTs(k) > 0 for all k
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Proof of (*)

Lemma (*)

if f is strongly convex, then y(MTs(k) > 0 for all k

proof: for f u-strongly convex, for any v, w € R",

~-

—~
<

~
V

F(w) + VEW) (v = w) + S lv = wl?

Jad
g
v

F(v) + VEW) T (w =) + Ellw = vl

(VF(v) = VEw)" (v = w) + pllv = w]?
ulls™? >0

A\VARAY}

— (yUN)Tsk)

where we have set v = x(k*1) w = x(k) and used s(k) = x(k+1) _ x(k),

yK) = v (xk1)) — v (x(R).
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BFGS update

Bi+1 € S has n(n+1)/2 degrees of freedom

secant equation gives n-dimensional linear system for Byy; = many
solutions!

BFGS update chooses rank 2 update

yRYRT g (5T B,

Bit1 = Bk + y(A)T (k) s(KT By s(k)

equivalently, can update the inverse Hessian approximation Hy = Bk_l:

ot = (1 — p® sy Ty, (1 - o0, (R g(OTYT o () (R (0T

where p(k) = y(k)is(k) (uses Sherman-Morrison-Woodbury)

each iteration uses O(n?) flops
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Sherman Morrison Woodbury formula

Lemma

Sherman-Morrison-Woodbury formula for a matrix H= A+ UCV (where
dimensions match)

Hl=aA1—Ayct+vatu)ytval

can derive from formula for 2x2 (block) matrix inverse
special case: H= A+ uv" for u,v € R":

AluyyTA-L

Hlopt_ 2 WA
1+ viA-1y

also called matrix inversion lemma or any subset of names
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BFGS convergence

demo: try on Rosenbrock function f(x,y) = (1 — x)? 4 100(y — x?)?

https://github.com/stanford-cme-307 /demos/blob/main/qn.j|
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Error

1.00

0.75

0.50

BFGS in practice

Error vs lteration

——— Gradient Descent

2 4 6 8 10

Iteration 21/30



Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B
Limited-memory BFGS (L-BFGS): don't store B explicitly!
» instead, store the m (say, m = 30) most recent values of

s =xU) — xU=1), y; = VI(xV) — vF(xU=D)

> evaluate 6x = B, VF(x(¥)) recursively, using

o, s\ . sis]
Bj =[/- 5 B_,;l | — T + T
yj Sj yj SJ' yj SJ'

assuming By_, =1
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Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B
Limited-memory BFGS (L-BFGS): don't store B explicitly!

» instead, store the m (say, m = 30) most recent values of
s =xU) — xU=1), y; = VI(xV) — vF(xU=D)

> evaluate 6x = B, VF(x(¥)) recursively, using

(o AL
Bj =[/- 5 B_,;l | — T + T
vs v'si) s

assuming By_, =1

» advantage: for each update, just apply rank 1 + diagonal matrix to vector!
» cost per update is O(n); cost per iteration is O(mn)
» storage is O(mn)
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L-BFGS: interpretations

» only remember curvature of Hessian on active subspace
Sk = span{sk,...,Sk—m}
» hope: locally, Vf(x(k)) will approximately lie in active subspace
Vi) =g+ g5, g5€ Sk, g small

» L-BFGS assumes By ~ [ on S*, so Bkgsl ~ gsl;
. sL . . ’
if g2~ is small, it shouldn't matter much.
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Outline

Preconditioning
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Three perspectives

» precondition the function
» change the quadratic approximation

» change the metric
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Three perspectives

» precondition the function
» change the quadratic approximation

» change the metric

three names:

» preconditioned
» quasi-Newton

» variable metric
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Recap: convergence analysis for gradient descent

minimize  f(x)
recall: we say (twice-differentiable) f is pu-strongly convex and L-smooth if
pl < V2f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly

k
Ak — pt < 0 -2

where ¢ = (%)z K= ﬁ

— wantk~1

> 1 is condition number
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Recap: convergence analysis for gradient descent

minimize  f(x)
recall: we say (twice-differentiable) f is pu-strongly convex and L-smooth if
pl < V2f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly

k
Ak — pt < 0 -2

where ¢ = (’;—1})2 K= ﬁ

— wantk~1

> 1 is condition number

idea: can we minimize another function with ¥ &~ 1 whose solution will tell us the
minimizer of 7

26 /30



Preconditioning

for D = 0, the two problems
minimize f(x) and minimize f(Dz)

have solutions related by x* = Dz*
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> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D
a gradient step on f(Dz) with step-size t > 0 is
7t = z—tD"Vf(Dz)
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Preconditioning

for D = 0, the two problems
minimize f(x) and minimize f(Dz)
have solutions related by x* = Dz*

» gradient of f(Dz) is DT Vf(Dz)
> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D

a gradient step on f(Dz) with step-size t > 0 is
7t = z—tD"Vf(Dz)
Dzt = Dz - tDD"Vf(Dz)
xt = x—tDDTVf(x)
from prev analysis, gd on z converges fastest if
D'V?f(Dz)D =~ |
D ~ (V?f(Dz)) /2
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Approximate inverse Hessian

B = DDT is called the approximate inverse Hessian

can fix B or update it at every iteration:

» if B is constant: called preconditioned method
(e.g., preconditioned conjugate gradient)

» if B is updated: called (quasi)-Newton method
how to choose B? want

> B~ V2f(x)7!

» easy to compute (and update) B

» fast to multiply by B
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Outline

Variable metric methods
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Variable metric
definition of the gradient:

Fx+5) = Fx) + (VF(x), )+ 5 (5, TF(x)s) + ofs?)

wrt Euclidean inner product (u,v) = u”v
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Variable metric
definition of the gradient:
Fx+5) = Fx) + (VF(x), )+ 5 (5, TF(x)s) + ofs?)
wrt Euclidean inner product (u,v) = u”v

now define new inner product (u, v)4 = u' Av for some matrix A € S” .
compute the gradient and Hessian wrt this inner product:

f(x+h) = f(x)+(VF(x),s)+ %(s, V2f(x)s) + o(s%)

= f(x)+ (ATIVF(X),s)a + %(s, ATIV2F(x)s)a + o(s?)

so the gradient and Hessian wrt the new inner product is
1
Vaf(x) = ATWVF(x),  Vaf(x) = 5 [ATVF(x) + V2F(x)AT]

source: Nesterov Introductory Lectures on Convex Optimization, p. 40 30/30
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