CME 307 / MS&E 311 / OIT 676: Optimization

Acceleration, Stochastic Gradient Descent, and Variance
Reduction

Professor Udell

Management Science and Engineering
Stanford

November 20, 2024

slides developed with Zachary Frangella

1/49



Convergence of gradient descent

unconstrained minimization: find x € R” to solve
minimize f(x) (1)
where f : R” — R is convex and differentiable

we analyzed gradient descent (GD) on this problem:

> a point x is e-suboptimal if f(x) — f* <e¢
» when f is L-smooth and p-PL (or u-strongly convex), we showed GD converges to
sub-optimality € in at most

1
T=0 </1 log ()) iterations,
€

where x = ﬁ is the condition number
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Acceleration: motivation

Definition
A first-order method uses only a first-order oracle for f : R” — R (i.e., gradient and function

evaluation) to minimize f(x).

Example. GD is a first-order method: x < x — aVf(x).
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Acceleration: motivation

Definition
A first-order method uses only a first-order oracle for f : R” — R (i.e., gradient and function
evaluation) to minimize f(x).

Example. GD is a first-order method: x < x — aVf(x).

Q: Is GD the best first-order method to optimize a L-smooth, pu-strongly convex function?
A: No! Nemirovski and Yudin showed a lower-bound of

Topt = (\flog( )) iterations

to find an e-suboptimal point of any L-smooth, p-strongly convex function
notice: same rate as CG if f is quadratic
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A worst-case quadratic function

We can prove the lower bound by constructing a hard problem instance using quadratic
functions:
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A worst-case quadratic function
We can prove the lower bound by constructing a hard problem instance using quadratic

functions:

> Let's work in the infinite dimensional-space ¢?(R): vectors x of infinite length satisfying

(e ]
2 =3 < .
j=1
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A worst-case quadratic function
We can prove the lower bound by constructing a hard problem instance using quadratic

functions:

> Let's work in the infinite dimensional-space ¢?(R): vectors x of infinite length satisfying
oo
P =3 % < oo
j=1
> the (family of) evil quadratic functions (parametrized by > 0 and k¢ > 1) is

) = 2D (G 17243 05— )| + 12
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A worst-case quadratic function

We can prove the lower bound by constructing a hard problem instance using quadratic
functions:

> Let's work in the infinite dimensional-space ¢?(R): vectors x of infinite length satisfying
oo
P =3 % < oo
j=1
> the (family of) evil quadratic functions (parametrized by > 0 and k¢ > 1) is

) = 2D (G 17243 05— )| + 12

Jj=1

How would you find the minimum? How would a first-order method find the minimum?
source: Section 2.1, Nesterov, 2018
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The lower bound

The functions on the preceding slide yield the following bound:
Theorem (Theorem 2.1.12, Nesterov, 2018)

Let 1 > 0, kf > 1. Suppose M is a first-order method such that for any input function f,
M generates a sequence satisfying

Xk € xo +span{Vf(xp),...,VFf(xx)}, Vk

Then there exists a L-smooth, p-strongly convex function with L/ = k¢ such that the
sequence output by M applied to f satisfies

2k
Rf — 1
e = ]2 > (V) o = x|
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The lower bound

The functions on the preceding slide yield the following bound:

Theorem (Theorem 2.1.12, Nesterov, 2018)

Let 1 > 0, kf > 1. Suppose M is a first-order method such that for any input function f,
M generates a sequence satisfying

Xk € xo +span{Vf(xp),...,VFf(xx)}, Vk

Then there exists a L-smooth, p-strongly convex function with L/ = k¢ such that the
sequence output by M applied to f satisfies

2k
A/ Rf — 1
||Xk —X*”2 Z (\/M) HXO —X*”2

N 2k
f(xk) — f(x) > % (%) %0 — X2

Q: Does gradient descent satisfy the conditions of this bound? Newton's method? BFGS?
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Accelerated Gradient Descent

Nesterov's accelerated gradient method (AGD) is

» a first-order method
» that matches the lower bound

so, converges faster than GD (esp. on ill-conditioned functions)

(one variant of) Nesterov's AGD:

1. Choose xg, yop € R”
2. fork=0,1,..., T,

Xkr1 = Yk —aViE(y)
Yerr = Xea1+ B (X1 — )
3. Return xg41
; _ 1 _ VE-1
achieves lower bound when oo = 7, 8 = NCES)

source: Section 2.2, Nesterov, 2018
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GD vs. AGD: numerical example

goal is to solve the logistic regression problem

N I _poaT Lie
minimize m;log (1+exp( b;a; X))+ m||X||

with variable x on rcvl dataset, with data matrix A € R20:242x47,236 5 |abels b € R20:242

» GD and AGD both use theoretically-chosen stepsizes:
» GD is run with stepsize 1, which for this example equals 4
1 VE—1

> AGD is run with o = § and = Y=

> here strong convexity 1 = X from the regularizer
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AGD summary and closing remarks

AGD is theoretically optimal among first-order methods for L-smooth and p-strongly
convex functions

converges to e-suboptimality in at most

1
O <\/E|og ()) iterations
€

despite its elegance, AGD is rarely used in practice
(quasi-Newton methods work better and are more stable)

conceptual foundation for useful accelerated gradient methods like FISTA and Katyusha

closely related: momentum methods like heavy-ball and Adam, which get same fast
convergence rate on quadratic functions. This distill.pub tutorial gives more intuition.
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https://distill.pub/2017/momentum/

Outline

Stochastic optimization
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Minimizing a sum

finite sum minimization: solve

N
minimize ;;ﬁ(x)

examples:
> least squares: fi(x) = (a] x — b;)?
> logistic regression: f;(x) = log(1 + exp (—b;a/ x))
> maximum likelihood estimation: f;(x) is -loglik of observation i given parameter x

» machine learning: f; is misfit of model x on example i
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Minimizing a sum

finite sum minimization: solve
T
minimize Z fi(x)
i=1
with variable x € R”

quandary:

» solving a problem with more data should be easier
» but complexity of algorithms increases with m!

goal: find algorithms that work better given more data (or at least, not worse)
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Minimizing a sum
finite sum minimization: solve
T
minimize Z fi(x)
i=1
with variable x € R”

quandary:

» solving a problem with more data should be easier
» but complexity of algorithms increases with m!

goal: find algorithms that work better given more data (or at least, not worse)

idea: throw away data! (cleverly)
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Minimizing an expectation

Stochastic optimization: solve
minimize [Ef(x) = E,f(x;w)
with variable x € R”

» random loss function f
> or equivalently, function f(-; w) of random variable w
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Minimizing an expectation

Stochastic optimization: solve
minimize [Ef(x) = E,f(x;w)
with variable x € R”

» random loss function f
> or equivalently, function f(-; w) of random variable w

examples: data w = (a, b) is random

> least squares: f(x;w) = (a’x — b)?

> logistic regression: f(x;w) = log(1+ exp (—ba'x))
> maximum likelihood estimation: f(x;w) is -loglik of observation w given parameter x

» machine learning: f(x;w) is misfit of model x on example w

minimize expected loss on data from same distribution, not just training loss
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Stochastic optimization: applications

» machine learning
> stochastic objective represents test error rather than (finite sum) training set error
> e.g., in physics-informed neural networks (PINNs), objective is integral over domain
» stochastic control

> flying an airplane: w represents wind and other weather conditions
> trading a large portfolio slowly to reduce market impact: w represents exogenous moves
of asset prices
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Stochastic optimization: what distribution?

stochastic optimization problem

minimize E, ., [f(w,X)] (2)
variable x € R"

with f(w,x) : Q x R" convex, 2 C R", w a random variable distributed according to
probability measure uq

objective is expected cost under the randomness due to w:

By Fw ] = [ Flwix)dpale)
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Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — ga)>.

minimize By [(x — w)z]
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minimize By [(x — w)z]

then x, = E,,wue[w] and £, = Varg . [w].
2.n=1,Q=R, and f(w,x) = |x —w|.
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Stochastic optimization: examples

1. n=1,Q=R, and f(w,x) = (x — ga)>.
minimize By [(x — w)z]

then x, = E,,wue[w] and £, = Varg . [w].
2.n=1,Q=R, and f(w,x) = |x —w|.

minimize Egpp [[X — w]]

then x, = the median of g
3. Q=R", ppe =237, §w,.(discrete distribution with positive measure only on
w1, ...,wWn) results in the finite sum minimization problem

1 m
nimize =S F(wp. x).
minimize  — ;,1 (wi, x)
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Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x € R", produces g(w; x) € R" satisfying

Eorpg [g(w; )] = VF(x)

i.e., G produces an unbiased estimate of the true gradient VF(x)
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Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x € R", produces g(w; x) € R" satisfying
Eompq [8(wi X)] = VF(x)

i.e., G produces an unbiased estimate of the true gradient VF(x)

Q: examples of stochastic gradient oracle?
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Stochastic gradient oracle

Definition
a stochastic gradient oracle G, when queried at x € R", produces g(w; x) € R" satisfying

Eonpo [g(wix)] = VF(x)
i.e., G produces an unbiased estimate of the true gradient VF(x)

Q: examples of stochastic gradient oracle?

A: minibatch gradient
1
Tl Vf; )
57 2, Vi)

notation: use Vf(x) to denote a stochastic gradient at x
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Stochastic gradient method

Stochastic gradient method:

1. Choose xg € R”
2. for k=0,1,...

i. query G at xi to obtain g(wk, xk)
ii. compute update:

Xk+1 = Xk — ng(wlm Xk)

> Generally called stochastic gradient descent (SGD) — although it is not a descent
method!

» SGD uses a stochastic gradient g(wk, xx) rather than the true gradient

» how to select stepsize ny?
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A typical convergence result

Theorem (General SGD convergence)
Consider (2) with smooth and strongly convex f and stochastic gradient oracle satisfying

Esllg(w, x)|I> < M1+ M|V F(w, )%

1. for an appropriate fixed stepsize n, = O(1),
lim E[f(wk, xk)] — f, = O(1)
k—o0

2. for decreasing stepsizes ny = O(1/k),

E[f (wk, xk)] — fi = O(1/k)
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SGD convergence: discussion

» with fixed stepsize, the algorithm converges to e-sublevel set

» convergence to optimum requires a decreasing stepsize = slow!
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https://arxiv.org/pdf/1608.03983
https://arxiv.org/pdf/2405.15682

SGD convergence: discussion

» with fixed stepsize, the algorithm converges to e-sublevel set

» convergence to optimum requires a decreasing stepsize = slow!
has spawned industry of “stepsize schedules”

» Cosine schedule
» The road less scheduled

contrast to GD, which converges to the exact optimum even with fixed stepsize.

analysis is tight: there is a matching lower bound.

Theorem (Agarwal et al., 2012)

For strongly convex objectives, any algorithm using a stochastic gradient oracle must make
at least Q(1/€) queries to obtain an e-suboptimal point.
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SGD convergence: discussion

» with fixed stepsize, the algorithm converges to e-sublevel set

» convergence to optimum requires a decreasing stepsize = slow!
has spawned industry of “stepsize schedules”

» Cosine schedule
» The road less scheduled

contrast to GD, which converges to the exact optimum even with fixed stepsize.

analysis is tight: there is a matching lower bound.

Theorem (Agarwal et al., 2012)

For strongly convex objectives, any algorithm using a stochastic gradient oracle must make
at least Q(1/€) queries to obtain an e-suboptimal point.

don’t despair: add more assumptions!
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https://arxiv.org/pdf/1608.03983
https://arxiv.org/pdf/2405.15682

Outline

Finite sum minimization
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Finite-sum minimization

return to finite sum problem:
N IR
minimize - Zl fi(x),
1=

where each f; is L;-smooth and convex

why use SGD for finite sum minimization?

» evaluating minibatch gradient is cheaper per iteration
» converges faster than GD since each iteration is faster
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Convergence of SGD

prove SGD minimizes finite sum (3):
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Convergence of SGD

prove SGD minimizes finite sum (3):
e = xel® = I = % = nVF ()|

= [ = I = 2006 = e, VF(x)) + 12V F (x6) .
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Convergence of SGD

prove SGD minimizes finite sum (3):
31 = X2 = llxc = xe — nVF () |2
= [ — xl|? = 20(x — xe, V() + 02| VF (i) I
take expectation wrt Vf(xy):

Exllxerr — %2 = xe — xal[? = 20(x — X, V() + 0°Eil [V (x|
< (1= nu)llxe — x| = 20 (F(x) — F(x0))
+ 7B ||V F (i) ||

using strong convexity:

F) = Fx) + VFCa) T (=) + Sl —xil
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One-step lemma

we have shown the following progress bound for one step of SGD
Lemma
at iteration k of SGD,
Erllxesn =% <(1 = np)[xic = xe1?
=20 (F () — F(x.)) + B[ V() |2

how to show convergence? ideas:

» small/decreasing stepsize n
e.g., Statistical Adaptive Stochastic Gradient Methods

» bound variance Ek||§f(xk)||2, eg Gower et al., 2019
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One-step lemma

we have shown the following progress bound for one step of SGD
Lemma
at iteration k of SGD,
Erllxesn =% <(1 = np)[xic = xe1?
=20 (F () — F(x.)) + B[ V() |2

how to show convergence? ideas:

» small/decreasing stepsize n
e.g., Statistical Adaptive Stochastic Gradient Methods

» bound variance Ek||§f(xk)||2, eg Gower et al., 2019

let's bound the variance!
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Expected smoothness

Definition (Expected smoothness)
f satisfies L-expected smoothness (L-ES) if 3L > 0 such that

E[[VF(x) = VF(x)[* < 2L(f(x) - f(x.))

reduces to L-smoothness if we replace v by V:

()~ F(x) > o7 IVF() — VF(x) P
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Expected smoothness

Definition (Expected smoothness)
f satisfies L-expected smoothness (L-ES) if 3L > 0 such that

E[[VF(x) = VF(x)[* < 2L(f(x) - f(x.))

reduces to L-smoothness if we replace v by V:

()~ F(x) > o7 IVF() — VF(x) P

Corollary
define o2 := E|Vf(x,)|]2. then
E|VF(x)|? < 4L(F(x) — f(x.)) + 202, Vx

under ES, gradient variance is controlled by suboptimality and variance of the gradient at
the optimum
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L-ES condition for smooth convex functions

Theorem (special case of Gower et al., 2019)

Suppose each f; is Li-smooth and convex. Consider mini-batch stochastic gradients
Vf = ﬁ > ics fi(x) with batch-size by = |S|. Then

E[[VF(x)[? < 4L(f(x) — f(x.)) + 202,
with
L= ZL L S, L;
g(m — 1 bg(m —1) 1<i<m
and

5 m—by 1 5
:7*E fi(X«
7 bg(m—l)m’_:1 IV
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L-ES condition for smooth convex functions

Theorem (special case of Gower et al., 2019)

Suppose each f; is Li-smooth and convex. Consider mini-batch stochastic gradients
Vf = ﬁ > ics fi(x) with batch-size by = |S|. Then

E|[VF(x)|? < 4L(f(x) — f(x.)) + 202,
with
)1l & — by
= T b B B

and

5 m—by 1 5
- - f; *
7= o1y m 2 IV

sanity check: 02 — 0 as b, — n
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Back to SGD convergence

using the one-step lemma with p-strong convexity and L-ES, we find

Exllxcr1 = xal|* <(1 = np)llxi — x|

+2n(2nL — 1) (f(x) — f(x:)) + n*20°

. . 1
so, choosing stepsize n < 57,

Erllxir1 — x> < (L= np)llxe — x||* + n*20°
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SGD convergence contd

apply induction + take total expectation to get

K
Elxicrs = x* < (1= m0)* Hixo = %P + | D (1= nuy | 77207
j=0

n20>
< (1 =) Hxo — x?+ ——

pe

by summing the geometric series. choose n < =, so

€

Bllxicrs = e < (1= ) o — P + 5

we can solve for k to find how many iterations are needed to reach error 5:

2(f(x0) — f(X*))>

k> (nu)~"log ( -
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SGD convergence with fixed stepsize

we have shown

Theorem

Suppose f : R" — R is u-strongly convex, with an L-ES stochastic gradient oracle. Run
SGD with batchsize by and fixed stepsize 1 = min {57, 7% }. Then for

e
k > (nu)~tlog (M) iterations,

Ellx - x. |2 < ¢

> same convergence rate as we'd get with decreasing stepsize sequence n = O(1/k)

» but motivates variance reduction, which will give linear convergence!
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Results

: Optimization error
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6x107!

4x107t

3x107!

2x107!

train faster, generalize better

Results: Test error

— GD
m——— AGD
— SGD
N—
100 200 300 400 500
Epoch
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The gradient is too noisy!

the expected smoothness condition shows the gradient is noisy, even at x;:

E[VF(x)I? < 4L(f(x) = f(x.)) + 207,

» good news: f(x) — f* — 0 as x — x,

» bad news: o2 > 0 even near x,

can we design an algorithm that eliminates this noise as x — x,?
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Stochastic Variance Reduced Gradient

Stochastic Variance Reduced Gradient (SVRG) uses a different stochastic gradient
g(x) = VF(x) — VF(x;) + VF(x)

where

> V still denotes the minibatch gradient
» x; € R" is a reference point

> Vf(x) — VF(xs) is a control variate introduced to reduce variance

g(x) € R" is a stochastic gradient at x € R™

Elg(x)] = Vf(x) = Vf(x) + Vf(x) = VF(x),
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SVRG algorithm

1. initialize at xp and set x; = xg
2. fors=0,...,S

2.1 compute and store Vf(x;)
22 fork=0,...,m—1

xh =X = (VA = V() + VF(x,))

2.3 select xs1+1 by uniformly sampling at random from {xo 7...,x,(,f)_l}

2.4 set x™ = xo11

3. return xs
> notice that Ef(x{*"") = Ly F(x*)) (needed for proof)

» in practice, fine to choose last iterate xésH) = x,(,f) instead of sampling
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SVRG numerical performance

> revisit the same logistic regression example
» run SVRG with step-size n = 4

» update snapshot every epoch
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Results: Optimization error

! | | | |

100 200 300 400 500
Epoch
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6x107!

4x107!

3x107!

2x107!

Results: Test loss

0 100 200 300 400 500
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Using SVRG in practice
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Using SVRG in practice

Q: how to select update frequency m?

A: not obvious even from theory (below). often use m n/b; where b, is batchsize used to
compute stochastic gradient update every 1-2 epochs

Q: how to choose step-size 1?

A: monitor convergence. theoretical step-size often too small

Q: does SVRG work for non-convex problems like deep learning?

A: alas, no: variance reduction may worsen performance for nonconvex problems!
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Some useful identities

recall the following two identities for random variables X, Y:

L E|X + Y|? < 2E|[X|? + 2E|| Y|]?
2. E|X - E[X]|* <E|X|?
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Some useful identities

recall the following two identities for random variables X, Y:

L E|X + Y|? < 2E|[X|? + 2E|| Y|]?
2. E|X - E[X]|* <E|X|?

(exercise: prove these!)
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SVRG reduces variance

variance of g(x) depends on suboptimality of x and x

Elg()l? = Elg(x) - VF(x.)+ VF(x)|?

E(|VF(x) — VF(x) + VF(x) — VF(x) + VF(x)|]2

2E|VF(x) — VF(x)|?

+2E||VF(xs) — VF(x:) — VF(xs)|?

= 2E|VF(x) — VF(x)|?
12E||VF(xs) — VF(x) — E[VF(xs) — VF(x)]2

= 2E||VF(x) — V(x| + 2E[V(xs) — VF(x.)]?
A4L[fF(x) — (%) + F(xs) — F(x4)]

hence Var(g(x)) — 0 as f(x) = f, f(xs) = fi

IN
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How to select x.?

to ensure x, xs — x, (and so Var(g(x)) — 0)

> update xs as we make progress (so f(xs) = f(x))

> don't update too often, as computing V(xs) is expensive
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SVRG convergence

Theorem

Run SVRG with S = O (log (%)) outer iterations, m = O(k) inner iterations, and fixed
stepsize n = O(1/L). Then

E[f (xs)] — f(x.) < .

The number of gradient oracle calls is bounded by

o ((0+ ntee (2)).
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SVRG convergence

Theorem

Run SVRG with S = O (log (%)) outer iterations, m = O(k) inner iterations, and fixed
stepsize n = O(1/L). Then

E[f(xs)] — f(x) <.

The number of gradient oracle calls is bounded by

o ((0+ ntee (2)).

» unlike SGD, SVRG converges linearly to the optimum

> when x = O(n), SVRG makes only O(nbg) oracle calls, while GD makes O(n?) calls.

so SVRG reduces the number of calls by n/b,!
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Proof of SVRG convergence

We will prove convergence with two lemmas. First, we prove a one-step progress bound for
outer-iteration s:

Lemma (One-step lemma)

Suppose we are at iteration k of outer-iteration s. Then

Exllx{h — x| < X = x| + 20 (2L — 1) [F(x) — £(x.)]
+ P LIF(xs) — F ()]
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Proof of One-step lemma

Bellech =l =
16 = .2 = 200V F (x), 3 — %) + 7P El| xi)2
< = xl? = 20 (Fa) — F(x)) + Bl g(x0)1?
<3 = xal? = 20 (F(x) — () +
MPLIF(x) — F(x) + F(x) — F(x).]
where the first inequality uses convexity
fxk) — F(x) < (VF(xk), Xk — X)
so, after rearranging
B xy — x| < x5 = x| + 20 20k — 1) [F(x)) — F(x)]
+ 40P LIf (%) — F(x)]
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Outer iteration contraction

Next, we show the outer iteration produces a contraction:

Lemma (Outer iteration contraction)

Suppose we are in outer iteration s. Then
1 2

IE:Ozsfl[f(xs)] - f(X*) < 77,U«(]- — 277L)m + 1— 2L (f(Xsfl) - f(X*))7

where Eg.s_1 denotes the expectation conditioned on outer-iterations 0 through s — 1.
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Proof of outer iteration contraction

summing the inequality in the one-step lemma from k=0,...,m—1,
m m—1
DBl = xl? < 30 Ik - P+
k=1 k=0

m—1

20m (20L 1)+ S[F(4?) — F)] + 4mP[F (1) — F(x)]
k=0
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Proof of outer iteration contraction

summing the inequality in the one-step lemma from k=0,...,m—1,
m m—1
D By -l < D0 Ik - x4
k=1 k=0
1 m—1
2nm (2nL — 1) — 3 [F(q”) = FOe)] + 4 [F (1) — F(x)]
k=0

taking the expectation over all inner-iterations conditioned on outer-iterations 0 through
s — 1 + cancellation, yields

Eois—1[x5 = x[? < [Ixe-1 — x>+

+2nm (2L — 1) (Bo:s—1 [ (x)] = (%)) + 4mm*L[f(xe—1) — F(x)]-
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Proof contd.
rearranging gives
Eo:s—1llx = x.||* + 2nm (1 = 2nL) (Eo:s—1 [f(x5)] = £(x.))
<234 2mL) 1) - AL

where we used strong convexity of f

2 g X — f(x
o1 =l < 2 (FOe-1) = F(x)

hence (dropping IE0:5—1||Xs - X*HZ > O)
2nm (1 = 2nL) (Eo.s—1 [f(x5)] = (x))

<2 (/i + 2mn2L) [f(xs—1) — F(x)]

and so the claim follows by rearrangement
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Finishing the proof

1 2

Eo 4[F — () <
0:s-1[f (xs41)] (x) < nu(l —2nL)m + 1-—2nL

(f(xs) = ()

setting n = ﬁ and m = 20%, we find

Eou alf(6)] — F(x) < 5 (F(1) — F(x))

now taking expectations over all outer iterations and recursing,

L] - 1) < (5) () = Fx).

which gives the theorem after setting s = O (log(1/¢))
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SVRG: Final comments

» variance reduction delivers linear convergence for convex finite-sum optimization.

» SVRG has motivated the development of better (usually) variance reduced algorithms
such as SAGA and Katyusha.

» alas, variance reduction has so far proved useful only in finite-sum convex optimization.
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