
MODELING WITH BINARY 
VARIABLES

Class 3 – October 1, 2025
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• You have several projects available A, B, …, 

• You choose which projects to fund

• A=1 if and only if project A is funded

Context
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• What are the feasible values for A, E?
• Recall that A, E are binary
• We want: if A=1, must have E=1

• How about: A £ E
• If A=1, the only option is E=1
• If A=0, can set any value for E

• Remember! “If you fund A, then you should fund B”: A £ B

• Q: “If you do not fund A, then you should fund B”
• Add a constraint: 1 – A £ B
• “Not selecting A” is same as 1 – A = 1, so this is just like Q5 !

If you fund A, you should also fund E

ALL OPTIONS:

A E
0 0
0 1
1 0
1 1
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Logical Implications with Binary Variables
• Q. If you fund project A, then you should fund projects E and H.
• Same as: “If you fund A, then fund E” and “If you fund A, then fund H” 
• A <= E,  A <= H
• Also possible to do this with one constraint:  A <= (E+H)/2
Q. Why not A <= E+H?

• Q. If you fund anything from A/B/C, then also fund H.
• Same as: “If you fund A, then fund H” and “If you fund B, then fund H”, … 
• A <= H,  B <= H, C <= H
• Also possible to do this with one constraint:  (A+B+C)/3 <= H
Q. Why not A + B + C <= H?
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General Recipe for Defining Indicators
  Y = 1  if and only if  a1 X1 + … + an Xn + b ≥ 0
• Y is a binary decision variable, X1, …, Xn are continuous or discrete decisions
• a1, …, an, b are parameters/data

• The first implication:
 (1): If  Y = 1 then a1 X1 + … + an Xn + b ≥ 0
 
• This is equivalent to the following linear constraint:
 a1 X1 + … + an Xn + b ≥ m	⋅	(1 – Y)
• In practice, ‘m’ is the smallest value that a1 X1 + … + an Xn + b can take

• Understand why this works. No need to remember the constraint!
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General Recipe for Defining Indicators
  Y = 1  if and only if  a1 X1 + … + an Xn + b ≥ 0
• Y is a binary decision variable, X1, …, Xn are continuous or discrete decisions
• a1, …, an, b are parameters/data

• The first implication:
 (1): If  Y = 1 then a1 X1 + … + an Xn + b ≥ 0
 
• In practice, you can directly implement (1) in Gurobi with:

model.addGenConstrIndicator( Y, True, a1 X1 + … + an Xn+ b ≥ 0 )
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Syntax: model.addGenConstrIndicator(  Y, boolean value, implied (in)equality)
• Y = a Gurobi binary variable
• boolean value = True or False
• implied (in)equality = linear relationship that should hold when Y = boolean value

This implements one direction: “If Y=boolean value, then implied (in)equality”
https://www.gurobi.com/documentation/current/refman/py_model_agc_indicator.html 

https://www.gurobi.com/documentation/current/refman/py_model_agc_indicator.html


General Recipe for Defining Indicators
  Y = 1  if and only if  a1 X1 + … + an Xn + b ≥ 0
• Y is a binary decision variable, X1, …, Xn are continuous or discrete decisions
• a1, …, an, b are parameters/data

• The second implication:
 (2) If  Y = 0 then a1 X1 + … + an Xn + b < 0 

• Because we cannot have strict inequality < 0, instead we implement: 

 If  Y = 0 then a1 X1 + … + an Xn + b ≤ -ε  
• If X1,…, Xn are integer, reformulation can be made exact. Otherwise, take ‘ε’ as a 

small tolerance (e.g., 0.00001).

• Implemented with: a1 X1 + … + an Xn + b + ε ≤ (M + ε) Y
• In practice, ‘M’ is the largest value that a1 X1 + … + an Xn + b can take
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Recap
  Y = 1  if and only if  a1 X1 + … + an Xn + b ≥ 0

Y is a binary decision variable, X1, …, Xn are continuous or discrete decisions
a1, …, an, b are parameters/data

 (1): If  Y = 1 then a1 X1 + … + an Xn + b ≥ 0
 (2): If  Y = 0 then a1 X1 + … + an Xn + b < 0 

 Implemented with linear constraints:
 (1) a1 X1 + … + an Xn + b ≥ m	⋅	(1 – Y)
 (2) a1 X1 + … + an Xn + b + ε ≤ (M + ε) Y (ε=1 if X1,…, Xn integer)

 In Gurobi:
 (1) model.addGenConstrIndicator( Y, True, a1 X1 + … + an Xn+ b ≥ 0 )
 (2) model.addGenConstrIndicator( Y, False, a1 X1 + … + an Xn + b ≤ -ε )
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“Cheat-Sheet”
X and Y are decisions; a, b are parameters/data; a X denotes any linear expression in X

1. (X,Y bin) “If X = 1 then Y = 1” à add constraint: X ≤ Y
2. (X,Y bin) “If X = 1 then Y = 1, and vice-versa” à add constraint: X = Y

3. (Y bin) “If Y = 1 then a X + b ≥ 0” à add constraint: a X + b ≥ m ⋅(1-Y)
• ‘m’ is the smallest value a X + b can take

4. (Y bin) “If Y = 1 then a X ≥ b” à add constraint: a X – b ≥ m ⋅ (1-Y)
• ‘m’ is the smallest value (a X – b) can take

5. (Y bin) “If Y = 1 then a X ≤ b ” à add constraint: a X – b ≤ M ⋅ (1-Y)
• ‘M’ is the largest value (a X - b) can take

6. (Y bin) “If Y = 1 then a X + b ≤ 0 ” à add constraint: a X + b ≤ M ⋅ (1-Y)
• ‘M’ is largest value (a X + b) can take

7. (Y bin) “If Y = 1 then a X + b > 0 ” à CAN’T DO > 0.  
• Instead, do “If Y = 1 then a X + b ≥ ε” for a very small number ε > 0
• To implement, add the constraint: a X + b – ε ≥ (m – ε) (1-Y),  where ‘m’ is the smallest value (a X + b) can take

8. If you need “If Y = 0 then …”, replace Y in the constraint with 1-Y
9. If you need “If a X + b ≤ 0 then Y = 1”, replace this with ”If Y=0, then a X + b > 0”

10. (Y bin) Need “X * Y” à add new variable Z (“= X * Y”) and constraints:
  Z ≤ M · Y             Z ≥ m · Y         Z ≤ X – m · (1 – Y)     Z ≥ X – M · (1 – Y)

• m/M are smallest/largest value that X can take 
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3-6 are all 
“the same”! 

Use whichever 
you like!
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Motivation

Consider an optimization problem

minimize cTx

such that Ax ≤ b.

1. Given a feasible x, how can we know “how good” it is?

Formally, how to quantify the gap cTx − p⋆ where p⋆ is the optimal value?

2. Without a feasible x, how to certify that {x : Ax ≤ b} is empty?

3. Suppose one constraint is: aTix ≤ 0 where ai ∈ A are unknown parameters. How to

find an x that is feasible for any ai ∈ A?

4. You are offered a bit more of bi , for a “suitable price”. Is the deal worthwhile?

Duality theory will provide answers to these questions (and more)
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Outline
• Consider a primal optimization problem:

(P) minimize cTx

such that Ax ≤ b.

• We will form a dual problem; also a linear program (LP):

(D) maximize r̃Ty

such that Ãy ≤ b̃.

• We will show that the dual provides lower bounds for the primal:

r̃Ty ≤ cTx for any x feasible for (P) and y feasible for (D)

• If (P) has optimal solution x⋆, then (D) has optimal solution y⋆ and

cTx⋆ = r̃Ty⋆ (strong duality)

• In the process, will uncover some fundamental ideas in optimization:

separation of convex sets =⇒ Farkas Lemma =⇒ strong duality
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Deriving Lower Bounds

Consider a linear optimization problem in the most general form possible:

Primal Problem

(P) minimizex cTx

such that aTix ≥ bi , ∀i ∈ Ige,

aTix ≤ bi , ∀i ∈ Ile,

aTix = bi , ∀i ∈ Ieq,

xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf
variable x ∈ Rn.

A =

 Ale

Age

Aeq

 ∈ Rm×n

b =

 ble

bge

beq

 ∈ Rm

(1)

Note the mnemonic encoding...

Definition
We will refer to this as the primal problem or problem (P).

Let P denote its feasible set (a polyhedron), and p⋆ denote its optimal value.
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Deriving Lower Bounds

Consider the primal problem:

(P) minimizex cTx

such that aTix ≥ bi , ∀i ∈ Ige,

aTix ≤ bi , ∀i ∈ Ile,

aTix = bi , ∀i ∈ Ieq,

xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf
variable x ∈ Rn.

(P) is a minimization; we seek valid lower bounds on (P). Any ideas?

Can remove constraints! Drastic, and could end up with a bound of −∞!

Let’s relax some constraints and penalize ourselves for the relaxation! Which / how?

General principle: (i) relax “complicating” constraints; (ii) try “simple” penalty
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Deriving Lower Bounds

Consider the primal problem:

(P) minimizex cTx

(λi →) aTix ≥ bi , ∀i ∈ Ige,

(λi →) aTix ≤ bi , ∀i ∈ Ile,

(λi →) aTix = bi , ∀i ∈ Ieq,

xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf .

For every constraint i , have a penalty λi

Construct the lower bound as the Lagrangean:

L(x , λ) = cTx −
m∑
i=1

λi (a
T
ix − bi ) = cTx − λT(Ax − b)

Note: we relaxed the complicating constraints, aTix ? bi , and used a linear penalty

Not apriori clear that this will give us very good bounds...
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Deriving Lower Bounds

Consider the primal problem:

(P) minimizex cTx
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(λi →) aTix = bi , ∀i ∈ Ieq,

xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf .

We want the Lagrangean to give us a valid lower bound:

L(x , λ) = cTx − λT(Ax − b) ≤ cTx , ∀x ∈ P.

We must impose constraints on λ:

λi ≥ 0, ∀i ∈ Ige
λi ≤ 0, ∀i ∈ Ile
λi free, ∀i ∈ Ieq.

 ⇔ λ ∈ Λ (2)
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Deriving Lower Bounds

Summarizing... any λ ∈ Λ produces a valid lower bound:

L(x , λ) = cTx − λT(Ax − b) ≤ cTx , ∀x ∈ P.

How can we get a lower bound on the primal’s optimal value p⋆?

Claim
The function g : Λ → R defined as:

g(λ) := minx L(x , λ)
s.t. xj ≥ 0, ∀j ∈ Jp

xj ≤ 0, ∀j ∈ Jn

xj free, ∀j ∈ Jf

(3)

satisfies g(λ) ≤ p⋆ for any λ ∈ Λ.

Note: including the sign constraints on x in this optimization improves the lower bound!
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Deriving Lower Bounds

Let us analyze this further:

g(λ) = minx L(x , λ)
s.t. xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf

= minx
[
λTb + (cT− λTA)x

]
s.t. xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf

g(λ) =

{
λTb, if λTAj ≤ cj , ∀j ∈ Jp and λTAj ≥ cj , ∀j ∈ Jn and λTAj = cj , ∀j ∈ Jf

−∞, otherwise.
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Deriving the Dual Problem

g(λ) =

{
λTb, if λTAj ≤ cj , ∀j ∈ Jp and λTAj ≥ cj , ∀j ∈ Jn and λTAj = cj , ∀j ∈ Jf

−∞, otherwise.

is a valid lower bound on the primal optimal value: g(λ) ≤ p⋆ for any λ ∈ Λ.

How can we get the best lower bound?

maximize
λ∈Λ

g(λ) (4)

This is equivalent to the following optimization problem:

Dual Problem

maximize λTb

subject to λi ≥ 0, ∀i ∈ Ige,

λi ≤ 0, ∀i ∈ Ile,

λi free, ∀i ∈ Ieq,

λTAj ≤ cj , ∀j ∈ Jp,

λTAj ≥ cj , ∀j ∈ Jn,

λTAj = cj , ∀j ∈ Jf .

(5)
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How can we get the best lower bound?

maximize
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g(λ) (4)

This is equivalent to the following optimization problem:
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λTAj = cj , ∀j ∈ Jf .

(6)

Definition
This is the dual of (P), which we will also refer to as (D). We denote its feasible set

with D and its optimal value with d⋆.

Note: The dual is also a linear optimization problem!
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Primal-Dual Pair

Primal-Dual Pair of Problems

Primal (P) Dual (D)

minimize
x

cTx

(λi →) aTix ≥ bi , ∀i ∈ Ige
(λi →) aTix ≤ bi , ∀i ∈ Ile
(λi →) aTix = bi , ∀i ∈ Ieq

xj ≥ 0, ∀j ∈ Jp
xj ≤ 0, ∀j ∈ Jn
xj free, ∀j ∈ Jf

variables x ∈ Rn

maximize
λ

λTb

λi ≥ 0, ∀i ∈ Ige
λi ≤ 0, ∀i ∈ Ile
λi free, ∀i ∈ Ieq
λTAj ≤ cj , ∀j ∈ Jp
λTAj ≥ cj , ∀j ∈ Jn
λTAj = cj , ∀j ∈ Jf

variables λ ∈ Rm.

Recall the procedure for deriving the dual:

• a dual decision variable λi for every primal constraint (except variable signs)

• constrain λi to ensure lower bound: λi ? 0

• for every primal decision xj , add a dual constraint in the form λTAj ? cj
(involving the column Aj and the objective coefficient cj corresponding to λi )
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λTAj ≤ cj , ∀j ∈ Jp
λTAj ≥ cj , ∀j ∈ Jn
λTAj = cj , ∀j ∈ Jf

variables λ ∈ Rm.

Exercise
Rewrite the dual problem as a minimization problem and construct its dual.

Theorem (For LPs, the dual of the dual is the primal)

If we transform the dual of a linear optimization problem into an equivalent

minimization problem and form its dual, we obtain a problem equivalent to the primal.
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Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize
x

/ maximize
x

cTx

(λ →) Ax ⋚ b

x ⋚ 0

(7)

R1: A dual variable λi for every constraint, i.e., every row aTi of A.

λi free for equality constraints (aTix = bi ). Otherwise: λi ? 0.

R2: In the dual, add a constraint for every primal variable xj
If xj is free, write this as λTAj = cj . Otherwise: λ

TAj ? cj .

R3: To determine the signs ? , use this rule of thumb:

the dual variable λi is the (sub)gradient of the optimal objective value with respect

to the constraint’s right-hand-side bi

– in a minimization, for a “≤” constraint, the dual variable is ≤ 0
– in a minimization, for a “≥” constraint, the dual variable is ≥ 0
– in a maximization, for a “≤” constraint, the dual variable is ≥ 0
– in a maximization, for a “≥” constraint, the dual variable is ≤ 0.
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Example 1

(P) max 3x1 + 2x2

s.t. x1 + 2x2 ≤ 4 (1)

3x1 + 2x2 ≥ 6 (2)

x1 − x2 = 1 (3)

x1, x2 ≥ 0.

(D) min 4y1 + 6y2 + y3

s.t. y1 + 3y2 + y3 ≥ 3,

2y1 + 2y2 − y3 ≥ 2,

y1 ≥ 0, y2 ≤ 0, y3 free.
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Some Quick Results

Theorem (“Duals of equivalent primals”)

If we transform a primal P1 into an equivalent formulation P2 by:
• replacing a free variable xi with xi = x+i − x−i ,

• replacing an inequality with an equality by introducing a slack variable,

• removing linearly dependent rows aTi for a feasible LP in standard form,

then the duals of (P1) and (P2) are equivalent, i.e., they are either both infeasible or

they have the same optimal objective.
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Weak duality

Primal (P) Dual (D)

minimizex cTx

(λi →) aTix ≥ bi , ∀i ∈ Ige,

(λi →) aTix ≤ bi , ∀i ∈ Ile,

(λi →) aTix = bi , ∀i ∈ Ieq,

xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf .

maximizeλ λTb

λi ≥ 0, ∀i ∈ Ige,

λi ≤ 0, ∀i ∈ Ile,

λi free, ∀i ∈ Ieq,

(xj →) λTAj ≤ cj , ∀j ∈ Jp,

(xj →) λTAj ≥ cj , ∀j ∈ Jn,

(xj →) λTAj = cj , ∀j ∈ Jf .

Theorem (Weak duality)

If x is feasible for (P) and λ is feasible for (D), then λTb ≤ cTx.

Proof. Trivially true from our construction – omitted.
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Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is −∞, then (D) must be infeasible.

(b) If the optimal objective in (D) is +∞, then (P) must be infeasible.

(c) If x ∈ P and λ ∈ D, then:
cTx − p⋆ ≤ cTx − λTb and d⋆ − λTb ≤ cTx − λTb.

(d) If x ∈ P, λ ∈ D, and λTb = cTx, then x optimal for (P) and λ optimal for (D).

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?

18 / 18



Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is −∞, then (D) must be infeasible.

(b) If the optimal objective in (D) is +∞, then (P) must be infeasible.

(c) If x ∈ P and λ ∈ D, then:
cTx − p⋆ ≤ cTx − λTb and d⋆ − λTb ≤ cTx − λTb.

(d) If x ∈ P, λ ∈ D, and λTb = cTx, then x optimal for (P) and λ optimal for (D).

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?

18 / 18



Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is −∞, then (D) must be infeasible.

(b) If the optimal objective in (D) is +∞, then (P) must be infeasible.

(c) If x ∈ P and λ ∈ D, then:
cTx − p⋆ ≤ cTx − λTb and d⋆ − λTb ≤ cTx − λTb.

(d) If x ∈ P, λ ∈ D, and λTb = cTx, then x optimal for (P) and λ optimal for (D).

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?

18 / 18



Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is −∞, then (D) must be infeasible.

(b) If the optimal objective in (D) is +∞, then (P) must be infeasible.

(c) If x ∈ P and λ ∈ D, then:
cTx − p⋆ ≤ cTx − λTb and d⋆ − λTb ≤ cTx − λTb.

(d) If x ∈ P, λ ∈ D, and λTb = cTx, then x optimal for (P) and λ optimal for (D).

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?

18 / 18



Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is −∞, then (D) must be infeasible.

(b) If the optimal objective in (D) is +∞, then (P) must be infeasible.

(c) If x ∈ P and λ ∈ D, then:
cTx − p⋆ ≤ cTx − λTb and d⋆ − λTb ≤ cTx − λTb.

(d) If x ∈ P, λ ∈ D, and λTb = cTx, then x optimal for (P) and λ optimal for (D).

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?

18 / 18



Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is −∞, then (D) must be infeasible.

(b) If the optimal objective in (D) is +∞, then (P) must be infeasible.

(c) If x ∈ P and λ ∈ D, then:
cTx − p⋆ ≤ cTx − λTb and d⋆ − λTb ≤ cTx − λTb.

(d) If x ∈ P, λ ∈ D, and λTb = cTx, then x optimal for (P) and λ optimal for (D).

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?

18 / 18


	Lecture04_Binary_Modeling
	Lecture04_slides_postclass

