MODELING WITH BINARY
VARIABLES

Class 3 — October 1, 2025
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Context

 You have several projects available A, B, ...,

 You choose which projects to fund

- A=1 if and only if project A is funded



If you fund A, you should also fund E

- What are the feasible values for A, E?
« Recall that A, E are binary ALL OPTIONS:
« We want: if A=1, must have E=1

A E
0 0 \é

0 1

« How about: A<E : 5
 If A=1, the only option is E=1 1 1V

« If A=0, can set any value for E
- Remember! “If you fund A, then you should fund B”: A<B

« Q: “If you do not fund A, then you should fund B”

« Add a constraint: 1 -A<B
« “Not selecting A” issame as 1 — A =1, so this is just like Q5 !
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Logical Implications with Binary Variables

« Q. If you fund project A, then you should fund projects E and H.
« Same as: “If you fund A, then fund E” and “If you fund A, then fund H”
- A<=E, A<=H
- Also possible to do this with one constraint: A <= (E+H)/2
Q. Why not A <= E+H?

- Q. If you fund anything from A/B/C, then also fund H.
« Same as: “If you fund A, then fund H” and “If you fund B, then fund H”, ...
« A<=H, B<=H,C<=H
- Also possible to do this with one constraint: (A+B+C)/3 <=H
Q. Why not A+B+ C<=H?
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General Recipe for Defining Indicators
Y=1 ifandonlyif a; X;+...+a, X, +b>0

« Y is a binary decision variable, X, ..., X,, are continuous or discrete decisions
* ay, ..., A, b are parameters/data

 The first implication:
(1): IfY=1thena;X;+..+a, X, +b>0

« This is equivalent to the following linear constraint:
a; X;+..+a, X, +b>m-(1-Y)

* In practice, ‘m’ is the smallest value thata; X; +... +a, X, + b can take

« Understand why this works. No need to remember the constraint!
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General Recipe for Defining Indicators
Y=1 ifandonlyif a; X;+...+a, X, +b>0

« Y is a binary decision variable, X, ..., X,, are continuous or discrete decisions
* ay, ..., A, b are parameters/data

 The first implication:
(1): IfY=1thena;X;+..+a, X, +b>0

* In practice, you can directly implement (1) in Gurobi with:
model.addGenConstrindicator( Y, True, a; X; +...+a, X,+ b 2> 0)

Syntax: model.addGenConstrindicator( Y, boolean value, implied (in)equality)
* Y =a Gurobi binary variable

* boolean value = True or False
* implied (in)equality = linear relationship that should hold when Y = boolean value

This implements one direction: “If Y=boolean value, then implied (in)equality”
https://www.qurobi.com/documentation/current/refman/py model agc indicator.html|



https://www.gurobi.com/documentation/current/refman/py_model_agc_indicator.html
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General Recipe for Defining Indicators
Y=1 ifandonlyif a; X;+...+a, X, +b>0

« Y is a binary decision variable, X, ..., X,, are continuous or discrete decisions
* ay, ..., A, b are parameters/data

- The second implication:
(2) IfY=0thena;X;+..+a,X,+b<0

- Because we cannot have strict inequality < 0, instead we implement:
If Y=0thena; X, +..+a, X, +b<-¢

« If X4,..., X,, are integer, reformulation can be made exact. Otherwise, take ‘€’ as a
small tolerance (e.g., 0.00001).

« Implemented with: a; X; +...+a, X, +b+e<(M+¢g)Y

 In practice, ‘M’ is the largest value that a; X; + ... + a, X, + b can take



Recap

Y=1 ifandonlyif a;X;+..+a, X, +b>0

Y is a binary decision variable, X, ..., X,, are continuous or discrete decisions
a,, ..., a, b are parameters/data

(1): If Y=1thena; X;+..+a,X,+b>0
(2): IfY=0thena;X;+..+a,X,+b<0

Implemented with linear constraints:
(1) a; X;+..+a,X,+b>2m-(1-Y)
(2) a; X;+..+a, X, +b+e<(M+¢g)Y (e=1ifX,,..., X, integer)

In Gurobi:
(1) model.addGenConstrindicator( Y, True, a; X; +...+a, X,+ b =>0)
(2) model.addGenConstrindicator( Y, False, a; X; +...+a, X, +b < -€)



“Cheat-Sheet”

X and Y are decisions; a, b are parameters/data; a X denotes any linear expression in X

. (XY bin) “If X=1then Y =1"” - add constraint: X <Y
2. (XY bin) “If X =1 then Y = 1, and vice-versa” - add constraint: X =Y

3. (Ybin)“lfY=1thena X+ b 2 0” = add constraint: a X+ b >m -(1-Y)
. ’r'n’ isl’fhe sma/les;,value aX;L b f;'ar;ake . . ) 3-6 are all

4. (Y Ic3|r]). IfY=1thenaX2b add constraint: a X—-b2>m - (1-Y) “the same”!
« ‘m’is the smallest value (a X — b) can take . .

5.  (Ybin)“IfY=1thena X< b ” - add constraint: aX—b <M - (1-Y) Use whichever
« ‘M’ is the largest value (a X - b) can take you like!

6. (Ybin)“lfY=1thenaX+b<0”—-> add constraint: aX+b<M - (1-Y)
- ‘M’ is largest value (a X + b) can take ==

7. (Ybin)“fY=1thenaX+b>0”-> CAN'T DO > 0.

* Instead, do “If Y=1then a X + b 2 £” for a very small number € > 0
« To implement, add the constraint: a X +b -2 (m—¢) (1-Y), where ‘m’ is the smallest value (a X + b) can take

. Ifyouneed “If Y =0 then ...”, replace Y in the constraint with 1-Y
9. Ifyouneed “IfaX+b<0thenY =1"”, replace this with “If Y=0, thena X + b > 0”

10. (Y bin) Need “X * Y” - add new variable Z (“= X * Y”) and constraints:
Z<M-Y Z>m-Y Z<X-m-(1-Y) Z2X-M-(1-Y)

+ m/M are smallest/largest value that X can take
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Motivation

Consider an optimization problem
minimize ¢'x

such that Ax < b.

1. Given a feasible x, how can we know “how good” it is?
Formally, how to quantify the gap c'x — p* where p* is the optimal value?

2. Without a feasible x, how to certify that {x : Ax < b} is empty?

3. Suppose one constraint is: aTx < 0 where a; € A are unknown parameters. How to
find an x that is feasible for any a; € A?

4. You are offered a bit more of b;, for a “suitable price”. Is the deal worthwhile?

Duality theory will provide answers to these questions (and more)

2/18
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QOutline

® Consider a primal optimization problem:

(P) minimize c'x

such that Ax < b.

We will form a dual problem; also a linear program (LP):

(D) maximize Fy

such that Ay < b.

We will show that the dual provides lower bounds for the primal:

Fly < c'x  for any x feasible for (P) and y feasible for (D)
® If (P) has optimal solution x*, then (D) has optimal solution y* and
c'x* = y* (strong duality)

® |n the process, will uncover some fundamental ideas in optimization:

separation of convex sets —> Farkas Lemma — strong duality
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Deriving Lower Bounds

Consider a linear optimization problem in the most general form possible:

Primal Problem

(P) minimize,  c'x

such that alx > b;, Vi€l
ax < b, Viel,
aTx =b;, Vie qu,
x; > 0, Vj € Jp,
x <0, Vel
x; free, Vj e Jr
variable x € R".

Note the mnemonic encoding...
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Consider a linear optimization problem in the most general form possible:

Primal Problem

(P) minimize,  c'x

such that  alx > b;,
aTx < b;,
aTx = b,‘7

x>0,

xj <0,

x; free,

variable x € R".

Vi € [,
Vi € I,
Vi € I,
Vj € Jp,
Vj € Jn,
Vj e Jr

As

c Rmxn

e R™

Note the mnemonic encoding...



Deriving Lower Bounds

Consider a linear optimization problem in the most general form possible:

Primal Problem

(P) minimize,  c'x

such that alx > b;, Vi€l [ Ae
ax < b, Viel, A= | A= | e R™X"
ax = b, Viel, | As .
x>0, e, C b (1)
x<0, Vi€, b=| b= | eR™
x; free, Vj e Jr | b

variable x € R".

Note the mnemonic encoding...

Definition
We will refer to this as the primal problem or problem (P).

Let P denote its feasible set (a polyhedron), and p* denote its optimal value.




Deriving Lower Bounds

Consider the primal problem:

(P) minimize,  c'x
such that  alx > b;, Vi€l
alx < b;, Vié€l,
aTX =b;, Viel,
x>0, e,
x; <0, Vj € Jn,
x; free, Ve Jr
variable x € R".

(P) is a minimization; we seek valid lower bounds on (P). Any ideas?
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Deriving Lower Bounds

Consider the primal problem:

(P) minimize,  c'x

such that  alx > b;, Vi€l
alx < b;, Vié€l,
aTX =b;, Viel,
x>0, e,
x; <0, Vj € Jn,
x; free, Ve Jr

variable x € R".

(P) is a minimization; we seek valid lower bounds on (P). Any ideas?

Can remove constraints! Drastic, and could end up with a bound of —oc!
Let's relax some constraints and penalize ourselves for the relaxation! Which / how?

General principle: (i) relax “complicating” constraints; (ii) try “simple” penalty
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Deriving Lower Bounds

Consider the primal problem:

(P) minimize,  c'x
()\,' —>) aTx >b;, Vie /ge,
()\; —>) aTx <b;, Vi€El,
()\,‘ *>) a—’l-—X = b,', Vi e /eq,
x;j >0, Vj € Jp,
x; <0, Vj € Jn,
x; free, Vj e Jr.

For every constraint i, have a penalty \;

Construct the lower bound as the Lagrangean:

L(x,\) = c'x — Z Ni(alx — b)) = c'x — A'(Ax — b)
i=1
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Deriving Lower Bounds

Consider the primal problem:

(P) minimize,  c'x
()\,' —>) aTx > b,', Vi e /ge,
()\; —>) aTx <b;, Vi€El,
()\,‘ *>) a—’l-—X = b,', Vi e /eq,
x; > 0, Vj € Jp,
5 <0, Vel

x; free, Vj e Jr.

For every constraint i, have a penalty \;

Construct the lower bound as the Lagrangean:
L(x,\) = c'x — Z Ni(alx — b)) = c'x — A'(Ax — b)
i=1

Note: we relaxed the complicating constraints, alx (?) bj, and used a linear penalty

Not apriori clear that this will give us very good bounds...
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Deriving Lower Bounds

Consider the primal problem:

(P) minimize,  c'x

()\,' —>) aTx > b;, Vie /ge,
()\,' —>) a-,'-'x < b;, Viel,
(/\,' —>) aTx = b,', Vi e qua

x; >0, Vj € Jp,
Xj < 0, Vj € Jn,
xj free, V) e Jr.

We want the Lagrangean to give us a valid lower bound:

L(x,\) = c'x — \N(Ax — b) < c'x, Vx € P.
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Deriving Lower Bounds

Consider the primal problem:

(P) minimize,
(Ai =)
(Ai =)
(Ai =)

CTX

aTx > b,',
a-,'-'x < b,‘,
aTx = b,',
x>0,
x <0,
xj free,

vi el
Vi € |,
Vi€ I,
Vj € Jp,
Vj € Jn,
Vj € Jr.

We want the Lagrangean to give us a valid lower bound:
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We must impose constraints on A:
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Consider the primal problem:

(P) minimize,  c'x

()\,' —>) aTx > b;, Vie /ge,
()\,' —>) a-,'-'x < b;, Viel,
()\,' —>) aTx = b,', Vi e qua
x; > 0, Vj € Jp,
<0, Vi€
xj free, V) e Jr.

We want the Lagrangean to give us a valid lower bound:

L(x,\) = c'x — \N(Ax — b) < c'x, Vx € P.

We must impose constraints on A:

Ai>0, Viel,
A\ <0, Viel S el 2)
Aj free, Viel,.
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Deriving Lower Bounds

Summarizing... any A € A produces a valid lower bound:

L(x,\) = c'x — N(Ax — b) < c'x, ¥x € P.

How can we get a lower bound on the primal’s optimal value p*?
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Deriving Lower Bounds

Summarizing... any A € A produces a valid lower bound:

L(x,\) = c'x — N(Ax — b) < c'x, ¥x € P.
How can we get a lower bound on the primal’s optimal value p*?
Claim

The function g : N — R defined as:

g(X) :== miny, L(x,\) 3)
st.xp >0, VjeJ,
X <0, Vj€Jy
x;j free, Vj € Jg

satisfies g(\) < p* for any X € A.

Note: including the sign constraints on x in this optimization improves the lower bound!
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Deriving Lower Bounds

Let us analyze this further:

g(A) = ming L(x, ) = min, [A'b+ (' — ATA)x]
sit. x; >0, Vj € Jp, sit. x; >0, Vj € Jp,
x; <0, Vj € Jp, x; <0, Vj € Jp,

x; free, Vj € Jr x; free, Vj € Jr
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Deriving Lower Bounds

Let us analyze this further:

g(A) = ming L(x, ) = min, [A'b+ (' — ATA)x]
sit. x; >0, Vj € Jp, sit. x; >0, Vj € Jp,
X <0, V) € X <0, V) €
x; free, Vj € Jr x; free, Vj € Jr

—o0, otherwise.

g(\) = {)‘Tb’ if \TA; < ¢;,Vj € J, and \TA; > ¢;,Vj € J, and NTA; = ¢,V € Jr
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Deriving the Dual Problem

g(A) = {)\Tb, if N'Aj < ¢,Vj € Jp and NA; > ¢;,Vj € Jp and N'A; = ¢;,Vj € Jy

—00, otherwise.

is a valid lower bound on the primal optimal value: g(\) < p* for any A € A.

How can we get the best lower bound?
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g(A) = {)\Tb’ if N'Aj < ¢,Vj € Jp and NA; > ¢;,Vj € Jp and N'A; = ¢;,Vj € Jy
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is a valid lower bound on the primal optimal value: g(\) < p* for any A € A.
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This is equivalent to the following optimization problem:
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Deriving the Dual Problem

) = {ATb, if NTA; < ¢,V € Jp and NTA; > ¢;,Vj € J, and NTA; = ¢;, V) € J

—00, otherwise.

is a valid lower bound on the primal optimal value: g(\) < p* for any A € A.

How can we get the best lower bound?

o \
mai\ﬂer/r\uzeg( )

This is equivalent to the following optimization problem:

Dual Problem

maximize \'h
subject to  \; > 0,

Vi € I,
Vi € I,
Vi€ l,,
Vj € Jp,
Vj € Jn,
Vj € Jr.

(4)
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Deriving the Dual Problem

Dual Problem

maximize
subject to

\'b
)\i Z Oa

Vi€ I,
Vi€ I,
Vi € I,
Vj e Jp,
Vj € Jn,
Vj € Jr.
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Deriving the Dual Problem

Dual Problem

maximize
subject to

b

Ai >0, Vi€ I,

Ai <0, Vi e .,

A; free, Vi e l,, (6)
/\TAj <g, Vj € Jp,

)\TAJ' > G, Vj € Jp,

)\TAJ' = ¢, V) € Jr.

Definition
This is the dual of (P), which we will
with D and its optimal value with d*.

also refer to as (D). We denote its feasible set

Note: The dual is also a linear optimization problem!
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Primal-Dual Pair

Primal-Dual Pair of Problems

Primal (P)
minimize  c'x
X
()\,' —)) a-}—x > b,',
(/\,' —)) aTx < b,',
(/\,' —>) aTx = b,',
x; >0,
X <0,
x; free,
variables x € R”

Viel,
Vi € I,
viel,
VjeJp
Vj € Jn
Vj € Jr

maximize
X

variables

Dual (D)
)

Ai >0,

A <0,

A\ free,
)\TAJ' S Cj7
)\TAJ' Z G,
XA = g,
A eR™.

viel,
Vi el
Viel,
Vi€ Jp
Vj e J,
Vj e Jr
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Primal-Dual Pair

Primal-Dual Pair of Problems

Primal (P)
minimize c'x
()\,' —)) a-}—x >b;, Vie Ige
(/\,' —)) aTx < b,', Vi€ |,
(/\,' —>) aTx = b,', Vi e qu
x; >0, vjeJp
X <0, Vi€,
x; free, Vj € Jr
variables x € R”

maximize
X

variables

Dual (D)
b
>\i Z 07

viel,
Vi el
Viel,
Vi€ Jp
Vj e J,
Vj e Jr

Recall the procedure for deriving the dual:

® a dual decision variable \; for every primal constraint (except variable signs)

® constrain \; to ensure lower bound: ); @ 0

® for every primal decision x;, add a dual constraint in the form ATA; ©) G

(involving the column A; and the objective coefficient ¢; corresponding to A;)
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Primal-Dual Pair

Primal-Dual Pair of Problems

Viel,
Vi € I,
viel,
VjeJp
Vj € Jn
Vj € Jr

maximize
X

variables

Dual (D)
)

Ai >0,

A <0,

A\ free,
)\TAJ' S Cj,
)\TAJ' Z G,
XA = g,
A eR™.

viel,
Vi el
Viel,
Vi€ Jp
Vj e J,
Vj e Jr

Primal (P)
minixmize c"x
()\,' —)) a-}—x > b,',
(/\,' —)) aTx < b,',
(/\,' —>) aTx = b,',
x>0,
x <0,
x; free,
variables x € R”
Exercise

Rewrite the dual problem as a minimization problem and construct its dual.
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Primal-Dual Pair

Primal-Dual Pair of Problems

Primal (P) Dual (D)
minimize  c'x maxi)\mize b

()\,' —)) a-}—x >b;, Vie Ige A >0, Vi e Ige
(/\,' —)) aTx <b, Viel, A <0, Vi el
(A=) alx=b;, Viel, \; free, Vi€ l,
Xj >0, RS Jp )\TAJ' < G, VJ € Jp
x; <0, Vje J, )\TAJ- > ¢, Vje J,
x; free, Vi€ Jr NA =¢, V€

variables x € R” variables A\ € R™.

Exercise
Rewrite the dual problem as a minimization problem and construct its dual.

Theorem (For LPs, the dual of the dual is the primal)

If we transform the dual of a linear optimization problem into an equivalent
minimization problem and form its dual, we obtain a problem equivalent to the primal.
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Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize c'x
X X
(A=) AxZh (7)

<
X;O
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Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize c'x
X X
(A=) AxZh (M)
X § 0

R1: A dual variable \; for every constraint, i.e., every row aT of A.
)\; free for equality constraints (alx = b;). Otherwise: \; @ 0.

R2: In the dual, add a constraint for every primal variable x;
If x; is free, write this as ATA; = ¢;. Otherwise: ATA; () ¢;.

R3: To determine the signs @ use this rule of thumb:

the dual variable \; is the (sub)gradient of the optimal objective value with respect
to the constraint’s right-hand-side b;

- in a minimization, for a “<" constraint, the dual variable is <0
- in a minimization, for a “>" constraint, the dual variable is > 0
- in a maximization, for a “<" constraint, the dual variable is > 0
- in a maximization, for a “>" constraint, the dual variable is < 0.
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Example 1

(P) max 3x; + 2x2
st.ox1+2x <4 (1)
a4+ 20>6 (2)
x1—xx=1 (3)

X1, X2 Z 0.
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Example 1

(P) max 3x; + 2x2
st.ox1+2x <4 (1)
a4+ 20>6 (2)
x1—xx=1 (3)

X1, X2 Z 0.

(D) min 4y; +6y> + y3
st.y1+3y2+y3 >3,
2y1 + 2y —y3 > 2,
120, y2<0, y;free
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Some Quick Results

Theorem (“Duals of equivalent primals™)

If we transform a primal Py into an equivalent formulation P, by:
® replacing a free variable x; with x; = x: — x;_,

® replacing an inequality with an equality by introducing a slack variable,
® removing linearly dependent rows al for a feasible LP in standard form,

then the duals of (P1) and (P>) are equivalent, i.e., they are either both infeasible or
they have the same optimal objective.
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Weak duality

Primal (P) Dual (D)
minimize,  c'x maximizey A'b
(N =) aTx > by, Vi€l A >0, Vi€ I,
()\,’ —)) aTx < b,', Vi e /|e, A <0, Vi e /,e,
(A=) alx=b, Viel, \j free, Vi€ I,
Xj > 0, Vj e Jp, (XJ *>) )\TAJ' < g, MAS Jp7
X <0, Vj€ (=) NA>g, Vi€,
xj free,  Vj € Jp. (xi =) NAi=¢, Vj€Jr.
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(N =) aTx > by, Vi€l A >0, Vi€ I,
()\,’ —)) aTx < b,', Vi e /,e, A <0, Vi e /,e7
(A=) alx=b, Viel, \j free, Vi€ I,
x; > 0, V) € Jp, (XJ *>) )\TAJ' < g, Vj e Jp7
X <0, Vj€ (=) NA>g, Vi€,
xj free,  Vj € Jp. (xi =) NAi=¢, Vj€Jr.

Theorem (Weak duality)
If x is feasible for (P) and X is feasible for (D), then \'b < c'x.

Proof. Trivially true from our construction — omitted.
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Implications of Weak Duality

Corollary
The following results hold:

(c) and (d) provide (sub)optimality certificates, but...
How do we know that the gaps in (c) are not very large?

How do we know that x and A satisfying (d) even exist?
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