MODELING WITH BINARY VARIABLES

Class 3 – October 1, 2025

Context

• You have several projects available A, B, ...,

You choose which projects to fund

A=1 if and only if project A is funded

If you fund A, you should also fund E

- What are the feasible values for A, E?
 - Recall that A, E are binary
 - We want: if A=1, must have E=1
- How about: **A** ≤ **E**
 - If A=1, the only option is E=1
 - If A=0, can set any value for E

ALL OPTIONS:

- Remember! "If you fund A, then you should fund B": A ≤ B
- Q: "If you do **not** fund **A**, then you should fund **B**"
 - Add a constraint: $1 A \le B$
 - "Not selecting A" is same as 1 A = 1, so this is just like Q5!

Logical Implications with Binary Variables

- Q. If you fund project A, then you should fund projects E and H.
 - Same as: "If you fund A, then fund E" and "If you fund A, then fund H"
 - A <= E, A <= H
 - Also possible to do this with one constraint: A <= (E+H)/2
 - Q. Why not $A \le E+H$?
- Q. If you fund anything from A/B/C, then also fund H.
 - Same as: "If you fund A, then fund H" and "If you fund B, then fund H", ...
 - A <= H, B <= H, C <= H
 - Also possible to do this with one constraint: (A+B+C)/3 <= H
 - Q. Why not $A + B + C \le H$?

General Recipe for Defining Indicators

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

- Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions
- a₁, ..., a_n, b are parameters/data
- The first implication:

(1): If
$$Y = 1$$
 then $a_1 X_1 + ... + a_n X_n + b \ge 0$

This is equivalent to the following linear constraint:

$$a_1 X_1 + ... + a_n X_n + b \ge m \cdot (1 - Y)$$

- In practice, 'm' is the smallest value that $a_1 X_1 + ... + a_n X_n + b$ can take
- Understand why this works. No need to remember the constraint!

General Recipe for Defining Indicators

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

- Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions
- a₁, ..., a_n, b are parameters/data
- The first implication:

(1): If
$$Y = 1$$
 then $a_1 X_1 + ... + a_n X_n + b \ge 0$

In practice, you can directly implement (1) in Gurobi with:
 model.addGenConstrIndicator(Y, True, a₁ X₁ + ... + a_n X_n+ b ≥ 0)

Syntax: model.addGenConstrIndicator(Y, boolean value, implied (in)equality)

- **Y** = a Gurobi binary variable
- **boolean value** = True or False
- implied (in)equality = linear relationship that should hold when Y = boolean value

This implements **one** direction: "If Y=boolean value, then implied (in)equality" https://www.gurobi.com/documentation/current/refman/py_model_agc_indicator.html

General Recipe for Defining Indicators

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

- Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions
- a₁, ..., a_n, b are parameters/data
- The second implication:

(2) If
$$Y = 0$$
 then $a_1 X_1 + ... + a_n X_n + b < 0$

• Because we cannot have **strict** inequality < **0**, instead we implement:

If
$$Y = 0$$
 then $a_1 X_1 + ... + a_n X_n + b \le -\epsilon$

- If $X_1,...,X_n$ are integer, reformulation can be made exact. Otherwise, take ' ϵ ' as a small tolerance (e.g., 0.00001).
- Implemented with: $a_1 X_1 + ... + a_n X_n + b + \epsilon \le (M + \epsilon) Y$
 - In practice, 'M' is the largest value that $a_1 X_1 + ... + a_n X_n + b$ can take

Recap

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions a_1 , ..., a_n , b are parameters/data

(1): If
$$Y = 1$$
 then $a_1 X_1 + ... + a_n X_n + b \ge 0$

(2): If
$$Y = 0$$
 then $a_1 X_1 + ... + a_n X_n + b < 0$

Implemented with linear constraints:

(1)
$$a_1 X_1 + ... + a_n X_n + b \ge m \cdot (1 - Y)$$

(2)
$$a_1 X_1 + ... + a_n X_n + b + \epsilon \le (M + \epsilon) Y$$
 ($\epsilon = 1$ if $X_1, ..., X_n$ integer)

In Gurobi:

- (1) model.addGenConstrIndicator(Y, True, $a_1 X_1 + ... + a_n X_n + b \ge 0$)
- (2) model.addGenConstrIndicator(Y, False, $a_1 X_1 + ... + a_n X_n + b \le -\varepsilon$)

"Cheat-Sheet"

X and Y are decisions; a, b are parameters/data; a X denotes any linear expression in X

- 1. (X,Y bin) "If X = 1 then Y = 1" \rightarrow add constraint: $X \le Y$
- 2. (X,Y bin) "If X = 1 then Y = 1, and vice-versa" \rightarrow add constraint: X = Y
- 3. (Y bin) "If Y = 1 then $a \times x + b \ge 0$ " \rightarrow add constraint: $a \times x + b \ge m \cdot (1-Y)$
 - 'm' is the *smallest* value a X + b can take
- 4. (Y bin) "If Y = 1 then $a X \ge b$ " \rightarrow add constraint: $a X b \ge m \cdot (1-Y)$
 - 'm' is the *smallest* value (a X b) can take
- 5. (Y bin) "If Y = 1 then $a X \le b$ " \rightarrow add constraint: $a X b \le M \cdot (1-Y)$
 - 'M' is the *largest* value (a X b) can take
- 6. (Y bin) "If Y = 1 then $a X + b \le 0$ " \Rightarrow add constraint: $a X + b \le M \cdot (1-Y)$
 - 'M' is *largest* value (a X + b) can take
- 7. (Y bin) "If Y = 1 then a X + b > 0" \rightarrow CAN'T DO > 0.
 - Instead, do "If Y = 1 then a $X + b \ge \varepsilon$ " for a very small number $\varepsilon > 0$
 - To implement, add the constraint: $aX + b \varepsilon \ge (m \varepsilon)(1-Y)$, where 'm' is the smallest value (aX + b) can take
- 8. If you need "If Y = 0 then ...", replace Y in the constraint with 1-Y
- 9. If you need "If $a \times b \le 0$ then Y = 1", replace this with "If Y = 0, then $a \times b > 0$ "
- 10. (Y bin) Need "X * Y" \rightarrow add new variable Z ("= X * Y") and constraints:

$$Z \leq M \cdot Y$$

$$Z \ge m \cdot Y$$

$$Z \leq X - m \cdot (1 - Y)$$

$$Z \ge X - M \cdot (1 - Y)$$

m/M are smallest/largest value that X can take

3-6 are all "the same"!
Use whichever you like!

Duality

Lecture 4

October 1, 2025

Consider an optimization problem

minimize $c^{\mathsf{T}}x$ such that $Ax \leq b$.

Consider an optimization problem

$$\begin{aligned} & \text{minimize } c^{\mathsf{T}} x \\ & \text{such that } A x \leq b. \end{aligned}$$

1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?

Consider an optimization problem

minimize
$$c^{\mathsf{T}}x$$

such that $Ax \leq b$.

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?

Consider an optimization problem

minimize
$$c^{\mathsf{T}}x$$

such that $Ax \leq b$.

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?
- 3. Suppose one constraint is: $a_i^T x \leq 0$ where $a_i \in A$ are unknown parameters. How to find an x that is feasible for any $a_i \in A$?

Consider an optimization problem

minimize
$$c^{\mathsf{T}}x$$

such that $Ax \leq b$.

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?
- 3. Suppose one constraint is: $a_i^T x \leq 0$ where $a_i \in A$ are unknown parameters. How to find an x that is feasible for any $a_i \in A$?
- 4. You are offered a bit more of b_i , for a "suitable price". Is the deal worthwhile?

Duality theory will provide answers to these questions (and more)

• Consider a **primal** optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ such that $Ax \leq b$.

• Consider a **primal** optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$
such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y < \tilde{b}$.

• Consider a primal optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$
such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y < \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

$$\tilde{r}^T y \leq c^T x$$
 for any x feasible for (\mathcal{P}) and y feasible for (\mathcal{D})

• Consider a primal optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{T}x$
such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y \leq \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

$$\tilde{r}^T y \leq c^T x$$
 for any x feasible for (\mathcal{P}) and y feasible for (\mathcal{D})

• If (\mathcal{P}) has optimal solution x^* , then (\mathcal{D}) has optimal solution y^* and

$$c^{\mathsf{T}}x^{\star} = \tilde{r}^{\mathsf{T}}y^{\star}$$
 (strong duality)

• Consider a primal optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$
such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y \leq \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

$$\tilde{r}^T y \leq c^T x$$
 for any x feasible for (\mathcal{P}) and y feasible for (\mathcal{D})

• If (\mathcal{P}) has optimal solution x^* , then (\mathcal{D}) has optimal solution y^* and

$$c^{\mathsf{T}}x^{\star} = \tilde{r}^{\mathsf{T}}y^{\star}$$
 (strong duality)

• In the process, will uncover some **fundamental ideas in optimization**:

separation of convex sets \implies Farkas Lemma \implies strong duality

Consider a linear optimization problem in the most general form possible:

Note the mnemonic encoding...

Consider a linear optimization problem in the most general form possible:

Note the mnemonic encoding...

Consider a linear optimization problem in the most general form possible:

Note the mnemonic encoding...

Definition

We will refer to this as the **primal problem** or problem (\mathcal{P}) .

Let P denote its feasible set (a polyhedron), and p^* denote its optimal value.

Consider the primal problem:

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x & & c^\mathsf{T} x \\ \text{ such that} & & a_i^\mathsf{T} x \geq b_i, \quad \forall i \in I_{\mathrm{ge}}, \\ & & a_i^\mathsf{T} x \leq b_i, \quad \forall i \in I_{\mathrm{le}}, \\ & & a_i^\mathsf{T} x = b_i, \quad \forall i \in I_{\mathrm{eq}}, \\ & & x_j \geq 0, \quad \forall j \in J_p, \\ & & x_j \leq 0, \quad \forall j \in J_n, \\ & & x_j \text{ free}, \quad \forall j \in J_f \end{aligned}$$

 (\mathcal{P}) is a minimization; we seek **valid lower bounds** on (\mathcal{P}) . Any ideas?

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_x & c^\mathsf{T} x \\ & \mathsf{such that} & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_\mathsf{ge}, \\ & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_\mathsf{le}, \\ & a_i^\mathsf{T} x = b_i, & \forall i \in I_\mathsf{eq}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f \\ & \mathsf{variable} & x \in \mathbb{R}^n. \end{array}$$

 (\mathcal{P}) is a minimization; we seek valid lower bounds on (\mathcal{P}) . Any ideas?

Can **remove** constraints! Drastic, and could end up with a bound of $-\infty$!

Consider the primal problem:

$$(\mathcal{P}) \ \mathsf{minimize}_x \qquad c^\mathsf{T} x \\ \mathsf{such that} \qquad a_i^\mathsf{T} x \geq b_i, \qquad \forall i \in I_\mathsf{ge}, \\ a_i^\mathsf{T} x \leq b_i, \qquad \forall i \in I_\mathsf{le}, \\ a_i^\mathsf{T} x = b_i, \qquad \forall i \in I_\mathsf{eq}, \\ x_j \geq 0, \qquad \forall j \in J_p, \\ x_j \leq 0, \qquad \forall j \in J_n, \\ x_j \ \mathsf{free}, \qquad \forall j \in J_f \\ \mathsf{variable} \qquad x \in \mathbb{R}^n.$$

 (\mathcal{P}) is a minimization; we seek **valid lower bounds** on (\mathcal{P}) . Any ideas?

Can **remove** constraints! Drastic, and could end up with a bound of $-\infty$!

Let's relax some constraints and penalize ourselves for the relaxation! Which / how?

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_{\mathsf{x}} & c^\mathsf{T} x \\ & \mathsf{such that} & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_{\mathsf{ge}}, \\ & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_{\mathsf{le}}, \\ & a_i^\mathsf{T} x = b_i, & \forall i \in I_{\mathsf{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f \\ & \mathsf{variable} & x \in \mathbb{R}^n. \end{array}$$

 (\mathcal{P}) is a minimization; we seek **valid lower bounds** on (\mathcal{P}) . Any ideas?

Can **remove** constraints! Drastic, and could end up with a bound of $-\infty$!

Let's relax some constraints and penalize ourselves for the relaxation! Which / how?

General principle: (i) relax "complicating" constraints; (ii) try "simple" penalty

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_{x} & c^\mathsf{T} x \\ & (\lambda_i \to) & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_\mathsf{ge}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_\mathsf{le}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x = b_i, & \forall i \in I_\mathsf{eq}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_i \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

For every constraint i, have a **penalty** λ_i

Construct the **lower bound** as the **Lagrangean**:

$$\mathcal{L}(x, \boldsymbol{\lambda}) = c^{\mathsf{T}} x - \sum_{i=1}^{m} \lambda_{i} (a_{i}^{\mathsf{T}} x - b_{i}) = c^{\mathsf{T}} x - \boldsymbol{\lambda}^{\mathsf{T}} (Ax - b)$$

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_{\mathsf{x}} & c^\mathsf{T} \mathsf{x} \\ & (\lambda_i \to) & a_i^\mathsf{T} \mathsf{x} \geq b_i, & \forall i \in I_{\mathsf{ge}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} \mathsf{x} \leq b_i, & \forall i \in I_{\mathsf{le}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} \mathsf{x} = b_i, & \forall i \in I_{\mathsf{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_i \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

For every constraint i, have a **penalty** λ_i

Construct the **lower bound** as the **Lagrangean**:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \sum_{i=1}^{m} \lambda_{i}(a_{i}^{\mathsf{T}}x - b_{i}) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b)$$

Note: we relaxed the complicating constraints, $a_i^T x$? b_i , and used a linear penalty Not apriori clear that this will give us very good bounds...

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_{\mathsf{x}} & c^\mathsf{T} \mathsf{x} \\ & (\lambda_i \to) & \mathsf{a}_i^\mathsf{T} \mathsf{x} \geq b_i, & \forall i \in I_{\mathsf{ge}}, \\ & (\lambda_i \to) & \mathsf{a}_i^\mathsf{T} \mathsf{x} \leq b_i, & \forall i \in I_{\mathsf{le}}, \\ & (\lambda_i \to) & \mathsf{a}_i^\mathsf{T} \mathsf{x} = b_i, & \forall i \in I_{\mathsf{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

We want the Lagrangean to give us a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_x & c^\mathsf{T} x \\ & (\lambda_i \to) & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_{\mathrm{ge}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_{\mathrm{le}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x = b_i, & \forall i \in I_{\mathrm{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

We want the Lagrangean to give us a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

We must impose constraints on λ :

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_x & c^\mathsf{T} x \\ & (\lambda_i \to) & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_{\mathrm{ge}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_{\mathrm{le}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x = b_i, & \forall i \in I_{\mathrm{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

We want the Lagrangean to give us a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

We must impose constraints on λ :

$$\begin{vmatrix}
\lambda_{i} \geq 0, & \forall i \in I_{ge} \\
\lambda_{i} \leq 0, & \forall i \in I_{le} \\
\lambda_{i} \text{ free,} & \forall i \in I_{eq}.
\end{vmatrix} \Leftrightarrow \lambda \in \Lambda$$
(2)

Summarizing... any $\lambda \in \Lambda$ produces a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

How can we get a lower bound on the primal's **optimal value** p^* ?

Summarizing... any $\lambda \in \Lambda$ produces a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

How can we get a lower bound on the primal's optimal value p^* ?

Claim

The function $g: \Lambda \to \mathbb{R}$ defined as:

$$g(\lambda) := \min_{x} \mathcal{L}(x, \lambda)$$

$$s.t. \ x_{j} \ge 0, \ \forall j \in J_{p}$$

$$x_{j} \le 0, \ \forall j \in J_{n}$$

$$x_{j} \ free, \ \forall j \in J_{f}$$
(3)

satisfies $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

Note: including the sign constraints on x in this optimization improves the lower bound!

Let us analyze this further:

$$g(\lambda) = \min_{x} \mathcal{L}(x, \lambda) = \min_{x} \left[\lambda^{\mathsf{T}} b + (c^{\mathsf{T}} - \lambda^{\mathsf{T}} A) x \right]$$
s.t. $x_{j} \geq 0, \ \forall j \in J_{p},$ s.t. $x_{j} \geq 0, \ \forall j \in J_{p},$

$$x_{j} \leq 0, \ \forall j \in J_{n},$$

$$x_{j} \text{ free, } \forall j \in J_{f}$$

$$x_{j} \text{ free, } \forall j \in J_{f}$$

Let us analyze this further:

$$g(\lambda) = \min_{x} \mathcal{L}(x, \lambda) = \min_{x} \left[\lambda^{\mathsf{T}} b + (c^{\mathsf{T}} - \lambda^{\mathsf{T}} A) x \right]$$

$$\text{s.t. } x_{j} \geq 0, \ \forall j \in J_{p}, \quad \text{s.t. } x_{j} \geq 0, \ \forall j \in J_{p},$$

$$x_{j} \leq 0, \ \forall j \in J_{n}, \quad x_{j} \leq 0, \ \forall j \in J_{n},$$

$$x_{j} \text{ free, } \forall j \in J_{f} \quad x_{j} \text{ free, } \forall j \in J_{f}$$

$$g(\boldsymbol{\lambda}) = \begin{cases} \boldsymbol{\lambda}^{\!\mathsf{T}} b, & \text{if } \boldsymbol{\lambda}^{\!\mathsf{T}} A_j \leq c_j, \forall j \in J_p \text{ and } \boldsymbol{\lambda}^{\!\mathsf{T}} A_j \geq c_j, \forall j \in J_n \text{ and } \boldsymbol{\lambda}^{\!\mathsf{T}} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise.} \end{cases}$$

$$g(\pmb{\lambda}) = \begin{cases} \pmb{\lambda}^\mathsf{T} b, & \text{if } \pmb{\lambda}^\mathsf{T} A_j \leq c_j, \forall j \in J_p \text{ and } \pmb{\lambda}^\mathsf{T} A_j \geq c_j, \forall j \in J_n \text{ and } \pmb{\lambda}^\mathsf{T} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the primal optimal value: $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

How can we get the best lower bound?

$$g(\pmb{\lambda}) = \begin{cases} \pmb{\lambda}^\mathsf{T} b, & \text{if } \pmb{\lambda}^\mathsf{T} A_j \leq c_j, \forall j \in J_p \text{ and } \pmb{\lambda}^\mathsf{T} A_j \geq c_j, \forall j \in J_n \text{ and } \pmb{\lambda}^\mathsf{T} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the primal optimal value: $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

How can we get the best lower bound?

$$\underset{\lambda \in \Lambda}{\text{maximize } g(\lambda)} \tag{4}$$

This is equivalent to the following optimization problem:

$$g(\pmb{\lambda}) = \begin{cases} \pmb{\lambda}^\mathsf{T} b, & \text{if } \pmb{\lambda}^\mathsf{T} A_j \leq c_j, \forall j \in J_p \text{ and } \pmb{\lambda}^\mathsf{T} A_j \geq c_j, \forall j \in J_n \text{ and } \pmb{\lambda}^\mathsf{T} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise}. \end{cases}$$

is a valid lower bound on the primal optimal value: $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

How can we get the best lower bound?

$$\underset{\lambda \in \Lambda}{\text{maximize } g(\lambda)} \tag{4}$$

This is equivalent to the following optimization problem:

Dual Problem

maximize
$$\lambda^{\mathsf{T}}b$$

subject to $\lambda_{i} \geq 0$, $\forall i \in I_{\mathsf{ge}}$,

 $\lambda_{i} \leq 0$, $\forall i \in I_{\mathsf{le}}$,

 λ_{i} free, $\forall i \in I_{\mathsf{eq}}$, (5)

 $\lambda^{\mathsf{T}}A_{j} \leq c_{j}$, $\forall j \in J_{p}$,

 $\lambda^{\mathsf{T}}A_{j} \geq c_{j}$, $\forall j \in J_{n}$,

 $\lambda^{\mathsf{T}}A_{j} = c_{j}$, $\forall j \in J_{f}$.

Dual Problem					
	maximize	$\lambda^{T}b$			
	subject to	$\lambda_i \geq 0$,	$\forall i \in I_{ge},$		
		$\lambda_i \leq 0$,	$\forall i \in I_{le},$		
		λ_i free,	$\forall i \in I_{\scriptscriptstyle{ ext{eq}}},$	(6)
		$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p,$		
		, ,			
		$\lambda^{T} A_j = c_j,$	$\forall j \in J_f$.		

$$\begin{array}{lll} \text{Dual Problem} \\ & \text{maximize} & \lambda^\mathsf{T} b \\ & \text{subject to} & \lambda_i \geq 0, & \forall i \in I_{\mathrm{ge}}, \\ & \lambda_i \leq 0, & \forall i \in I_{\mathrm{le}}, \\ & \lambda_i \text{ free}, & \forall i \in I_{\mathrm{eq}}, \\ & \lambda^\mathsf{T} A_j \leq c_j, & \forall j \in J_p, \\ & \lambda^\mathsf{T} A_j \geq c_j, & \forall j \in J_n, \\ & \lambda^\mathsf{T} A_j = c_j, & \forall j \in J_f. \end{array} \tag{6}$$

Definition

This is the **dual** of (P), which we will also refer to as (D). We denote its feasible set with D and its optimal value with d^* .

Note: The dual is also a linear optimization problem!

Primal-Dual Pair of Problems						
$ \underset{x}{\text{minimize}} $	Primal (\mathcal{P}) $c^{T} x$		$\max_{\lambda} \text{maximize}$	$\begin{array}{c} \mathbf{Dual} \ (\mathcal{D}) \\ \mathbf{\lambda}^T b \end{array}$		
` '	$a_i^T \mathbf{x} \geq b_i,$ $a_i^T \mathbf{x} \leq b_i,$	$\forall i \in I_{ge}$ $\forall i \in I_{le}$		$\lambda_i \geq 0,$ $\lambda_i < 0,$	$\forall i \in I_{\mathrm{ge}}$ $\forall i \in I_{\mathrm{le}}$	
` '	$a_i^{T} \mathbf{x} = b_i,$	$\forall i \in I_{\scriptscriptstyle{ ext{eq}}}$		λ_i free,	$\forall i \in I_{eq}$	
	•	$\forall j \in J_n$		$\lambda^{T} A_j \leq c_j,$ $\lambda^{T} A_j \geq c_j,$	$\forall j \in J_p$ $\forall j \in J_n$	
variables		$\forall j \in J_f$	variables	$\lambda^{T} A_j = c_j,$ $\lambda \in \mathbb{R}^m.$	$\forall j \in J_f$	

Recall the procedure for deriving the dual:

- a dual decision variable λ_i for every primal constraint (except variable signs)
- constrain λ_i to ensure lower bound: λ_i ? 0
- for every primal decision x_j , add a dual constraint in the form $\lambda^T A_j$? c_j (involving the column A_j and the objective coefficient c_j corresponding to λ_i)

Primal-Dual Pair of Problems					
P minimize	rimal (\mathcal{P}) $c^{T} x$		maximize	$\begin{array}{c} \mathbf{Dual} \ (\mathcal{D}) \\ \mathbf{\lambda}^T b \end{array}$	
	$a_i^T \mathbf{x} \geq b_i$,	$orall i \in I_{\scriptscriptstyle{ m ge}}$		$\lambda_i \geq 0$,	$orall i \in I_{ extsf{ge}}$
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} \leq b_i$,	$\forall i \in I_{ ext{le}}$		$\lambda_i \leq 0$,	$\forall i \in I_{le}$
$(\lambda_i ightarrow)$	$a_i^T x = b_i,$	$orall i \in I_{\scriptscriptstyle{ extsf{eq}}}$		λ_i free,	$orall i \in I_{ extsf{eq}}$
	$x_j \geq 0$,	$\forall j \in J_p$		$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p$
	J	$\forall j \in J_n$		$\lambda^{T} A_j \geq c_j,$	$\forall j \in J_n$
	x_j free,	$\forall j \in J_f$		$\lambda^{T} A_j = c_j,$	$\forall j \in J_f$
variables	$\mathbf{x} \in \mathbb{R}^n$		variables	$\lambda \in \mathbb{R}^m$.	

Exercise

Rewrite the dual problem as a minimization problem and construct its dual.

Primal-Dual Pair of Problems Primal (\mathcal{P}) Dual (\mathcal{D}) minimize $c^{\mathsf{T}}_{\mathsf{X}}$ $\lambda^{\mathsf{T}} b$ maximize $(\lambda_i \rightarrow)$ $a_i^\mathsf{T} \times \geq b_i, \quad \forall i \in I_{ge}$ $\lambda_i \geq 0, \quad \forall i \in I_{ge}$ $(\lambda_i \rightarrow)$ $a_i^\mathsf{T} \times \leq b_i, \quad \forall i \in I_{\mathsf{le}}$ $\lambda_i \leq 0, \quad \forall i \in I_{le}$ $(\lambda_i \rightarrow)$ $a_i^\mathsf{T} x = b_i, \forall i \in I_{eq}$ λ_i free, $\forall i \in I_{eq}$ $\lambda^{\mathsf{T}} A_i \leq c_i, \quad \forall j \in J_p$ $x_j \geq 0, \quad \forall j \in J_p$ $x_i \leq 0, \quad \forall j \in J_n$ $\lambda^{\mathsf{T}} A_i \geq c_i, \quad \forall j \in J_n$ x_i free, $\forall i \in J_f$ $\lambda^{\mathsf{T}} A_i = c_i, \quad \forall i \in J_f$ variables $x \in \mathbb{R}^n$ variables $\lambda \in \mathbb{R}^m$.

Exercise

Rewrite the dual problem as a minimization problem and construct its dual.

Theorem (For LPs, the dual of the dual is the primal)

If we transform the dual of a linear optimization problem into an equivalent minimization problem and form its dual, we obtain a problem equivalent to the primal.

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{T}x$$

$$(\lambda \rightarrow) \quad Ax \leq b$$

$$x \leq 0$$
(7)

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b$$

$$x \leq 0$$

$$(7)$$

R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T x = b_i)$. Otherwise: λ_i ? 0.

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b \\ x \leq 0$$
(7)

R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T = b_i)$. Otherwise: λ_i ? 0.

R2: In the dual, add a constraint for every primal variable x_j If x_j is **free**, write this as $\lambda^T A_j = c_j$. Otherwise: $\lambda^T A_j$? c_j .

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b \quad (7)$$

$$x \leq 0$$

- R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T x = b_i)$. Otherwise: λ_i ? 0.
- R2: In the dual, add a constraint for every primal variable x_j If x_j is **free**, write this as $\lambda^T A_j = c_j$. Otherwise: $\lambda^T A_j$? c_j .
- R3: To determine the signs ?, use this rule of thumb: the dual variable λ_i is the (sub)gradient of the optimal objective value with respect to the constraint's right-hand-side b_i

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b \quad (7)$$

$$x \leq 0$$

- R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T = b_i)$. Otherwise: λ_i ? 0.
- R2: In the dual, add a constraint for every primal variable x_j If x_j is **free**, write this as $\lambda^T A_j = c_j$. Otherwise: $\lambda^T A_j$? c_j .
- R3: To determine the signs ?, use this rule of thumb:

the dual variable λ_i is the (sub)gradient of the optimal objective value with respect to the constraint's right-hand-side b_i

- in a minimization, for a " \leq " constraint, the dual variable is \leq 0
- in a minimization, for a " \geq " constraint, the dual variable is ≥ 0
- in a maximization, for a " \leq " constraint, the dual variable is ≥ 0
- in a maximization, for a " \geq " constraint, the dual variable is ≤ 0 .

Example 1

(
$$\mathcal{P}$$
) max $3x_1 + 2x_2$
s.t. $x_1 + 2x_2 \le 4$ (1)
 $3x_1 + 2x_2 \ge 6$ (2)
 $x_1 - x_2 = 1$ (3)
 $x_1, x_2 \ge 0$.

Example 1

(
$$\mathcal{P}$$
) max $3x_1 + 2x_2$
s.t. $x_1 + 2x_2 \le 4$ (1)
 $3x_1 + 2x_2 \ge 6$ (2)
 $x_1 - x_2 = 1$ (3)
 $x_1, x_2 \ge 0$.

(
$$\mathcal{D}$$
) min $4y_1 + 6y_2 + y_3$
s.t. $y_1 + 3y_2 + y_3 \ge 3$,
 $2y_1 + 2y_2 - y_3 \ge 2$,
 $y_1 \ge 0$, $y_2 \le 0$, y_3 free.

Some Quick Results

Theorem ("Duals of equivalent primals")

If we transform a primal P_1 into an equivalent formulation P_2 by:

- replacing a free variable x_i with $x_i = x_i^+ x_i^-$,
- replacing an inequality with an equality by introducing a slack variable,
- removing linearly dependent rows a^T; for a feasible LP in standard form,

then the duals of (P_1) and (P_2) are **equivalent**, i.e., they are either both infeasible or they have the same optimal objective.

Weak duality

P	Primal (\mathcal{P})			$Dual\ (\mathcal{D})$	
minimize _x	$c^{T} x$		maximize	$\lambda^{T}b$	
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} \geq b_i$,	$\forall i \in I_{ge},$		$\lambda_i \geq 0$,	$\forall i \in I_{ge},$
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} \leq b_i$,	$\forall i \in I_{le},$		$\lambda_i \leq 0$,	$\forall i \in I_{le},$
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} = b_i$,	$\forall i \in I_{eq},$		λ_i free,	$\forall i \in I_{eq},$
	$x_j \geq 0$,	$\forall j \in J_p,$	$(x_j ightarrow)$	$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p,$
	$x_j \leq 0$,	$\forall j \in J_n$,	$(x_j o)$	$\lambda^{T} A_j \geq c_j$,	$\forall j \in J_n$,
	x_i free,	$\forall i \in J_f$.	$(x_i \rightarrow)$	$\lambda^{T} A_i = c_i$	$\forall i \in J_f$.

Weak duality

Theorem (Weak duality)

If x is feasible for (\mathcal{P}) and λ is feasible for (\mathcal{D}) , then $\lambda^T b \leq c^T x$.

Proof. Trivially true from our construction – omitted.

Cor	ollary		
The	following	results	hold:

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

(a) If the optimal objective in (\mathcal{P}) is $-\infty,$ then (\mathcal{D}) must be infeasible.

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

- (a) If the optimal objective in (P) is $-\infty$, then (D) must be infeasible.
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

- (a) If the optimal objective in (P) is $-\infty$, then (D) must be infeasible.
- (b) If the optimal objective in (D) is $+\infty$, then (P) must be infeasible.
- (c) If $x \in P$ and $\lambda \in D$, then: $c^{\mathsf{T}}x - p^* \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b \quad \text{and} \quad d^* - \lambda^{\mathsf{T}}b \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b.$

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty$, then (\mathcal{D}) must be infeasible.
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.
- (c) If $x \in P$ and $\lambda \in D$, then: $c^{\mathsf{T}}x - p^* \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b \text{ and } d^* - \lambda^{\mathsf{T}}b \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b.$
- (d) If $x \in P$, $\lambda \in D$, and $\lambda^T b = c^T x$, then x optimal for (\mathcal{P}) and λ optimal for (\mathcal{D}) .

(c) and (d) provide (sub)optimality certificates, but...

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty,$ then (\mathcal{D}) must be infeasible.
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.
- (c) If $x \in P$ and $\lambda \in D$, then: $c^{\mathsf{T}}x - p^* \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b \text{ and } d^* - \lambda^{\mathsf{T}}b \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b.$
- (d) If $x \in P$, $\lambda \in D$, and $\lambda^T b = c^T x$, then x optimal for (\mathcal{P}) and λ optimal for (\mathcal{D}) .

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?