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Recap From Last Time

Primal-Dual Pair of Problems

Primal (P)

Dual (D)

minimize
x

cTx

(λi →) aTix ≥ bi , ∀i ∈ Ige
(λi →) aTix ≤ bi , ∀i ∈ Ile
(λi →) aTix = bi , ∀i ∈ Ieq

xj ≥ 0, ∀j ∈ Jp
xj ≤ 0, ∀j ∈ Jn
xj free, ∀j ∈ Jf

variables x ∈ Rn

maximize
λ

λTb

λi ≥ 0, ∀i ∈ Ige
λi ≤ 0, ∀i ∈ Ile
λi free, ∀i ∈ Ieq

(xj →) λTAj ≤ cj , ∀j ∈ Jp
(xj →) λTAj ≥ cj , ∀j ∈ Jn
(xj →) λTAj = cj , ∀j ∈ Jf
variables λ ∈ Rm.

We seek lower bounds on λ⋆

Recall the procedure for deriving the dual:

• a dual decision variable λi for every primal constraint (except variable signs)

• constrain λi to ensure lower bound: λi ? 0

• for every primal decision xj , add a dual constraint in the form λTAj ? cj
(involving the column Aj and the objective coefficient cj corresponding to xj)
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Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize
x

/ maximize
x

cTx

(λ →) Ax ⋚ b

x ⋚ 0

(1)

R1: A dual variable λi for every constraint, i.e., every row aTi of A.

λi free for equality constraints (aTix = bi ). Otherwise: λi ? 0.

R2: In the dual, add a constraint for every primal variable xj
If xj is free, write this as λTAj = cj . Otherwise: λ

TAj ? cj .

R3: To determine the signs ? , use this rule of thumb:

the dual variable λi is the (sub)gradient of the optimal objective value with respect

to the constraint’s right-hand-side bi

– in a minimization, for a “≤” constraint, the dual variable is ≤ 0
– in a minimization, for a “≥” constraint, the dual variable is ≥ 0
– in a maximization, for a “≤” constraint, the dual variable is ≥ 0
– in a maximization, for a “≥” constraint, the dual variable is ≤ 0.
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Weak duality

Primal (P) Dual (D)

minimizex cTx

(λi →) aTix ≥ bi , ∀i ∈ Ige,

(λi →) aTix ≤ bi , ∀i ∈ Ile,

(λi →) aTix = bi , ∀i ∈ Ieq,

xj ≥ 0, ∀j ∈ Jp,

xj ≤ 0, ∀j ∈ Jn,

xj free, ∀j ∈ Jf .

maximizeλ λTb

λi ≥ 0, ∀i ∈ Ige,

λi ≤ 0, ∀i ∈ Ile,

λi free, ∀i ∈ Ieq,

(xj →) λTAj ≤ cj , ∀j ∈ Jp,

(xj →) λTAj ≥ cj , ∀j ∈ Jn,

(xj →) λTAj = cj , ∀j ∈ Jf .

Theorem (Weak duality)

If x is feasible for (P) and λ is feasible for (D), then λTb ≤ cTx.

Proof. Trivially true from our construction – omitted.
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Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is −∞, then (D) ...

must be infeasible.

(b) If the optimal objective in (D) is +∞, then (P) ...

must be infeasible.

(c) If x ∈ P and λ ∈ D, then:

cTx − p⋆ ≤ cTx − λTb and d⋆ − λTb ≤ cTx − λTb.

(d) If x ∈ P, λ ∈ D, and λTb = cTx, then x optimal for (P) and λ optimal for (D).

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

How do we know that x and λ satisfying (d) even exist?
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Strong duality

Theorem (Strong duality)

If (P) has an optimal solution, so does (D), and the optimal values are equal, λ⋆ = d⋆.

Proof. Many proofs possible...

• See Bertsimas & Tsitsiklis for a proof involving the simplex algorithm

• We provide a more general proof, in three steps:

1. The separating hyperplane theorem (for convex sets)

2. The Farkas Lemma

3. Strong duality

Need a tiny bit of real analysis background...
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A Few Real Analysis Results

Definition (Closed Set)

A set S ⊆ Rn is called closed if it contains the limit of any sequence of elements of S .

That is, if xn ∈ S , ∀n ≥ 1 and xn → x⋆, then x⋆ ∈ S .

Theorem
Every polyhedron is closed.

Proof.
• Consider P = {x ∈ Rn | Ax ≥ b} (representation is w.l.o.g.)

• Suppose that {xn}n≥1 is a sequence with xn ∈ S for every n, and xn → x⋆.

• For each k , we have xk ∈ P, and therefore, Axk ≥ b.

• Then, Ax⋆ = A (limk→∞ xk) = limk→∞ Axk ≥ b, so x⋆ belongs to P.

Is every convex set closed?

Theorem (Weierstrass’ Theorem)

If f : Rn → R is a continuous function, and if S is a nonempty, closed, and bounded

subset of Rn, then there exist x , x̄ ∈ S such that f (x) ≤ f (x) ≤ f (x̄) for all x ∈ S.

i.e., a continuous function achieves its minimum and maximum
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Separating Hyperplane Theorem

The first fundamental result in optimization
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Separating Hyperplane Theorem

Theorem (Simple Separating Hyperplane Theorem)

Consider a point x⋆ and a polyhedron P. If x⋆ /∈ P, then there exists a vector c ∈ Rn

such that c ̸= 0 and cTx⋆ < cTy holds for all y ∈ P.
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of Rn such that S ∩ U = ∅ and

S is bounded. Then, there exists c ∈ Rn and d ∈ R such that S ⊂ {x ∈ Rn : cTx < d}
and U ⊂ {x ∈ Rn : cTx > d}.
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of Rn such that S ∩ U = ∅ and

S is bounded. Then, there exists c ∈ Rn and d ∈ R such that S ⊂ {x ∈ Rn : cTx < d}
and U ⊂ {x ∈ Rn : cTx > d}.

Proof.
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of Rn such that S ∩ U = ∅ and

S is bounded. Then, there exists c ∈ Rn and d ∈ R such that S ⊂ {x ∈ Rn : cTx < d}
and U ⊂ {x ∈ Rn : cTx > d}.

Proof. Consider ∥x − y∥ with x ∈ S , y ∈ U
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of Rn such that S ∩ U = ∅ and

S is bounded. Then, there exists c ∈ Rn and d ∈ R such that S ⊂ {x ∈ Rn : cTx < d}
and U ⊂ {x ∈ Rn : cTx > d}.

Proof. Argue that the minimum is achieved, at x⋆, y⋆
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of Rn such that S ∩ U = ∅ and

S is bounded. Then, there exists c ∈ Rn and d ∈ R such that S ⊂ {x ∈ Rn : cTx < d}
and U ⊂ {x ∈ Rn : cTx > d}.

Proof. Argue that c = y⋆ − x⋆ and d = cT(x⋆+y⋆)
2 give strict separating hyperplane
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Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one set bounded

• Left: two convex sets that are not closed but are both bounded:

S = [−1, 1]× [−1, 0) ∪ {(x , y) : x ∈ [−1, 0], y = 0}, U = [−1, 1]2 \ S

• Right: two convex sets that are both closed but are unbounded

S = {(x , y) : x ≤ 0}, U = {(x , y) : x ≥ 0, y ≥ 1/x}
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Needed For Our Purposes

We proved the first fundamental result in optimization!

Corollary (Needed for our purposes...)

If P is a polyhedron and x⋆ /∈ P, there exists a hyperplane that strictly separates x⋆

from P, i.e., ∃c ̸= 0 such that cTx⋆ < cTx for any x ∈ P.
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Farkas Lemma

Time for the second fundamental result in optimization!
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Farkas Lemma

Theorem (Farkas’ Lemma)

For A ∈ Rm×n, b ∈ Rm, exactly one of the following two alternatives holds:

(a) There exists some x ≥ 0 such that Ax = b.

(b) There exists some vector λ such that λTA ≥ 0 and λTb < 0.
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Theorem (Farkas’ Lemma)

For A ∈ Rm×n, b ∈ Rm, exactly one of the following two alternatives holds:

(a) There exists some x ≥ 0 such that Ax = b.

(b) There exists some vector λ such that λTA ≥ 0 and λTb < 0.

Proof. “(a) true implies (b) false.”

(a) true means ∃x ≥ 0 : Ax = b.

(b) true means ∃λ : λTA ≥ 0 and λTb < 0.

If (a) and (b) both true, then λTb = λTAx ≥ 0, which is a contradiction.
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Theorem (Farkas’ Lemma)

For A ∈ Rm×n, b ∈ Rm, exactly one of the following two alternatives holds:

(a) There exists some x ≥ 0 such that Ax = b.

(b) There exists some vector λ such that λTA ≥ 0 and λTb < 0.

“(a) false implies (b) true.” Want to use the separating hyperplane theorem.

• (a) false implies that b /∈ {y : ∃ x ≥ 0 such that y = Ax} := S .
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“(a) false implies (b) true.” Want to use the separating hyperplane theorem.

• (a) false implies that b /∈ {y : ∃ x ≥ 0 such that y = Ax} := S .

• S is a convex and closed set

(S is polyhedral)

• Separating Hyperplane Theorem implies ∃λ : λTb < λTy , ∀y ∈ S

• 0 ∈ S ⇒ λTb < 0

• Every column Ai of A satisfies θAi ∈ S for every θ > 0, so

λTb

θ
< λTAi , ∀θ > 0

• Limit θ → ∞ implies λTAi ≥ 0. ■
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• Separating Hyperplane Theorem implies ∃λ : λTb < λTy , ∀y ∈ S

• 0 ∈ S ⇒ λTb < 0

• Every column Ai of A satisfies θAi ∈ S for every θ > 0, so

λTb

θ
< λTAi , ∀θ > 0

• Limit θ → ∞ implies λTAi ≥ 0. ■
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Farkas Lemma Implications

Theorem (Farkas’ Lemma)

For A ∈ Rm×n, b ∈ Rm, exactly one of the following two alternatives holds:

(a) There exists some x ≥ 0 such that Ax = b.

(b) There exists some vector λ such that λTA ≥ 0 and λTb < 0.

We proved the second fundamental result in optimization!

• Suppose your primal problem (P) was the standard-form LP:

(P) minimize cTx

subject to Ax = b

x ≥ 0

• What does the Farkas Lemma state about this?

• Farkas Lemma states that either (P) is feasible or ...

... there exists λ that proves that the primal is infeasible

• Such a λ is a certificate of infeasibility!
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Strong Duality

Consider the following primal-dual pair:

(P) minimize cTx

subject to Ax ≥ b

(D) maximize λTb

subject to λTA = cT, λ ≥ 0.

Theorem (Strong Duality)

If (P) has an optimal solution, so does (D), and their optimal values are equal.
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Strong Duality

(P) minimize cTx

subject to Ax ≥ b

(D) maximize λTb

subject to λTA = cT, λ ≥ 0.

Proof.

• Assume (P) has optimal solution x⋆

• Will prove that (D) admits feasible solution λ such that λTb = cTx⋆

• Let F = {i | aTix⋆ = bi} denote the indices of active constraints at x⋆

• Show that c can be written as conic combination of constraints {ai : i ∈ F}
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Strong Duality

(P) minimize cTx

subject to Ax ≥ b

(D) maximize λTb

subject to λTA = cT, λ ≥ 0.

Proof.

• First, we show that for any vector d , the following implication holds:

aTid ≥ 0, ∀ i ∈ F ⇒ cTd ≥ 0.

• For any such d , we claim that x⋆ + ϵd ∈ P for small ϵ
– aTi (x

⋆ + ϵd) ≥ bi ,∀i ∈ F for any ϵ > 0
– aTix

⋆ > bi ∀i /∈ F implies that ∃ϵ > 0 such that aTi (x
⋆ + ϵd) ≥ bi ,∀i /∈ F

• cTd ≥ 0 because otherwise cT(x⋆ + ϵd) < cTx⋆ would contradict x⋆ optimal

• So ∄d : aTid ≥ 0, ∀ i ∈ F , cTd < 0

• Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:

∃{λi}i∈F : λi ≥ 0, c =
∑
i∈F

λiai

• Let λi = 0 for i /∈ F ⇒ ∃λ feasible for (D)

• λTb =
∑

i∈F λibi =
∑

i∈F λia
T
ix

⋆ = cTx⋆ ■
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