Duality

Lecture 5

October 8, 2025
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Recap From Last Time

Primal-Dual Pair of Problems

Primal (P)
minimize c'x
()\,' —)) a-}—x >b;, Vie Ige
(/\,' —)) aTx < b,', Vi€ |,
(/\,' —>) aTx = b,', Vi e qu
x; >0, vjeJp
X <0, Vied,
x; free, Vj e Jr
variables x € R"

We seek lower bounds on \*
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Recap From Last Time

Primal-Dual Pair of Problems

Primal (P)
minimize  c'x
X
()\,' —)) a-}—x > b,',
(/\,' —)) aTx < b,',
(/\,' —>) aTx = b,',
x; >0,
X <0,
x; free,
variables x € R"

Viel,
Vi € I,
viel,
VjeJp
Vj € Jn
Vj € Jr

maximize
X

(x =)
(x5 =)
(5 —)
variables

Dual (D)
b

Ai >0,

A <0,

A\ free,
)\TAJ' S Cj7
)\TAJ' Z G,
NA; = g,
A eR™.

viel,
Vi el
Viel,
Vi€ Jp
Vj e J,
Vj € Jr

We seek lower bounds on \*
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Recap From Last Time

Primal-Dual Pair of Problems

Primal (P) Dual (D)
minimize  c'x maxi)\mize b

(A=) ax>b, Viel, A >0, Viel,
(A=) ax<b, Viel, A <0, Vi€ I,
(A=) ax=b;, Viel, \j free, Vi e l,
Xj > 0, Vj (S Jp (XJ *)) )\TAJ' < G, VJ S Jp
x; <0, Vje J, (xi =) )\TAj 2 @, Vje J,
x; free, Vi€ Jr (xi =) MNA =g, Vj e J

variables x € R" variables A\ € R™.

We seek lower bounds on \*

Recall the procedure for deriving the dual:
® a dual decision variable \; for every primal constraint (except variable signs)
e constrain ); to ensure lower bound: \; (2) 0

® for every primal decision x;, add a dual constraint in the form XTA; (@) ¢
(involving the column A; and the objective coefficient ¢; corresponding to x;)
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Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize c'x
X X
(A=) AxZb (1)
X § 0

R1: A dual variable \; for every constraint, i.e., every row aT of A.
)\; free for equality constraints (alx = b;). Otherwise: \; @ 0.

R2: In the dual, add a constraint for every primal variable x;
If x; is free, write this as ATA; = ¢;. Otherwise: ATA; () ¢;.

R3: To determine the signs @ use this rule of thumb:

the dual variable \; is the (sub)gradient of the optimal objective value with respect
to the constraint’s right-hand-side b;

- in a minimization, for a “<" constraint, the dual variable is <0
- in a minimization, for a “>" constraint, the dual variable is > 0
- in a maximization, for a “<" constraint, the dual variable is > 0
- in a maximization, for a “>" constraint, the dual variable is < 0.
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Weak duality

Primal (P) Dual (D)
minimize,  c'x maximizey A'b
(N =) aTx > by, Vi€l A >0, Vi€ I,
()\,’ —)) aTx < b,', Vi e /|e, A <0, Vi e /,e,
(A=) alx=b, Viel, \j free, Vi€ I,
Xj > 0, Vj e Jp, (XJ *>) )\TAJ' < g, MAS Jp7
X <0, Vj€ (=) NA>g, Vi€,
xj free,  Vj € Jp. (xi =) NAi=¢, Vj€Jr.
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Weak duality

Primal (P) Dual (D)
minimize,  c'x maximizey A'b
(N =) aTx > by, Vi€l A >0, Vi€ I,
()\,’ —)) aTx < b,', Vi e /,e, A <0, Vi e /,e,
(A=) alx=b, Viel, \j free, Vi€ I,
x; > 0, V) € Jp, (XJ *>) )\TAJ' < g, Vj e Jp7
X <0, Vj€ (=) NA>g, Vi€,
xj free,  Vj € Jp. (xi =) NAi=¢, Vj€Jr.

Theorem (Weak duality)
If x is feasible for (P) and X is feasible for (D), then \'b < c'x.

Proof. Trivially true from our construction — omitted.
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Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is —oo, then (D) ...
(b) If the optimal objective in (D) is +oo, then (P) ...
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Implications of Weak Duality

Corollary

The following results hold:

(a) If the optimal objective in (P) is —oo, then (D) ... must be infeasible.
(b) If the optimal objective in (D) is +oco, then (P) ... must be infeasible.
(c) If x € P and \ € D, then:

cx—p* <cx—Ab and d* — \h < c'x — \Th.

(d) If x € P, X\ € D, and \'b = c'x, then x optimal for (P) and \ optimal for (D).

J

(c) and (d) provide (sub)optimality certificates, but...
How do we know that the gaps in (c) are not very large?

How do we know that x and A satisfying (d) even exist?
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Strong duality

Theorem (Strong duality)

If (P) has an optimal solution, so does (D), and the optimal values are equal, \* = d*.
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Strong duality

Theorem (Strong duality)
If (P) has an optimal solution, so does (D), and the optimal values are equal, \* = d*.

Proof. Many proofs possible...
® See Bertsimas & Tsitsiklis for a proof involving the simplex algorithm
® We provide a more general proof, in three steps:
1. The separating hyperplane theorem (for convex sets)

2. The Farkas Lemma
3. Strong duality

Need a tiny bit of real analysis background...
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A Few Real Analysis Results

Definition (Closed Set)

A set S C R" is called closed if it contains the limit of any sequence of elements of S.
That is, if x, € S, Vn>1 and x, — x*, then x* € S.
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A Few Real Analysis Results

Definition (Closed Set)
A set S C R" is called closed if it contains the limit of any sequence of elements of S.
That is, if x, € S, Vn>1 and x, — x*, then x* € S.

Theorem
\Every polyhedron is closed.

Proof.
® Consider P = {x € R" | Ax > b} (representation is w.l.0.g.)

® Suppose that {x,},>1 is a sequence with x, € S for every n, and x, — x*.
® For each k, we have x, € P, and therefore, Ax, > b.

® Then, Ax* = A(limg_00 Xk) = limg_ oo Axx > b, so x* belongs to P.
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A Few Real Analysis Results

Definition (Closed Set)
A set S C R" is called closed if it contains the limit of any sequence of elements of S.
That is, if x, € S,Vn>1 and x, — x*, then x* € §.

Theorem
\Every polyhedron is closed.

Is every convex set closed?
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A Few Real Analysis Results

Definition (Closed Set)
A set S C R" is called closed if it contains the limit of any sequence of elements of S.
That is, if x, € S,Vn>1 and x, — x*, then x* € §.

Theorem
\Every polyhedron is closed.

-

Theorem (Weierstrass' Theorem)
If f : R" — R is a continuous function, and if S is a nonempty, closed, and bounded
subset of R", then there exist x,x € S such that f(x) < f(x) < f(X) for all x € S.

i.e., a continuous function achieves its minimum and maximum

7/20



Separating Hyperplane Theorem

The first fundamental result in optimization
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Separating Hyperplane Theorem

Theorem (Simple Separating Hyperplane Theorem)

Consider a point x* and a polyhedron P. If x* ¢ P, then there exists a vector ¢ € R"
such that ¢ # 0 and c"x* < c'y holds for all y € P.

8/20



Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of R" such that SN U = ) and
S is bounded. Then, there exists c € R" and d € R such that S C {x € R": c'x < d}
and U C {x e R": c"x > d}.

{z : Txz=d}
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of R" such that SN U =) and
S is bounded. Then, there exists c € R" and d € R such that S C {x € R": c'x < d}
and U C {x e R": c"x > d}.

Proof.
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of R" such that SN U = () and
S is bounded. Then, there exists c € R" and d € R such that S C {x € R" : c'x < d}
and U C {x eR": c'x > d}.

Proof. Consider ||x — y|| with x € S,y € U
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of R" such that SN U = () and
S is bounded. Then, there exists c € R" and d € R such that S C {x € R" : c'x < d}
and U C {x € R": c"x > d}.

Proof. Argue that the minimum is achieved, at x*, y*
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Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of R" such that SN U = () and
S is bounded. Then, there exists c € R" and d € R such that S C {x € R" : c"x < d}
and U C {x € R": 'x > d}.

I(x*+y*)
2

Proof. Argue that c = y* — x* and d = give strict separating hyperplane
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Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one set bounded

10/20



Separating Hyperplane Theorem - Caveats!
Both conditions in the theorem needed: closed and at least one set bounded

® Left: two convex sets that are not closed but are both bounded:

S=[-1,1] x[-1,0)U{(x,y) : x € [-1,0],y =0}, U=[-1,1]>\S
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Separating Hyperplane Theorem - Caveats!
Both conditions in the theorem needed: closed and at least one set bounded
® Left: two convex sets that are not closed but are both bounded:

S=[-1,1] x[-1,00U{(x,y) : x € [-1,0],y =0}, U=[-1,1]*\S

® Right: two convex sets that are both closed but are unbounded

S={ky):x<0}, U={(xy): x>0,y >1/x}
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Needed For Our Purposes

We proved the first fundamental result in optimization!

Corollary (Needed for our purposes...)

If P is a polyhedron and x* ¢ P, there exists a hyperplane that strictly separates x*
from P, i.e., 3c # 0 such that c'x* < c'x for any x € P.
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Farkas Lemma

Time for the second fundamental result in optimization!
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Farkas Lemma

Theorem (Farkas' Lemma)
For A€ R™*" b e R™, exactly one of the following two alternatives holds:
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(a) There exists some x > 0 such that Ax = b.
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Az
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Farkas Lemma

Theorem (Farkas' Lemma)

For A€ R™*" b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector \ such that \TA > 0 and \b < 0.

Proof. “(a) true implies (b) false.”
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Farkas Lemma

Theorem (Farkas' Lemma)

For A€ R™*" b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector \ such that \TA > 0 and \b < 0.

Proof. “(a) true implies (b) false.”
(a) true means Ix > 0: Ax = b.
(b) true means 3\ : ATA > 0 and \Th < 0.

If (a) and (b) both true, then A\Tb = A\TAx > 0, which is a contradiction.
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Theorem (Farkas' Lemma)

For A€ R™*" b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector \ such that \TA > 0 and \b < 0.

“(a) false implies (b) true.” Want to use the separating hyperplane theorem.

® (a) false implies that b ¢ {y : 3x > 0 such that y = Ax} := S.
® S is a convex and closed set (S is polyhedral)

® Separating Hyperplane Theorem implies 3\ : X'b < Xy, Vy € S
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Theorem (Farkas' Lemma)

For A€ R™*" b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector \ such that \TA > 0 and \b < 0.

“(a) false implies (b) true.” Want to use the separating hyperplane theorem.

(a) false implies that b ¢ {y : Ix > 0 such that y = Ax} := S.
® S is a convex and closed set (S is polyhedral)

® Separating Hyperplane Theorem implies 3\ : X'b < Xy, Vy € S
*0eS=\Nb<0
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Farkas Lemma

Theorem (Farkas' Lemma)

For A € R™*" b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector \ such that \TA > 0 and \b < 0.

“(a) false implies (b) true.” Want to use the separating hyperplane theorem.

(a) false implies that b ¢ {y : Ix > 0 such that y = Ax} := S.
® S is a convex and closed set (S is polyhedral)

® Separating Hyperplane Theorem implies 3\ : X'b < Xy, Vy € S
*0eS=\Nhb<0

Every column A; of A satisfies 0A; € S for every § > 0, so

N
% < NA;, V0 >0

Limit 6 — oo implies NA; > 0. [ |
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Farkas Lemma Implications

Theorem (Farkas' Lemma)

For A€ R™*" b € R™, exactly one of the following two alternatives holds:
(a) There exists some x > 0 such that Ax = b.
(b) There exists some vector \ such that \TA > 0 and \b < 0.

We proved the second fundamental result in optimization!
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Farkas Lemma Implications

Theorem (Farkas' Lemma)

For A€ R™*" b € R™, exactly one of the following two alternatives holds:

(a) There exists some x > 0 such that Ax = b.

(b) There exists some vector \ such that \TA > 0 and \b < 0.

We proved the second fundamental result in optimization!

® Suppose your primal problem (P) was the standard-form LP:

(P) minimize c'x

subject to Ax=0b
x>0

® \What does the Farkas Lemma state about this?

® Farkas Lemma states that either (P) is feasible or ...
... there exists A that proves that the primal is infeasible

® Such a )\ is a certificate of infeasibility!
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Strong Duality

Consider the following primal-dual pair:

(P) minimize c'x (D) maximize \'h
subject to Ax > b subject to A =¢c", A>0.
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Strong Duality

Consider the following primal-dual pair:

(P) minimize c'x (D) maximize \'h
subject to Ax > b subject to A =¢c", A>0.

Theorem (Strong Duality)

If (P) has an optimal solution, so does (D), and their optimal values are equal.
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Strong Duality

(P) minimize c'x (D) maximize \Th
subject to Ax > b subject to A =¢c", A>0.
Proof.

® Assume (P) has optimal solution x*
e Will prove that (D) admits feasible solution A such that ATh = c'x*
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e Will prove that (D) admits feasible solution A such that ATh = c'x*
® Let F = {i| alx* = b;} denote the indices of active constraints at x*

® Show that ¢ can be written as conic combination of constraints {a; : i € F}
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Strong Duality

(P) minimize c'x (D) maximize \Th
subject to Ax > b subject to A =¢c", A>0.

Proof.
® First, we show that for any vector d, the following implication holds:

ad>0,VieF = c'd>0.
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Proof.
® First, we show that for any vector d, the following implication holds:
ad>0,VieF = c'd>0.

® For any such d, we claim that x* + ed € P for small ¢
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c'd > 0 because otherwise c'(x* + ed) < c'x* would contradict x* optimal
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Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:
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Strong Duality

(P) minimize c'x (D) maximize \Th
subject to Ax > b subject to A =¢c", A>0.

Proof.
® First, we show that for any vector d, the following implication holds:
ad>0,VieF = c'd>0.

® For any such d, we claim that x* + ed € P for small ¢
- al(x* +ed) > b;,Vic F forany ¢>0
- alx* > b; Vi ¢ F implies that Je > 0 such that al(x* + ed) > b;, Vi ¢ F

c'd > 0 because otherwise c'(x* + ed) < c'x* would contradict x* optimal
Sofd:ald>0,VieF, d<0
Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:

FHNitier : Ai >0, c= Z)\,.a,.
ieF

Let \; =0for i ¢ F = 3\ feasible for (D)
)\Tb = Z,-e]_- )\,’b,’ = Zie]—' )\,-aTx* = CTX* |
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