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Quiz

What is the dual of this problem?

minimize x; + 2x
subjectto x3 +x =1
2X1 + 2X2 =3.

What does this say about the statement: “In linear optimization, it is possible that
the primal problem is infeasible and the dual problem is also infeasible.”?
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Recap From Last Time & Today’s Plan

Last time...

® Separating Hyperplane Thm = Farkas Lemma =- Strong duality

Agenda for today:

® Two motivating applications
® Implications of strong duality
® Optimality conditions and primal/dual simplex

® Complementary slackness

Global sensitivity & Shadow prices as marginal costs

® One more application: network revenue management
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Polynomially-Sized CVaR Representation

® Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
® CVaR was defined as the average over the k-smallest values (for suitable integer k)

® |f payoffs in the scenarios are vi, va, ..., vy, the key constraint is:

k
Z V[,'] Z b, (1)
i=1

where vy < vy < -+ < vy is the sorted vector of payoffs.
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® Can write one constraint for each vector in {0,1}" with exactly k values of 1.

® How to formulate with a polynomial number of variables and constraints?

® Claim:

k n
_ : o Al
IZ:; Vi) = Xen[y,q]n{z ViXi i ex = k}. (2)

i=1

4/24



Polynomially-Sized CVaR Representation

® Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
® CVaR was defined as the average over the k-smallest values (for suitable integer k)

® |f payoffs in the scenarios are vi, va, ..., vy, the key constraint is:

k
Z V[,'] Z b, (1)
i=1

where vy < vy < -+ < vy is the sorted vector of payoffs.
® Can write one constraint for each vector in {0,1}" with exactly k values of 1.
® How to formulate with a polynomial number of variables and constraints?

® Claim:

k n
_ : o Al
IZ:; Vi) = Xen[y,q]n{z ViXi i ex = k}. (2)

i=1
® By strong duality, the optimal value of LP (2) is the same as:
n;\ax {eT)\+k~t A+ t-e<v, )\20}.
Jt

® So (1) is satisfied if and only: I\, t : €A+ k-t >b, A\+t-e<v, A>0.
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Application in Robust Optimization

® Consider an LP with an uncertain constraint:
ax < b,
where a satisfies a € A and A is polyhedral
® \We seek decisions x that are robustly feasible, i.e.,
aTXSb,VaeA::{aER" : Ca<d}

Infinitely many constraints : “semi-infinite” LP. Any ideas?

3)

(4)
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Application in Robust Optimization

® Consider an LP with an uncertain constraint:
ax < b, 3)
where a satisfies a € A and A is polyhedral
® \We seek decisions x that are robustly feasible, i.e.,
ax<bVacA:={acR": Ca<d} (4)
Infinitely many constraints : “semi-infinite” LP. Any ideas?
® The constraint is equivalent (i.e., same feasible set x) to:

.
< b.
r;qezi‘)\((a x)<b (5)

® By strong duality, this is feasible at x if and only if
mAin{ATd NC=x,A>0}<b

® This is feasible at x if and only 3 A:
Nd <b
NC=x"
A>0.
® This is a polynomially-sized set of constraints in x, A
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Strong Duality

Consider the following primal-dual pair:

(P) minimize c'x (D) maximize \'h
subject to Ax > b subject to A =¢c", A>0.
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Strong Duality

Consider the following primal-dual pair:

(P) minimize c'x (D) maximize \'h
subject to Ax > b subject to A =¢c", A>0.

Theorem (Strong Duality)

If (P) has an optimal solution, so does (D), and their optimal values are equal.
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Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

Dual
Finite Optimum | Unbounded | Infeasible
—+ | Finite Optimum 7 ? ?
£ | Unbounded ? ? ?
o Infeasible ? ? ?
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Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

Dual
Finite Optimum | Unbounded | Infeasible
—+ | Finite Optimum 7 ? ?
£ Unbounded ? ? ?
o Infeasible ? ? ?
Dual
Finite Optimum | Unbounded | Infeasible
< | Finite Optimum Possible Impossible | Impossible
g Unbounded Impossible Impossible Possible
0o. Infeasible Impossible Possible ?
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Strong Duality and Theorems of Alternative

® Strong duality allows you to prove various “theorems of alternative”

Example (Farkas Lemma)

Prove that exactly one of the following is true:
(i) 3x > 0 such that Ax = b,
(ii) 3\ such that ATA > 0 and A"h < 0.
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Strong Duality and Theorems of Alternative

® Strong duality allows you to prove various “theorems of alternative”

Example (Farkas Lemma)

Prove that exactly one of the following is true:
(i) 3x > 0 such that Ax = b,
(ii) 3\ such that ATA > 0 and A"h < 0.

® Set up a (feasibility) problem that mirrors statement (i), and consider its dual.

(P) max 0 (D) min \Th
Ax = b ANA>0
x>0

e (i) holds = p* =d* =0 = A'b >0 forany A\ : ATA > 0, so (ii) cannot hold.

® (i) does not hold = d* = —co = I\ : ATh < 0 and ATA > 0, so (ii) holds.
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Optimality for Standard-Form LPs

(P) min c'x (D) max A'h
Ax=b, x>0 NA< T

® ('P) achieves optimality at a basic feasible solution x:
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(P) min c'x (D) max A'h
Ax=b, x>0 NA< T

® ('P) achieves optimality at a basic feasible solution x:

= If BC {1,...,n} is a basis, the b.f.s. is: x = [xg,0], xg = Ag'b.

- Simplex algorithm: feasibility and optimality for (P) are given by:
Feasibility-(P) :  xg:=Ag'b>0
Optimality-(P) : c— cBAz'A>0

(6a)
(6b)

9/24



Optimality for Standard-Form LPs

(P) min c'x (D) max A'h
Ax=b, x>0 NA< T
® ('P) achieves optimality at a basic feasible solution x:

= If BC {1,...,n} is a basis, the b.f.s. is: x = [xg,0], xg = Ag'b.
- Simplex algorithm: feasibility and optimality for (P) are given by:

Feasibility-(P) : xg = Ag'b>0 (62)
Optimality-(P) : c— cEAz'A>0 (6b)

® (D): same basis B can also be used to determine a dual vector \:

NA =c,VieB = XN=cA;' VieB.

9/24



Optimality for Standard-Form LPs

(P) min c'x (D) max A'h
Ax=b, x>0 NA< T
® ('P) achieves optimality at a basic feasible solution x:

= If BC {1,...,n} is a basis, the b.f.s. is: x = [xg,0], xg = Ag'b.
- Simplex algorithm: feasibility and optimality for (P) are given by:

Feasibility-(P) :  xg:=Ag'b>0
Optimality-(P) : c— cBAz'A>0

® (D): same basis B can also be used to determine a dual vector \:
NA =¢,VieB = XN=cLAz', VieB.
- The dual objective value corresponding to X is: A'h = CTBA,;lb =c'x
= A is feasible in the dual if and only if:
Feasibility-(D): ¢ —ANA>0 & ' —cpAz'A>0

(6a)
(6b)

(7)

9/24



Optimality for Standard-Form LPs

(P) min c'x (D) max A'h
Ax=b, x>0 NA< T
® ('P) achieves optimality at a basic feasible solution x:

= If BC {1,...,n} is a basis, the b.f.s. is: x = [xg,0], xg = Ag'b.
- Simplex algorithm: feasibility and optimality for (P) are given by:

Feasibility-(P) :  xg:=Ag'b>0
Optimality-(P) : c— cBAz'A>0

® (D): same basis B can also be used to determine a dual vector \:
NA =¢,VieB = XN=cLAz', VieB.
- The dual objective value corresponding to X is: A'h = CTBA,;lb =c'x
= A is feasible in the dual if and only if:
Feasibility-(D): ¢ —ANA>0 & ' —cpAz'A>0

Primal optimality < Dual feasibility
Simplex terminates when finding a dual-feasible solution!

(6a)
(6b)

(7)
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Solve (P) or (D)?

(P) min c'x (D) max \'h
Ax=b, x>0 NA< T
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Solve (P) or (D)?

(P) min c'x (D) max \'h
Ax=b, x>0 NA< T
Primal simplex Dual simplex
® maintain a basic feasible solution ® maintain a dual feasible solution
® basis BC {1,...,n} ® stopping criterion: primal feasibility
® stopping criterion: dual feasibility e different from primal simplex: works

with an LP with inequalities

® How to choose (P) or (D)?
® Suppose we have x*, \* and must now solve a larger problem, i.e., with extra

decisions or extra constraints.

® Any preference between primal and dual simplex?
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Solve (P) or (D)?

(P) min c'x

Ax=b, x>0

Primal simplex
® maintain a basic feasible solution
® basis BC {1,...,n}

® stopping criterion: dual feasibility

How to choose (P) or (D)?

decisions or extra constraints.

(D) max \'h
NA< T

Dual simplex
® maintain a dual feasible solution
® stopping criterion: primal feasibility

e different from primal simplex: works
with an LP with inequalities

Suppose we have x*, A* and must now solve a larger problem, i.e., with extra

Any preference between primal and dual simplex?

- With extra decisions x. = primal simplex initialized with [x*, xe = 0].
- With extra constraints Acx = b. = dual simplex initialized with [A\*, p. = 0].

Modern solvers include primal and dual simplex and allow concurrent runs
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Optimality Conditions and Complementary Slackness

Primal-Dual Pair of Problems

(P) minimize c'x
X

Ax

X

variables X

(D) max%\mize b
< <
=0 O 2h
e R” variables A ER™.

Consider x € P, A\ € D (each feasible). How to check if they are optimal?
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X

Ax

X

variables X

(D) max%\mize b
< <
=0 O 2h
e R” variables A ER™.

Consider x € P, A\ € D (each feasible). How to check if they are optimal?

Theorem (Complementary Slackness)

x € P and X € D are optimal solutions for (P) and (D), respectively, if and only if:

/\,-(a,-x—b,-):O,izl,...,m

(N'A;

—g)xj=0,j=1,...,n.

® Follows from primal/dual feasibility and c'x = b'A
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Optimality Conditions and Complementary Slackness

Primal-Dual Pair of Problems

(P) minimize c'x
X

Ax

X

variables X

(D) max%\mize b
< <
=0 O 2h
e R” variables A ER™.

Consider x € P, A\ € D (each feasible). How to check if they are optimal?

Theorem (Complementary Slackness)

x € P and X € D are optimal solutions for (P) and (D), respectively, if and only if:

/\,-(a,-x—b,-):O,izl,...,m

(N'A;

—g)xj=0,j=1,...,n.

® Follows from primal/dual feasibility and c'x = b'A

® |Interesting insight: non-binding constraint = dual variable is zero
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra

Definition
Consider a nonempty polyhedron P = {x € R" : Ax > b}. Then:

as

ay

az
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra

Definition

Consider a nonempty polyhedron P = {x € R" : Ax > b}. Then:
1. C:={d € R" : Ad > 0} is called the recession cone of P.
2. Any d € C with d # 0 is called a ray of P.

3. Any ray d that satisfies ald = 0 for n — 1 linearly independent a; is called an
extreme ray of P.

as

az
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Representation of Polyhedra

Theorem (Resolution Theorem)

Let P = {x € R" : Ax > b} be a non-empty polyhedron, x*,x?, ..., x* be its
extreme points, and w!,w?, ..., w" be its extreme rays. Then,
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Representation of Polyhedra

Theorem (Resolution Theorem)

Let P = {x € R" : Ax > b} be a non-empty polyhedron, x*,x?, ..., x* be its
extreme points, and w!,w?, ..., w" be its extreme rays. Then,

P = conv({x', ... ,Xk}) + cone({w',...,w'})

k r
= {Zu;x"+29jwf L u>0, fu=1, 920}.
i=1 j=1

wl

as

ai w?
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Representation of Polyhedra

Theorem (Resolution Theorem)

Let P = {x € R" : Ax > b} be a non-empty polyhedron, x*,x?, ..., x* be its
extreme points, and w!,w?, ..., w" be its extreme rays. Then,

P = conv({x', ... ,Xk}) + cone({w',...,w'})

k r
= {Zu;x"+29jwf L u>0, fu=1, 920}.
i=1 j=1

wl

as

3:2

Note: It is not “easy” (i.e., poly-time) to switch between these representations
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Dual Variables As Marginal Costs

(P) min c'x (D) max \'b
Ax=b, x>0 NA< T
® Solved the LP and obtained x* and \*

® Want to show that \* is the gradient of the optimal cost with respect to b
“almost everywhere”

® Related to sensitivity analysis
How do the optimal value and solution depend on problem data A, b,c?
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Sensitivity: A Simple Example

.. Y
Maximize Y L
Subject to: y < oy Y <2X /(s X+1
Y<X+1
X>0,Y>0
e
\ T X




Sensitivity: A Simple Example

Maximize Y .

Subject to: y < oy

Y <X+1
X>0,Y>0

X<a

For the last constraint X <a,
what is the shadow price

i.e., rate of change in the
optimal value when we change 0
the constraint r.h.s. a?
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Region T
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Sensitivity: A Simple Example

Maximize Y

Subject to: y < oy

Y<X+1
X>0,Y>0

X<a

Ifa>2:

Y<2X

Feasible
Region

Y <X+1

!
1



Sensitivity: A Simple Example

. Y
Maximize Y >
Subject to: y < oy Y <2X /(s X+1
Y <X+1
X>0,Y>0 -
X<a
Ifa>2: 17
* Shadow price =0 F::gsii::le
! T X

0 1 2 a



Sensitivity: A Simple Example

Maximize

Y

Subject to: y < oy

Y <X+1
X>0,Y>0

X<a

Note how the objective
depends on a overall

Y

|

Y<2X




Global Dependency On b, ¢

(P) min c'x (D) max \'b
Ax=b, x>0 MNA< T

® What to show that the optimal value (when finite) as a function of b is

® What to show that the optimal value (when finite) as a function of c is
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Global Dependency On b, ¢

(P) min c'x (D) max \'b
Ax=b, x>0 MNA< T

® What to show that the optimal value (when finite) as a function of b is
piecewise linear and convex

® What to show that the optimal value (when finite) as a function of c is
piecewise linear and concave
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Convex and Concave Functions

Definition
f: X CR" — R is convex if X is a convex set and
F(Ax+ (1= N)y) < AM(x)+ (1= N)f(y), Vx,y €X and X € [0,1]. (8)

A function is concave if —f is convex.

16 /24



Convex and Concave Functions

Definition
f: X CR" — R is convex if X is a convex set and
F(Ax+ (1= N)y) < AM(x)+ (1= N)f(y), Vx,y €X and X € [0,1]. (8)

A function is concave if —f is convex.

Equivalent definition in terms of epigraph:
epi(f) ={(x,t) e X xR : t > f(x)} 9)

f is convex if and only if epi(f) is a convex set.
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Global Dependency On b

® Let P(b) :={x € R": Ax = b,x > 0} denote the feasible set of the primal
e Let S:={becR™: P(b) # 0} : right-hand-side values that yield a feasible primal
® Let p*(b) denote the optimal objective; assume p*(b) > —oo (i.e., dual is feasible)
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o If A, A2, ..., \" are the extreme points of D, then: p*(b) = max;—;
b
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Global Dependency On b

® Let P(b) :={x € R": Ax = b,x > 0} denote the feasible set of the primal
e Let S:={becR™: P(b) # 0} : right-hand-side values that yield a feasible primal
® Let p*(b) denote the optimal objective; assume p*(b) > —oo (i.e., dual is feasible)

® To argue: p*: S — R is a piecewise linear and convex function of b

Proof. Is S a convex set?

® Strong duality: p*(b) = min{c'x: Ax = b, x > 0} = max{\'b : NA< '}

o If A, A2, ..., \" are the extreme points of D, then: p*(b) = max;—;

pTA4

;BN VbheS

,,,,,

How to prove p*(b) convex?

epi(p*) = Niz1,.....epi(b'\)

is the intersection of convex
sets, so it is convex.
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Global Dependency On b - Implications

p*(b) = min{ch Ax = b, x > O} = max{)\Tb S NA< CT}

A%

e At any b where p* is differentiable, \* is the gradient of p*
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p*(b) = min{c'x: Ax = b, x >0} =max{\h : NA < c}

pTA%

e At any b where p* is differentiable, \* is the gradient of p*
® \* acts as a marginal cost or shadow price for the i-th constraint r.h.s. b;

e )\, allows estimating exact change in p* in a range around b;

18/24



Global Dependency On b - Implications

p*(b) = min{c'x: Ax = b, x >0} =max{\h : NA < c}

pTA%

At any b where p* is differentiable, A* is the gradient of p*

® \* acts as a marginal cost or shadow price for the i-th constraint r.h.s. b;

)\; allows estimating exact change in p* in a range around b;

Modern solvers give direct access to A} and the range
Gurobipy: for constraint ¢, the attribute c.Pi is A/ and the range is from c.SARHSLow to c.SARHSUp
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Global Dependency On b - Implications

p*(b) = min{c'x : Ax = b, x >0} = max{A\'b : N'A< "}

BT

® At b where p* is not differentiable, several A\’ are optimal

e All such )\’ are valid subgradients of p*

Definition (Subgradient.)
f:S CR" — R convex function. A vector g € R" is a subgradient of f at x € S if
f(x) > f(X)+g(x—x), VxeS8.
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Global Dependency On ¢

® Let d*(c) denote optimal value as function of ¢; assume d*(c) > —o0

® To argue: d*(c) is a piecewise linear and concave function of ¢
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Global Dependency On ¢

® Let d*(c) denote optimal value as function of ¢; assume d*(c) > —o0

® To argue: d*(c) is a piecewise linear and concave function of ¢

® d*(c) =min{c'x: Ax=b, x >0} =max{\h : NA< ("}

® Can apply same arguments because d* is the optimal value of the dual

® d*(c) is a concave function of ¢ on the set T := {c: d*(c) > —o0}

® |f for some ¢ the LP has a unique optimal solution x*, then d* is linear in the

vicinity of ¢ and its gradient is x*.

® The optimal primal solution x* is a shadow price for the dual constraints
® x* remains optimal for a range of change in each objective coefficient ¢;

® Modern solvers also allow obtaining the range directly
Gurobipy: attributes SAObjLow and SAObjUp for each decision variable
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Signs of Dual Variables Revisited

There is a direct connection between:
- the optimization problem (max/min)
- the constraint type (<, >)
- the signs of the shadow prices

® Given two of these, can figure out the third one!

® What is the sign of the shadow price for a ...
< constraint in a minimization problem ?
> constraint in a minimization problem ?
< constraint in a maximization problem ?
< constraint in a maximization problem ?
[ ]

What is the dependency of the optimal objective on the r.h.s. of a ...
constraint in a minimization problem ?
constraint in a minimization problem ?
constraint in a maximization problem ?

ININ IV IA

constraint in a maximization problem ?
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Signs of Dual Variables Revisited

® There is a direct connection between:
- the optimization problem (max/min)
- the constraint type (<, >)
= the signs of the shadow prices

® Given two of these, can figure out the third one!

min, > b min, < b max, < b max, > b
dual >0 dual <0 dual >0 dual <0
F(b) convex F(b) convex F(b) concave F(b) concave
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Real-World Hub and Spoke Airline Network

Train Routes
—— Cogesnare/Mieseepis Partns Servia
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Airline Revenue Management (RM)

* Strategic RM
* Determine several price points for various itineraries
* “Product” or “itinerary”: origin, destination, day, time, various restrictions, ...
* E.g., JFK—ORD —SFO, 10:30am on Oct 12, 2024, Economy class Y fare

* Typically done by (or in conjunction with) marketing department
¢ Market segmentation; competition

* Tactical RM (“yield management”) decides booking limits
* A booking limit determines how many seats to reserve for each “product”
* RM not based on setting prices, but rather changing availability of fare classes
* Legacy due to original IT systems used (e.g., SABRE)



Airline RM

Hub: Chicago ORD

Two planes -6( -6(

LAX

Westbound flights for
some day in the future
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Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

* Aircraft 2: -6(

* JFK-ORD in the morning
* ORD-LAX in the afternoon

Itineraries

Origin- Q_Fare Y_Fare
Destination
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Aircraft 1

Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

* Aircraft 2: -((

* JFK-ORD in the morning
* ORD-LAX in the afternoon

Itineraries

Origin- Q_Fare Y_Fare Q_Demand Y_Demand
Destination

BOS_ORD $200 $220 25 20
BOS_SFO $320 $420 55 40
BOS_LAX $400 $490 65 25
JFK_ORD $250 $290 24 16
JFK_SFO $410 $540 65 50
JFK_LAX $450 $550 40 35
ORD_SFO $210 $230 21 50

ORD_LAX $260 $300 25 14




Aircraft 1

Airline RM

Flight segments (legs)

* Aircraft 1: '6(

* BOS-ORD in the morning
* ORD-SFO in the afternoon

* Aircraft 2: -6(

* JFK-ORD in the morning
* ORD-LAX in the afternoon

Resources needed

BOS_ORD BOS_SFO  BOS_LAX JFK_ORD  JFK_SFO  JFK_LAX  ORD_SFO ORD_LAX

Flight leg

BOS_ORD_Leg 1 1 1 0 0 0 0 0
JFK_ ORD_Leg O 0 0 1 1 1 0 0
ORD_SFO_Leg 0 1 0 0 1 0 1 0

ORD_LAX Leg 0 0 1 0 0 1 0 1




Network Revenue Management
® Airline revenue management ( “yield management”): setting booking limits to control
how many tickets of each type are sold
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— each itinerary refers to an origin-destination-fare class combination

— each itinerary i has a price r; that is fixed

- for each itinerary, the airline estimates the demand d;

- each itinerary requires a seat on several flight legs operated by the airline
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Network Revenue Management
® Airline revenue management ( “yield management”): setting booking limits to control
how many tickets of each type are sold

Airline is planning operations for a specific day in the future

® Airline operates a set F of direct flights in its (hub-and-spoke) network

For each flight leg f € F, we know the capacity of the aircraft cf

The airline can offer a large number of “products” (i.e., itineraries) /:

— each itinerary refers to an origin-destination-fare class combination

— each itinerary i has a price r; that is fixed

- for each itinerary, the airline estimates the demand d;

- each itinerary requires a seat on several flight legs operated by the airline

® Requirements: A € {0,1} with Ar; = 1 < itinerary i needs seat on flight leg f

Itinerary 1 Itinerary 2 ... ltinerary |/|
Flight leg 1 1 0 e 1
Resource matrix A : Flight leg 2 0 1 . 0
Flight leg |F| 1 1 o 0

® Goal: decide how many itineraries of each type to sell to maximize revenue
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Network Revenue Management

® | et x; denote the number of itineraries of type i that the airline plans to sell, and let x be
the vector with components x;
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Network Revenue Management

® | et x; denote the number of itineraries of type i that the airline plans to sell, and let x be
the vector with components x;

® The problem can be formulated as follows:

max {rTx tAx < ¢, x< d}
xER!

® Ax < c capture the constraints on plane capacity

® x < d states that the planned sales cannot exceed the demand

® |n practice, an approach that includes all possible itineraries encounters challenges

- gargantuan LP
— poor demand estimates for some itineraries

® To sell “exotic itineraries”, use the shadow prices for the capacity constraints

- A e RF : dual variables for capacity constraints Ax < ¢

- At optimality, pr is marginal revenue lost if airline loses one seat on flight 7

- For an “exotic” itinerary that requires seats on several flights f € E, the minimum
price to charge is given by the sum of the shadow prices, > . . pr

® Bid-price heuristic in network revenue management
® Broader principle of how to price “products” through resource usage/cost
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