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Quiz

What is the dual of this problem?

minimize x1 + 2x2

subject to x1 + x2 = 1

2x1 + 2x2 = 3.

What does this say about the statement: “In linear optimization, it is possible that

the primal problem is infeasible and the dual problem is also infeasible.”?
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Recap From Last Time & Today’s Plan

Last time...

• Separating Hyperplane Thm ⇒ Farkas Lemma ⇒ Strong duality

Agenda for today:

• Two motivating applications

• Implications of strong duality

• Optimality conditions and primal/dual simplex

• Complementary slackness

• Global sensitivity & Shadow prices as marginal costs

• One more application: network revenue management
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Polynomially-Sized CVaR Representation
• Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit

• CVaR was defined as the average over the k-smallest values (for suitable integer k)

• If payoffs in the scenarios are v1, v2, . . . , vn, the key constraint is:

k∑
i=1

v[i ] ≥ b, (1)

where v[1] ≤ v[2] ≤ · · · ≤ v[n] is the sorted vector of payoffs.

• Can write one constraint for each vector in {0, 1}n with exactly k values of 1.

• How to formulate with a polynomial number of variables and constraints?

• Claim:

k∑
i=1

v[i ] = min
x∈[0,1]n

{ n∑
i=1

vixi : e
Tx = k

}
. (2)

• By strong duality, the optimal value of LP (2) is the same as:

max
λ,t

{
eTλ+ k · t : λ+ t · e ≤ v , λ ≥ 0

}
.

• So (1) is satisfied if and only: ∃λ, t : eTλ+ k · t ≥ b, λ+ t · e ≤ v , λ ≥ 0.
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Application in Robust Optimization

• Consider an LP with an uncertain constraint:

aTx ≤ b, (3)

where a satisfies a ∈ A and A is polyhedral

• We seek decisions x that are robustly feasible, i.e.,

aTx ≤ b, ∀a ∈ A := {a ∈ Rn : Ca ≤ d} (4)

Infinitely many constraints : “semi-infinite” LP. Any ideas?

• The constraint is equivalent (i.e., same feasible set x) to:

max
a∈A

(aTx) ≤ b. (5)

• By strong duality, this is feasible at x if and only if

min
λ

{λTd : λTC = xT, λ ≥ 0} ≤ b

• This is feasible at x if and only ∃λ:

λTd ≤ b

λTC = xT

λ ≥ 0.
• This is a polynomially-sized set of constraints in x , λ
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Strong Duality

Consider the following primal-dual pair:

(P) minimize cTx

subject to Ax ≥ b

(D) maximize λTb

subject to λTA = cT, λ ≥ 0.

Theorem (Strong Duality)

If (P) has an optimal solution, so does (D), and their optimal values are equal.
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Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

Dual

Finite Optimum Unbounded Infeasible

P
ri
m
a
l Finite Optimum ? ? ?

Unbounded ? ? ?

Infeasible ? ? ?

Dual

Finite Optimum Unbounded Infeasible

P
ri
m
a
l Finite Optimum Possible Impossible Impossible

Unbounded Impossible Impossible Possible

Infeasible Impossible Possible ?
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Strong Duality and Theorems of Alternative

• Strong duality allows you to prove various “theorems of alternative”

Example (Farkas Lemma)

Prove that exactly one of the following is true:

(i) ∃x ≥ 0 such that Ax = b,

(ii) ∃λ such that λTA ≥ 0 and λTb < 0.

• Set up a (feasibility) problem that mirrors statement (i), and consider its dual.

(P) max 0

Ax = b

x ≥ 0

(D) min λTb

λTA ≥ 0

• (i) holds ⇒ p⋆ = d⋆ = 0 ⇒ λTb ≥ 0 for any λ : λTA ≥ 0, so (ii) cannot hold.

• (i) does not hold ⇒ d⋆ = −∞ ⇒ ∃λ : λTb < 0 and λTA ≥ 0, so (ii) holds.
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Optimality for Standard-Form LPs

(P) min cTx

Ax = b, x ≥ 0

(D) max λTb

λTA ≤ cT

• (P) achieves optimality at a basic feasible solution x :

– If B ⊆ {1, . . . , n} is a basis, the b.f.s. is: x = [xB , 0], xB = A−1
B b.

– Simplex algorithm: feasibility and optimality for (P) are given by:

Feasibility-(P) : xB := A−1
B b ≥ 0 (6a)

Optimality-(P) : cT− cTBA
−1
B A ≥ 0 (6b)

• (D): same basis B can also be used to determine a dual vector λ:

λTAi = ci , ∀ i ∈ B ⇒ λT= cTBA
−1
B , ∀ i ∈ B.

– The dual objective value corresponding to λ is: λTb = cTBA
−1
B b = cTx

– λ is feasible in the dual if and only if:

Feasibility-(D) : cT− λTA ≥ 0 ⇔ cT− cTBA
−1
B A ≥ 0 (7)

Primal optimality ⇔ Dual feasibility

Simplex terminates when finding a dual-feasible solution!
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Solve (P) or (D)?

(P) min cTx

Ax = b, x ≥ 0

(D) max λTb

λTA ≤ cT

Primal simplex

• maintain a basic feasible solution

• basis B ⊂ {1, . . . , n}
• stopping criterion: dual feasibility

Dual simplex

• maintain a dual feasible solution

• stopping criterion: primal feasibility

• different from primal simplex: works

with an LP with inequalities

• How to choose (P) or (D)?

• Suppose we have x⋆, λ⋆ and must now solve a larger problem, i.e., with extra

decisions or extra constraints.

• Any preference between primal and dual simplex?
– With extra decisions xe ⇒ primal simplex initialized with [x⋆, xe = 0].
– With extra constraints Aex = be ⇒ dual simplex initialized with [λ⋆, pe = 0].

• Modern solvers include primal and dual simplex and allow concurrent runs
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Optimality Conditions and Complementary Slackness

Primal-Dual Pair of Problems

(P) minimize
x

cTx

Ax ⋚ b

x ⋚ 0

variables x ∈ Rn

(D) maximize
λ

λTb

λ ⋚ 0

λTA ⋚ cT

variables λ ∈ Rm.

Consider x ∈ P, λ ∈ D (each feasible). How to check if they are optimal?

Theorem (Complementary Slackness)

x ∈ P and λ ∈ D are optimal solutions for (P) and (D), respectively, if and only if:

λi (a
T
ix − bi ) = 0, i = 1, . . . ,m

(λTAj − cj)xj = 0, j = 1, . . . , n.

• Follows from primal/dual feasibility and cTx = bTλ

• Interesting insight: non-binding constraint ⇒ dual variable is zero
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Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra

Definition
Consider a nonempty polyhedron P = {x ∈ Rn : Ax ≥ b}. Then:

1. C := {d ∈ Rn : Ad ≥ 0} is called the recession cone of P.

2. Any d ∈ C with d ̸= 0 is called a ray of P.

3. Any ray d that satisfies aTid = 0 for n − 1 linearly independent ai is called an

extreme ray of P.
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Representation of Polyhedra

Theorem (Resolution Theorem)

Let P = {x ∈ Rn : Ax ≥ b} be a non-empty polyhedron, x1, x2, . . . , xk be its

extreme points, and w1,w2, . . . ,w r be its extreme rays. Then,

P = conv
(
{x1, . . . , xk}

)
+ cone

(
{w1, . . . ,w r}

)
=

{ k∑
i=1

µix
i +

r∑
j=1

θjw
j : µ ≥ 0, eTµ = 1, θ ≥ 0

}
.

Note: It is not “easy” (i.e., poly-time) to switch between these representations
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Dual Variables As Marginal Costs

(P) min cTx

Ax = b, x ≥ 0

(D) max λTb

λTA ≤ cT

• Solved the LP and obtained x⋆ and λ⋆

• Want to show that λ⋆ is the gradient of the optimal cost with respect to b

“almost everywhere”

• Related to sensitivity analysis

How do the optimal value and solution depend on problem data A, b, c?

14 / 24
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Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  Y £ 2X

For the last constraint X £ a, 
what is the shadow price
i.e., rate of change in the 

optimal value when we change 
the constraint r.h.s. a?

1

1 2

Sensitivity: A Simple Example



X
0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

1If a < 0 : 

2a

Sensitivity: A Simple Example



X
0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

1If a < 0 : 
• Infeasible!

2a

Sensitivity: A Simple Example



Feasible 
Region X

0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

a

1If 0 < a < 1 : 

2

Sensitivity: A Simple Example



Feasible 
Region X

0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

a

1If 0 < a < 1 : 
• Shadow price = 2

2

Sensitivity: A Simple Example



Feasible 
Region X

0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

a

1If 0 < a < 1 : 
• Shadow price = 2

2

Sensitivity: A Simple Example



X
0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

a

1If 1 < a < 2 : 
Feasible 
Region

2

Sensitivity: A Simple Example



X
0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

a

1If 1 < a < 2 : 
• Shadow price = 1 Feasible 

Region

2

Sensitivity: A Simple Example



X
0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

a

1If a > 2 : 
Feasible 
Region

2

Sensitivity: A Simple Example



X
0

Y

Subject to: 

Maximize     Y

Y £ 2X
Y £ X+1  
X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  

1

Y £ 2X

a

1If a > 2 : 
• Shadow price = 0 Feasible 

Region

2

Sensitivity: A Simple Example



X
0

Y

Subject to: 

Maximize     Y

Y £ 2X
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X ³ 0, Y ³ 0
X £ 2
X £ a

Y £ X+1  
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Y £ 2X
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Note how the objective 
depends on a overall
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Sensitivity: A Simple Example



Global Dependency On b, c

(P) min cTx

Ax = b, x ≥ 0

(D) max λTb

λTA ≤ cT

• What to show that the optimal value (when finite) as a function of b is

piecewise linear and convex

• What to show that the optimal value (when finite) as a function of c is

piecewise linear and concave
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Convex and Concave Functions

Definition
f : X ⊆ Rn → R is convex if X is a convex set and

f
(
λx + (1− λ)y

)
≤ λf (x) + (1− λ)f (y), ∀x , y ∈ X and λ ∈ [0, 1]. (8)

A function is concave if −f is convex.

Equivalent definition in terms of epigraph:

epi(f ) = {(x , t) ∈ X × R : t ≥ f (x)} (9)

f is convex if and only if epi(f ) is a convex set.
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Global Dependency On b

• Let P(b) := {x ∈ Rn : Ax = b, x ≥ 0} denote the feasible set of the primal

• Let S := {b ∈ Rm : P(b) ̸= ∅} : right-hand-side values that yield a feasible primal

• Let p⋆(b) denote the optimal objective; assume p⋆(b) > −∞ (i.e., dual is feasible)

• To argue: p⋆ : S → R is a piecewise linear and convex function of b

Proof. Is S a convex set?

• Strong duality: p⋆(b) = min
{
cTx : Ax = b, x ≥ 0

}
= max

{
λTb : λTA ≤ cT

}
• If λ1, λ2, . . . , λr are the extreme points of D, then: p⋆(b) = maxi=1,...,r b

Tλi , ∀ b ∈ S

How to prove p⋆(b) convex?

epi(p⋆) = ∩i=1,...,repi(b
Tλi )

is the intersection of convex

sets, so it is convex.
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Global Dependency On b - Implications

p⋆(b) = min
{
cTx : Ax = b, x ≥ 0

}
= max

{
λTb : λTA ≤ cT

}

• At any b̄ where p⋆ is differentiable, λ⋆ is the gradient of p⋆

• λ⋆
i acts as a marginal cost or shadow price for the i-th constraint r.h.s. bi

• λi allows estimating exact change in p⋆ in a range around b̄i

• Modern solvers give direct access to λ⋆
i and the range

Gurobipy: for constraint c, the attribute c.Pi is λ⋆
i and the range is from c.SARHSLow to c.SARHSUp
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Global Dependency On b - Implications

p⋆(b) = min
{
cTx : Ax = b, x ≥ 0

}
= max

{
λTb : λTA ≤ cT

}

• At b where p⋆ is not differentiable, several λi are optimal

• All such λi are valid subgradients of p⋆

Definition (Subgradient.)
f : S ⊆ Rn → R convex function. A vector g ∈ Rn is a subgradient of f at x̄ ∈ S if

f (x) ≥ f (x̄) + gT(x − x̄), ∀x ∈ S .
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Global Dependency On c

• Let d⋆(c) denote optimal value as function of c; assume d⋆(c) > −∞

• To argue: d⋆(c) is a piecewise linear and concave function of c

• d⋆(c) = min
{
cTx : Ax = b, x ≥ 0

}
= max

{
λTb : λTA ≤ cT

}
• Can apply same arguments because d⋆ is the optimal value of the dual

• d⋆(c) is a concave function of c on the set T := {c : d⋆(c) > −∞}

• If for some c the LP has a unique optimal solution x⋆, then d⋆ is linear in the

vicinity of c and its gradient is x⋆.

• The optimal primal solution x⋆ is a shadow price for the dual constraints

• x⋆ remains optimal for a range of change in each objective coefficient cj

• Modern solvers also allow obtaining the range directly

Gurobipy: attributes SAObjLow and SAObjUp for each decision variable
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Signs of Dual Variables Revisited

• There is a direct connection between:
– the optimization problem (max/min)
– the constraint type (≤, ≥)
– the signs of the shadow prices

• Given two of these, can figure out the third one!

• What is the sign of the shadow price for a ...

≤ constraint in a minimization problem ?

≥ constraint in a minimization problem ?

≤ constraint in a maximization problem ?

≤ constraint in a maximization problem ?

• What is the dependency of the optimal objective on the r.h.s. of a ...

≤ constraint in a minimization problem ?

≥ constraint in a minimization problem ?

≤ constraint in a maximization problem ?

≤ constraint in a maximization problem ?
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– the optimization problem (max/min)
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Real-World Hub and Spoke Airline Network

Source: www.united.com 



Airline Revenue Management (RM)

• Strategic RM
• Determine several price points for various itineraries
• “Product” or “itinerary”: origin, destination, day, time, various restrictions, …

• E.g., JFK – ORD – SFO, 10:30am on Oct 12, 2024, Economy class Y fare
• Typically done by (or in conjunction with) marketing department

• Market segmentation; competition

• Tactical RM (“yield management”) decides booking limits
• A booking limit determines how many seats to reserve for each “product”
• RM not based on setting prices, but rather changing availability of fare classes
• Legacy due to original IT systems used (e.g., SABRE)



Airline RM SFO

ORD

BOS

JFKLAX

Hub: Chicago ORD

Two planes

Westbound flights for 
some day in the future
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Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

SFO

ORD

BOS

JFKLAX

Aircraft 1Aircraft 1

Flight segments (legs)



Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Aircraft 1Aircraft 1

Aircraft 2Aircraft 2

Flight segments (legs)



Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Origin-
Destination

Q_Fare Y_Fare

BOS_ORD $200 $220 
BOS_SFO $320 $420 
BOS_LAX $400 $490 
JFK_ORD $250 $290 
JFK_SFO $410 $540 
JFK_LAX $450 $550 
ORD_SFO $210 $230 
ORD_LAX $260 $300 

Itineraries
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Flight segments (legs)



Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Origin-
Destination

Q_Fare Y_Fare Q_Demand Y_Demand

BOS_ORD $200 $220 25 20
BOS_SFO $320 $420 55 40
BOS_LAX $400 $490 65 25
JFK_ORD $250 $290 24 16
JFK_SFO $410 $540 65 50
JFK_LAX $450 $550 40 35
ORD_SFO $210 $230 21 50
ORD_LAX $260 $300 25 14

Itineraries

Aircraft 1Aircraft 1

Aircraft 2Aircraft 2

Flight segments (legs)



Airline RM

• Aircraft 1: 
• BOS-ORD in the morning
• ORD-SFO in the afternoon

• Aircraft 2:
• JFK-ORD in the morning
• ORD-LAX in the afternoon

SFO

ORD

BOS

JFKLAX

Resources needed

Aircraft 1Aircraft 1

Aircraft 2Aircraft 2

Flight segments (legs)

Flight leg

BOS_ORD BOS_SFO BOS_LAX JFK_ORD JFK_SFO JFK_LAX ORD_SFO ORD_LAX

BOS_ORD_Leg 1 1 1 0 0 0 0 0

JFK_ORD_Leg 0 0 0 1 1 1 0 0

ORD_SFO_Leg 0 1 0 0 1 0 1 0

ORD_LAX_Leg 0 0 1 0 0 1 0 1



Network Revenue Management
• Airline revenue management (“yield management”): setting booking limits to control

how many tickets of each type are sold

• Airline is planning operations for a specific day in the future

• Airline operates a set F of direct flights in its (hub-and-spoke) network

• For each flight leg f ∈ F , we know the capacity of the aircraft cf

• The airline can offer a large number of “products” (i.e., itineraries) I :

– each itinerary refers to an origin-destination-fare class combination
– each itinerary i has a price ri that is fixed
– for each itinerary, the airline estimates the demand di
– each itinerary requires a seat on several flight legs operated by the airline

• Requirements: A ∈ {0, 1}F ·I with Af ,i = 1 ⇔ itinerary i needs seat on flight leg f

Resource matrix A :

Itinerary 1 Itinerary 2 . . . Itinerary |I |
Flight leg 1 1 0 . . . 1

Flight leg 2 0 1 . . . 0
...

...
...

...
...

Flight leg |F | 1 1 . . . 0

• Goal: decide how many itineraries of each type to sell to maximize revenue
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Network Revenue Management

• Let xi denote the number of itineraries of type i that the airline plans to sell, and let x be

the vector with components xi

• The problem can be formulated as follows:

max
x∈RI

{
rTx : Ax ≤ c, x ≤ d

}
• Ax ≤ c capture the constraints on plane capacity

• x ≤ d states that the planned sales cannot exceed the demand

• In practice, an approach that includes all possible itineraries encounters challenges

– gargantuan LP
– poor demand estimates for some itineraries

• To sell “exotic itineraries”, use the shadow prices for the capacity constraints

– λ ∈ RF : dual variables for capacity constraints Ax ≤ c
– At optimality, pf is marginal revenue lost if airline loses one seat on flight f
– For an “exotic” itinerary that requires seats on several flights f ∈ E , the minimum

price to charge is given by the sum of the shadow prices,
∑

f∈E pf

• Bid-price heuristic in network revenue management

• Broader principle of how to price “products” through resource usage/cost
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