Duality

Lecture 6

October 8, 2025

Quiz

What is the dual of this problem?

minimize
$$x_1 + 2x_2$$

subject to $x_1 + x_2 = 1$
 $2x_1 + 2x_2 = 3$.

What does this say about the statement: "In linear optimization, it is possible that the primal problem is infeasible and the dual problem is also infeasible."?

Recap From Last Time & Today's Plan

Last time...

 $\bullet \ \, \text{Separating Hyperplane Thm} \, \Rightarrow \, \text{Farkas Lemma} \, \Rightarrow \, \text{Strong duality}$

Agenda for today:

- Two motivating applications
- Implications of strong duality
- Optimality conditions and primal/dual simplex
- Complementary slackness
- Global sensitivity & Shadow prices as marginal costs
- One more application: network revenue management

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \ldots, v_n , the key constraint is:

$$\sum_{i=1}^k v_{[i]} \ge b,\tag{1}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \ldots, v_n , the key constraint is:

$$\sum_{i=1}^k v_{[i]} \ge b,\tag{1}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

- Can write one constraint for each vector in $\{0,1\}^n$ with exactly k values of 1.
- How to formulate with a polynomial number of variables and constraints?

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \ldots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{1}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

- Can write one constraint for each vector in $\{0,1\}^n$ with exactly k values of 1.
- How to formulate with a polynomial number of variables and constraints?
- Claim:

$$\sum_{i=1}^{k} v_{[i]} = \min_{x \in [0,1]^n} \left\{ \sum_{i=1}^{n} v_i x_i : e^{\mathsf{T}} x = k \right\}.$$
 (2)

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \ldots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{1}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

- Can write one constraint for each vector in $\{0,1\}^n$ with exactly k values of 1.
- How to formulate with a polynomial number of variables and constraints?
- Claim:

$$\sum_{i=1}^{k} v_{[i]} = \min_{x \in [0,1]^n} \left\{ \sum_{i=1}^{n} v_i x_i : e^{\mathsf{T}} x = k \right\}.$$
 (2)

• By strong duality, the optimal value of LP (2) is the same as:

$$\max_{\lambda,t} \Big\{ e^{\mathsf{T}} \lambda + k \cdot t \, : \, \lambda + t \cdot e \leq v, \, \, \lambda \geq 0 \Big\}.$$

• So (1) is satisfied if and only: $\exists \lambda, t : e^{\mathsf{T}} \lambda + k \cdot t \geq b, \ \lambda + t \cdot e \leq v, \ \lambda \geq 0.$

• Consider an LP with an uncertain constraint:

$$a^{\mathsf{T}} x \le b,$$
 (3)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}}x \leq b, \, \forall a \in \mathcal{A} := \{a \in \mathbb{R}^n : Ca \leq d\}$$
 (4)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

• Consider an LP with an uncertain constraint:

$$a^{\mathsf{T}} x \leq b,$$
 (3)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall a \in \mathcal{A} := \{ a \in \mathbb{R}^n : Ca \leq d \}$$
 (4)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

• The constraint is equivalent (i.e., same feasible set x) to:

$$\max_{a \in \mathcal{A}} (a^{\mathsf{T}} x) \le b. \tag{5}$$

• Consider an LP with an uncertain constraint:

$$a^{\mathsf{T}} x \leq b,$$
 (3)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall a \in \mathcal{A} := \{ a \in \mathbb{R}^n : Ca \leq d \}$$
 (4)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

• The constraint is equivalent (i.e., same feasible set x) to:

$$\max_{a \in \mathcal{A}} (a^{\mathsf{T}} x) \le b. \tag{5}$$

By strong duality, this is feasible at x if and only if

$$\min_{\lambda} \{ \lambda^{\mathsf{T}} d : \lambda^{\mathsf{T}} C = x^{\mathsf{T}}, \lambda \ge 0 \} \le b$$

Consider an LP with an uncertain constraint:

$$a^{\mathsf{T}} x \leq b,$$
 (3)

where a satisfies $a \in A$ and A is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall a \in \mathcal{A} := \{ a \in \mathbb{R}^n : Ca \leq d \}$$
 (4)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

• The constraint is equivalent (i.e., same feasible set x) to:

$$\max_{a \in \mathcal{A}} (a^{\mathsf{T}} x) \le b. \tag{5}$$

By strong duality, this is feasible at x if and only if

$$\min_{\lambda} \{ \lambda^{\mathsf{T}} d : \lambda^{\mathsf{T}} C = x^{\mathsf{T}}, \lambda \ge 0 \} \le b$$

• This is feasible at x if and only $\exists \lambda$:

$$\lambda^{\mathsf{T}} d \le b$$
$$\lambda^{\mathsf{T}} C = x^{\mathsf{T}}$$
$$\lambda \ge 0.$$

Consider an LP with an uncertain constraint:

$$a^{\mathsf{T}} x \leq b,$$
 (3)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}} x \leq b, \, \forall a \in \mathcal{A} := \{ a \in \mathbb{R}^n : Ca \leq d \}$$
 (4)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

• The constraint is equivalent (i.e., same feasible set x) to:

$$\max_{a \in \mathcal{A}} (a^{\mathsf{T}} x) \le b. \tag{5}$$

By strong duality, this is feasible at x if and only if

$$\min_{\lambda} \{ \lambda^{\mathsf{T}} d : \lambda^{\mathsf{T}} C = x^{\mathsf{T}}, \lambda \ge 0 \} \le b$$

• This is feasible at x if and only $\exists \lambda$:

$$\lambda^{\mathsf{T}} d \le b$$
$$\lambda^{\mathsf{T}} C = x^{\mathsf{T}}$$
$$\lambda \ge 0.$$

• This is a polynomially-sized set of constraints in x, λ

Strong Duality

Consider the following primal-dual pair:

(
$$\mathcal{P}$$
) minimize $c^T x$ (\mathcal{D}) maximize $\lambda^T b$ subject to $Ax \geq b$ subject to $\lambda^T A = c^T$, $\lambda \geq 0$.

Strong Duality

Consider the following primal-dual pair:

(
$$\mathcal{P}$$
) minimize $c^T x$ (\mathcal{D}) maximize $\lambda^T b$ subject to $Ax \geq b$ subject to $\lambda^T A = c^T$, $\lambda \geq 0$.

Theorem (Strong Duality)

If (P) has an optimal solution, so does (D), and their optimal values are equal.

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	Possible	Impossible	Impossible
	Unbounded	Impossible	Impossible	Possible
	Infeasible	Impossible	Possible	?

• Strong duality allows you to prove various "theorems of alternative"

Example (Farkas Lemma)

Prove that exactly one of the following is true:

- (i) $\exists x \geq 0$ such that Ax = b,
- (ii) $\exists \lambda$ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

• Strong duality allows you to **prove** various "theorems of alternative"

Example (Farkas Lemma)

Prove that exactly one of the following is true:

- (i) $\exists x \geq 0$ such that Ax = b,
- (ii) $\exists \lambda$ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.
 - Set up a (feasibility) problem that mirrors statement (i), and consider its dual.

$$(\mathcal{P}) \max 0$$
 $(\mathcal{D}) \min \lambda^{T}b$
$$Ax = b \qquad \lambda^{T}A \ge 0$$
 $x \ge 0$

• Strong duality allows you to **prove** various "theorems of alternative"

Example (Farkas Lemma)

Prove that exactly one of the following is true:

- (i) $\exists x \geq 0$ such that Ax = b,
- (ii) $\exists \lambda$ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.
 - Set up a (feasibility) problem that mirrors statement (i), and consider its dual.

$$(\mathcal{P}) \max 0$$
 $(\mathcal{D}) \min \lambda^{\mathsf{T}} b$
$$Ax = b \qquad \qquad \lambda^{\mathsf{T}} A \ge 0$$
 $x > 0$

• (i) holds $\Rightarrow p^* = d^* = 0 \Rightarrow \lambda^T b \ge 0$ for any $\lambda : \lambda^T A \ge 0$, so (ii) cannot hold.

• Strong duality allows you to **prove** various "theorems of alternative"

Example (Farkas Lemma)

Prove that exactly one of the following is true:

- (i) $\exists x \geq 0$ such that Ax = b,
- (ii) $\exists \lambda$ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.
 - Set up a (feasibility) problem that mirrors statement (i), and consider its dual.

$$(\mathcal{P}) \max 0$$
 $(\mathcal{D}) \min \lambda^{\mathsf{T}} b$
$$Ax = b \qquad \qquad \lambda^{\mathsf{T}} A \ge 0$$
 $x > 0$

- (i) holds $\Rightarrow p^* = d^* = 0 \Rightarrow \lambda^T b \ge 0$ for any $\lambda : \lambda^T A \ge 0$, so (ii) cannot hold.
- (i) does **not** hold $\Rightarrow d^* = -\infty \Rightarrow \exists \lambda : \lambda^T b < 0$ and $\lambda^T A \ge 0$, so (ii) holds.

(
$$\mathcal{P}$$
) min c^Tx (\mathcal{D}) max λ^Tb
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^TA \le c^T$$

• (P) achieves optimality at a **basic feasible solution** x:

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$
 $(\mathcal{D}) \max \lambda^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, ..., n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(P)$$
: $x_B := A_B^{-1}b \ge 0$ (6a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (6b)

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$
 $(\mathcal{D}) \max \lambda^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, ..., n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(P)$$
: $x_B := A_B^{-1}b \ge 0$ (6a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (6b)

• (\mathcal{D}): same basis B can also be used to determine a dual vector λ :

$$\lambda^{\mathsf{T}} A_i = c_i, \ \forall \ i \in B \ \Rightarrow \ \lambda^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}, \ \forall \ i \in B.$$

(
$$\mathcal{P}$$
) min c^Tx (\mathcal{D}) max λ^Tb
$$Ax = b, \quad x \geq 0 \qquad \qquad \lambda^TA \leq c^T$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, \ldots, n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(P)$$
: $x_B := A_B^{-1}b \ge 0$ (6a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (6b)

• (\mathcal{D}): same basis B can also be used to determine **a dual vector** λ :

$$\lambda^{\mathsf{T}} A_i = c_i, \ \forall \ i \in B \ \Rightarrow \ \lambda^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}, \ \forall \ i \in B.$$

- The dual objective value corresponding to λ is: $\lambda^T b = c_B^T A_B^{-1} b = c^T x$
- λ is feasible in the dual if and only if:

Feasibility-
$$(\mathcal{D})$$
: $c^{\mathsf{T}} - \lambda^{\mathsf{T}} A \ge 0 \Leftrightarrow c^{\mathsf{T}} - c_{\mathsf{B}}^{\mathsf{T}} A_{\mathsf{B}}^{-1} A \ge 0$ (7)

(
$$\mathcal{P}$$
) min c^Tx (\mathcal{D}) max λ^Tb
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^TA \le c^T$$

- (P) achieves optimality at a **basic feasible solution** x:
 - If $B \subseteq \{1, ..., n\}$ is a basis, the b.f.s. is: $x = [x_B, 0], x_B = A_B^{-1}b$.
 - Simplex algorithm: feasibility and optimality for (\mathcal{P}) are given by:

Feasibility-
$$(P)$$
: $x_B := A_B^{-1}b \ge 0$ (6a)

Optimality-
$$(P)$$
: $c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (6b)

• (\mathcal{D}): same basis B can also be used to determine **a dual vector** λ :

$$\lambda^{\mathsf{T}} A_i = c_i, \ \forall \ i \in B \ \Rightarrow \ \lambda^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}, \ \forall \ i \in B.$$

- The dual objective value corresponding to λ is: $\lambda^T b = c_B^T A_B^{-1} b = c^T x$
- λ is feasible in the dual if and only if:

Feasibility-
$$(\mathcal{D})$$
: $c^{\mathsf{T}} - \lambda^{\mathsf{T}} A \ge 0 \Leftrightarrow c^{\mathsf{T}} - c_{\mathsf{B}}^{\mathsf{T}} A_{\mathsf{B}}^{-1} A \ge 0$ (7)

Primal optimality \Leftrightarrow Dual feasibility

Simplex terminates when finding a dual-feasible solution!

Solve (P) or (D)?

(
$$\mathcal{P}$$
) min $c^T x$ (\mathcal{D}) max $\lambda^T b$
$$\lambda^T A \leq c^T$$

Solve (P) or (D)?

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$

$$Ax = b, \quad x \ge 0$$

$\lambda^{\mathsf{T}} A \leq c^{\mathsf{T}}$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \ldots, n\}$
- stopping criterion: dual feasibility

Dual simplex

maintain a dual feasible solution

 $(\mathcal{D}) \max \lambda^{\mathsf{T}} b$

- stopping criterion: primal feasibility
- different from primal simplex: works with an LP with inequalities

- How to choose (\mathcal{P}) or (\mathcal{D}) ?
- Suppose we have x^* , λ^* and must now solve a **larger** problem, i.e., with extra decisions or extra constraints.
- Any preference between primal and dual simplex?

Solve (P) or (D)?

$$(\mathcal{P}) \min c^{\mathsf{T}} x$$

$$Ax = b, \quad x \ge 0$$

$(\mathcal{D}) \max \lambda^{\mathsf{T}} b$ $\lambda^{\mathsf{T}} A \leq c^{\mathsf{T}}$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \ldots, n\}$
- stopping criterion: dual feasibility

Dual simplex

- maintain a dual feasible solution
- stopping criterion: primal feasibility
- different from primal simplex: works with an LP with inequalities

- How to choose (\mathcal{P}) or (\mathcal{D}) ?
- Suppose we have x^* , λ^* and must now solve a **larger** problem, i.e., with extra decisions or extra constraints.
- Any preference between primal and dual simplex?
 - With extra decisions $x_e \Rightarrow \mathbf{primal\ simplex}$ initialized with $[x^\star, x_e = 0]$.
 - With extra constraints $A_e x = b_e \Rightarrow$ dual simplex initialized with $[\lambda^*, p_e = 0]$.
- Modern solvers include primal and dual simplex and allow concurrent runs

Optimality Conditions and Complementary Slackness

Consider $x \in P$, $\lambda \in D$ (each feasible). How to check if they are **optimal**?

Optimality Conditions and Complementary Slackness

Consider $x \in P$, $\lambda \in D$ (each feasible). How to check if they are **optimal**?

Theorem (Complementary Slackness)
$$x \in P \text{ and } \lambda \in D \text{ are optimal solutions for } (\mathcal{P}) \text{ and } (\mathcal{D}), \text{ respectively, if and only if:} \\ \lambda_i(a_i^\mathsf{T} x - b_i) = 0, \ i = 1, \dots, m \\ (\lambda^\mathsf{T} A_j - c_j) x_j = 0, \ j = 1, \dots, n.$$

• Follows from primal/dual feasibility and $c^{T}x = b^{T}\lambda$

Optimality Conditions and Complementary Slackness

Consider $x \in P$, $\lambda \in D$ (each feasible). How to check if they are **optimal**?

Theorem (Complementary Slackness)

 $x \in P$ and $\lambda \in D$ are optimal solutions for (P) and (D), respectively, if and only if:

$$\lambda_i(a_i^T x - b_i) = 0, i = 1, ..., m$$

 $(\lambda^T A_j - c_j) x_j = 0, j = 1, ..., n.$

- Follows from primal/dual feasibility and $c^{T}x = b^{T}\lambda$
- Interesting insight: non-binding constraint ⇒ dual variable is zero

Important consequence of duality: alternative representation of all polyhedra

Definition

Important consequence of duality: alternative representation of all polyhedra

Definition

- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.

Important consequence of duality: alternative representation of all polyhedra

Definition

- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.

Important consequence of duality: alternative representation of all polyhedra

Definition

- 1. $C := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.
- 3. Any ray d that satisfies $a_i^T d = 0$ for n-1 linearly independent a_i is called an **extreme ray** of P.

Theorem (Resolution Theorem)

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ be a non-empty polyhedron, x^1, x^2, \dots, x^k be its extreme points, and w^1, w^2, \dots, w^r be its extreme rays. Then,

Representation of Polyhedra

Theorem (Resolution Theorem)

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ be a non-empty polyhedron, x^1, x^2, \dots, x^k be its extreme points, and w^1, w^2, \dots, w^r be its extreme rays. Then,

$$P = \operatorname{conv}(\{x^{1}, \dots, x^{k}\}) + \operatorname{cone}(\{w^{1}, \dots, w^{r}\})$$
$$= \left\{ \sum_{i=1}^{k} \mu_{i} x^{i} + \sum_{i=1}^{r} \theta_{j} w^{j} : \mu \geq 0, e^{T} \mu = 1, \theta \geq 0 \right\}.$$

Representation of Polyhedra

Theorem (Resolution Theorem)

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ be a non-empty polyhedron, x^1, x^2, \dots, x^k be its extreme points, and w^1, w^2, \dots, w^r be its extreme rays. Then,

$$P = \operatorname{conv}(\{x^{1}, \dots, x^{k}\}) + \operatorname{cone}(\{w^{1}, \dots, w^{r}\})$$
$$= \left\{ \sum_{i=1}^{k} \mu_{i} x^{i} + \sum_{i=1}^{r} \theta_{j} w^{j} : \mu \geq 0, e^{T} \mu = 1, \theta \geq 0 \right\}.$$

Note: It is **not** "easy" (i.e., poly-time) to switch between these representations

Dual Variables As Marginal Costs

(
$$\mathcal{P}$$
) min $c^T x$ (\mathcal{D}) max $\lambda^T b$
$$Ax = b, \quad x \ge 0 \qquad \qquad \lambda^T A \le c^T$$

- Solved the LP and obtained x^* and λ^*
- Want to show that λ^* is the **gradient of the optimal cost with respect to** b "almost everywhere"
- Related to sensitivity analysis
 How do the optimal value and solution depend on problem data A, b, c?

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \leq X+1$

 $X \ge 0, Y \ge 0$

 $X \le 2$

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \leq X \text{+} 1$

 $X \ge 0, Y \ge 0$

 $X \leq 2$

X≤a

For the last constraint X ≤a, what is the shadow price i.e., rate of change in the optimal value when we change the constraint r.h.s. a?

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \le X+1$

 $X \ge 0, Y \ge 0$

 $X \le 2$

X≤a

If a < 0:

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \le X+1$

 $X \ge 0, Y \ge 0$

 $X \le 2$

X≤a

If a < 0:

Infeasible!

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \le X+1$

 $X \ge 0, Y \ge 0$

 $X \le 2$

 $X \le a$

If 0 < a < 1:

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \le X+1$ $X \ge 0, Y \ge 0$

 $X \leq 2$

 $X \le a$

If 0 < a < 1:

Shadow price = 2

Maximize Y

Subject to: $y \le 2X$ y < X+1

 $X \ge 0, Y \ge 0$

 $X \leq 2$

 $X \le a$

If 0 < a < 1:

Shadow price = 2

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \le X+1$

 $X \ge 0, Y \ge 0$

 $X \le 2$

 $X \le a$

If 1 < a < 2:

Maximize Y

Subject to: $\gamma \le 2X$ $\gamma \le X+1$ $X \ge 0, Y \ge 0$

X ≤ 2 X ≤ a

If 1 < a < 2:

Shadow price = 1

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \leq X+1$

 $X \ge 0, Y \ge 0$

 $X \le 2$

 $X \le a$

If a > 2:

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \le X+1$ $X \ge 0, Y \ge 0$

X ≤ 2

X≤a

If a > 2:

Shadow price = 0

Maximize Y

Subject to: $\gamma \le 2X$

 $Y \le X+1$

 $X \ge 0, Y \ge 0$

X ≤ 2

 $X \le a$

Note how the objective depends on *a* overall

$$(\mathcal{P}) \ \min \ c^\mathsf{T} x \qquad \qquad (\mathcal{D}) \ \max \ \lambda^\mathsf{T} b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad \lambda^\mathsf{T} A \leq c^\mathsf{T}$$

- What to show that the **optimal value** (when finite) **as a function of** b is
- What to show that the optimal value (when finite) as a function of c is

(
$$\mathcal{P}$$
) min $c^T x$ (\mathcal{D}) max $\lambda^T b$
 $Ax = b, \quad x \ge 0$ $\lambda^T A \le c^T$

- What to show that the optimal value (when finite) as a function of b is piecewise linear and convex
- What to show that the optimal value (when finite) as a function of c is piecewise linear and concave

Convex and Concave Functions

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is **convex** if X is a convex set and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in X \text{ and } \lambda \in [0, 1].$$
 (8)

A function is **concave** if -f is convex.

Convex and Concave Functions

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is **convex** if X is a convex set and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in X \text{ and } \lambda \in [0, 1].$$
 (8)

A function is **concave** if -f is convex.

Equivalent definition in terms of epigraph:

$$epi(f) = \{(x, t) \in X \times \mathbb{R} : t \ge f(x)\}$$
(9)

f is convex if and only if epi(f) is a convex set.

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m:P(b)
 eq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m: P(b)\neq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m: P(b)
 eq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m:P(b)
 eq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

• Strong duality: $p^*(b) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^Tb : \lambda^TA \le c^T\}$

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S:=\{b\in\mathbb{R}^m: P(b)\neq\emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

- Strong duality: $p^*(b) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$
- If $\lambda^1, \lambda^2, \dots, \lambda^r$ are the extreme points of D, then: $p^*(b) = \max_{i=1,\dots,r} b^T \lambda^i, \forall b \in S$

- Let $P(b) := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ denote the feasible set of the primal
- Let $S := \{b \in \mathbb{R}^m : P(b) \neq \emptyset\}$: right-hand-side values that yield a feasible primal
- Let $p^*(b)$ denote the optimal objective; assume $p^*(b) > -\infty$ (i.e., dual is feasible)
- To argue: $p^*: S \to \mathbb{R}$ is a **piecewise linear and convex** function of b

Proof. Is S a convex set?

- Strong duality: $p^*(b) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^Tb : \lambda^TA \le c^T\}$
- If $\lambda^1, \lambda^2, \dots, \lambda^r$ are the extreme points of D, then: $p^*(b) = \max_{i=1,\dots,r} b^T \lambda^i, \forall b \in S$

How to prove $p^*(b)$ convex?

$$\operatorname{epi}(p^{\star}) = \cap_{i=1,...,r} \operatorname{epi}(b^{\mathsf{T}} \lambda^{i})$$

is the intersection of convex sets, so it is convex.

$$p^{\star}(b) = \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} = \max\{\lambda^{\mathsf{T}}b : \lambda^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

• At any \bar{b} where p^* is differentiable, λ^* is the gradient of p^*

$$p^{*}(b) = \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} = \max\{\lambda^{\mathsf{T}}b : \lambda^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

- At any \bar{b} where p^* is differentiable, λ^* is the gradient of p^*
- λ_i^* acts as a **marginal cost** or **shadow price** for the *i*-th constraint r.h.s. b_i
- λ_i allows estimating exact change in p^* in a range around \bar{b}_i

$$p^{*}(b) = \min\{c^{T}x : Ax = b, x \ge 0\} = \max\{\lambda^{T}b : \lambda^{T}A \le c^{T}\}$$

- At any \bar{b} where p^* is differentiable, λ^* is the gradient of p^*
- λ_i^* acts as a **marginal cost** or **shadow price** for the *i*-th constraint r.h.s. b_i
- λ_i allows estimating exact change in p^* in a range around \bar{b}_i
- Modern solvers give direct access to λ_i^\star and the range Gurobipy: for constraint c, the attribute c.Pi is λ_i^\star and the range is from c.SARHSLow to c.SARHSUp

$$p^*(b) = \min\{c^T x : Ax = b, \ x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$$

- At b where p^* is not differentiable, several λ^i are optimal
- All such λ^i are valid **subgradients** of p^*

$$p^*(b) = \min\{c^T x : Ax = b, \ x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$$

- At b where p^* is **not** differentiable, several λ^i are optimal
- All such λ^i are valid **subgradients** of p^*

Definition (Subgradient.)

 $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ convex function. A vector $g \in \mathbb{R}^n$ is a **subgradient** of f at $\bar{x} \in S$ if $f(x) > f(\bar{x}) + g^T(x - \bar{x}), \quad \forall x \in S.$

- Let $d^{\star}(c)$ denote optimal value as function of c; assume $d^{\star}(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c

- Let $d^*(c)$ denote optimal value as function of c; assume $d^*(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c
- $d^*(c) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$
- Can apply same arguments because d^* is the optimal value of the dual

- Let $d^{\star}(c)$ denote optimal value as function of c; assume $d^{\star}(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c
- $d^*(c) = \min\{c^T x : Ax = b, \ x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$
- Can apply same arguments because d^* is the optimal value of the dual
- $d^*(c)$ is a **concave** function of c on the set $T := \{c : d^*(c) > -\infty\}$
- If for some c the LP has a **unique** optimal solution x^* , then d^* is linear in the vicinity of c and its gradient is x^* .

- Let $d^{\star}(c)$ denote optimal value as function of c; assume $d^{\star}(c) > -\infty$
- To argue: $d^*(c)$ is a **piecewise linear and concave** function of c
- $d^*(c) = \min\{c^Tx : Ax = b, x \ge 0\} = \max\{\lambda^T b : \lambda^T A \le c^T\}$
- Can apply same arguments because d^* is the optimal value of the dual
- $d^*(c)$ is a **concave** function of c on the set $T := \{c : d^*(c) > -\infty\}$
- If for some c the LP has a **unique** optimal solution x^* , then d^* is linear in the vicinity of c and its gradient is x^* .
- The optimal primal solution x^* is a shadow price for the dual constraints
- x^* remains optimal for a range of change in each objective coefficient c_j
- Modern solvers also allow obtaining the range directly Gurobipy: attributes SAObjLow and SAObjUp for each decision variable

Signs of Dual Variables Revisited

- There is a direct connection between:
 - the optimization problem (max/min)
 - the **constraint type** (\leq , \geq)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!
- What is the sign of the shadow price for a ...
 - \leq constraint in a **minimization** problem ?
 - ≥ constraint in a minimization problem ?
 - ≤ constraint in a maximization problem ?
 - < constraint in a maximization problem ?</pre>
- What is the dependency of the optimal objective on the r.h.s. of a ...
 - \leq constraint in a **minimization** problem ?
 - ≥ constraint in a minimization problem ?
 - \leq constraint in a **maximization** problem ?
 - \leq constraint in a maximization problem ?

Signs of Dual Variables Revisited

- There is a direct connection between:
 - the optimization problem (max/min)
 - the constraint type (\leq, \geq)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!

Real-World Hub and Spoke Airline Network

Source: www.united.com

Airline Revenue Management (RM)

Strategic RM

- Determine several price points for various itineraries
- "Product" or "itinerary": origin, destination, day, time, various restrictions, ...
 - E.g., JFK ORD SFO, 10:30am on Oct 12, 2024, Economy class Y fare
- Typically done by (or in conjunction with) marketing department
 - · Market segmentation; competition
- Tactical RM ("yield management") decides booking limits
 - A booking limit determines how many seats to reserve for each "product"
 - RM not based on setting prices, but rather changing availability of fare classes
 - Legacy due to original IT systems used (e.g., SABRE)

Hub: Chicago ORD

Westbound flights for some day in the future

ORD

JFK

LAX

Flight segments (legs)

LAX

JFK

Flight segments (legs)

- Aircraft 1:
 - BOS-ORD in the morning
 - · ORD-SFO in the afternoon

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Itineraries

Origin-	Q_Fare	Y_Fare
Destination		
BOS_ORD	\$200	\$220
BOS_SFO	\$320	\$420
BOS_LAX	\$400	\$490
JFK_ORD	\$250	\$290
JFK_SFO	\$410	\$540
JFK_LAX	\$450	\$550
ORD_SFO	\$210	\$230
ORD_LAX	\$260	\$300

Flight segments (legs)

- Aircraft 1:
 - · BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Itineraries

Origin-	Q_Fare	Y_Fare	Q_Demand Y_Demand		
Destination					
BOS_ORD	\$200	\$220	25	20	
BOS_SFO	\$320	\$420	55	40	
BOS_LAX	\$400	\$490	65	25	
JFK_ORD	\$250	\$290	24	16	
JFK_SFO	\$410	\$540	65	50	
JFK_LAX	\$450	\$550	40	35	
ORD_SFO	\$210	\$230	21	50	
ORD_LAX	\$260	\$300	25	14	

Flight segments (legs)

- Aircraft 1:
 - BOS-ORD in the morning
 - · ORD-SFO in the afternoon
- Aircraft 2:
 - · JFK-ORD in the morning
 - · ORD-LAX in the afternoon

Resources needed

	BOS_C	ORD BOS_SFO	BOS_LAX	JFK_ORD	JFK_SFO	JFK_LAX	ORD_SFO	ORD_LAX
Flight leg								
BOS_ORD_Leg	1	1	1	0	0	0	0	0
JFK_ORD_Leg	0	0	0	1	1	1	0	0
ORD_SFO_Leg	0	1	0	0	1	0	1	0
ORD LAX Leg	0	0	1	0	0	1	0	1

• Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- · Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2	 Itinerary $ I $
Resource matrix A:	Flight leg 1	1	0	 1
	Flight leg 2	0	1	 0
	:	:	:	:
	Flight leg $ F $	1	1	 0

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $ I $
	Flight leg 1	1	0		1
Resource matrix A :	Flight leg 2	0	1		0
			•		
	:	:	:	:	:
	Flight leg $ F $	1	1		0

Goal: decide how many itineraries of each type to sell to maximize revenue

• Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^{I}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- $x \le d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- $x \le d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- $x \le d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-\lambda \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be
 the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^{I}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-\lambda \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-\lambda \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$
- Bid-price heuristic in network revenue management
- Broader principle of how to price "products" through resource usage/cost