

Lecture 8 : Duality in Convex Optimization

October 15, 2025

Today's Agenda: Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned} \tag{1}$$

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ (real-valued), **convex**
- Equality constraints $Ax = b$ can be included in X

Today's Agenda: Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned} \tag{1}$$

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ (real-valued), **convex**
- Equality constraints $Ax = b$ can be included in X
- Many developments deal with the “interior” of X

Definition : Interior

The **interior** of a set X is the set of all points $x \in X$ so that:

$$\exists r > 0 : B(x, r) := \{y : \|y - x\| \leq r\} \subseteq X$$

Today's Agenda: Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned} \tag{1}$$

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ (real-valued), **convex**
- Equality constraints $Ax = b$ can be included in X
- Many developments deal with the “interior” of X

Definition : Interior

The **interior** of a set X is the set of all points $x \in X$ so that:

$$\exists r > 0 : B(x, r) := \{y : \|y - x\| \leq r\} \subseteq X$$

What is the interior of a set X that is **not** full-dimensional?

Relative Interior

- Recall: **Affine hull** of X is $\text{aff}(X) := \{\theta_1x_1 + \cdots + \theta_kx_k : x_i \in X, \sum_{i=1}^k \theta_i = 1\}$

Relative Interior

- Recall: **Affine hull** of X is $\text{aff}(X) := \{\theta_1 x_1 + \cdots + \theta_k x_k : x_i \in X, \sum_{i=1}^k \theta_i = 1\}$

Definition Relative Interior

The **relative interior** of a set X is:

$$\text{rel int}(X) := \{x \in X : \exists r > 0 \text{ so that } B(x, r) \cap \text{aff}(X) \subseteq X\}. \quad (2)$$

What is the relative interior of the following sets?

- $\{(x, y) \in \mathbb{R}^2 \mid (x, y) \in [0, 1]^2\}$
- $\{(x, y) \in \mathbb{R}^2 \mid x + y = 1, x \geq 0, y \geq 0\}$
- $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

- Convex domain $X \subseteq \mathbb{R}^n$
- Every function $f_i : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ (real-valued), **convex**
- Equality constraints $Ax = b$ can be included in X
- Assume $\text{rel int}(X) \neq \emptyset$
- Assume that (\mathcal{P}) has an optimal solution x^* , optimal value $p^* = f_0(x^*)$
- **Core questions:**
 1. For x feasible for (\mathcal{P}) , how to **quantify the optimality gap** $f_0(x) - p^*$?
 2. How to certify that x^* is **optimal** in (\mathcal{P}) ?

Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

- To construct **lower bounds** for (\mathcal{P}) , define the **Lagrangian function**: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

- To construct **lower bounds** for (\mathcal{P}) , define the **Lagrangian function**: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

- By construction, $\mathcal{L}(x, \lambda) \leq f_0(x)$ for any x feasible in (\mathcal{P})

Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

- To construct **lower bounds** for (\mathcal{P}) , define the **Lagrangian function**: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

- By construction, $\mathcal{L}(x, \lambda) \leq f_0(x)$ for any x feasible in (\mathcal{P})
- For a lower bound on p^* , minimize $\mathcal{L}(x, \lambda)$ over $x \in X$ to get:

$$g(\lambda) := \inf_{x \in X} \mathcal{L}(x, \lambda).$$

Dual Problem

$$(\mathcal{D}) \quad \sup_{\lambda \geq 0} g(\lambda).$$

Q: Is the dual (\mathcal{D}) a convex optimization problem?

Convex Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

- To construct **lower bounds** for (\mathcal{P}) , define the **Lagrangian function**: for $\lambda \geq 0$,

$$\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x)$$

- By construction, $\mathcal{L}(x, \lambda) \leq f_0(x)$ for any x feasible in (\mathcal{P})
- For a lower bound on p^* , minimize $\mathcal{L}(x, \lambda)$ over $x \in X$ to get:

$$g(\lambda) := \inf_{x \in X} \mathcal{L}(x, \lambda).$$

Dual Problem

$$(\mathcal{D}) \quad \sup_{\lambda \geq 0} g(\lambda).$$

Q: Is the dual (\mathcal{D}) a convex optimization problem? Yes, even if (\mathcal{P}) isn't!

Geometric Interpretation

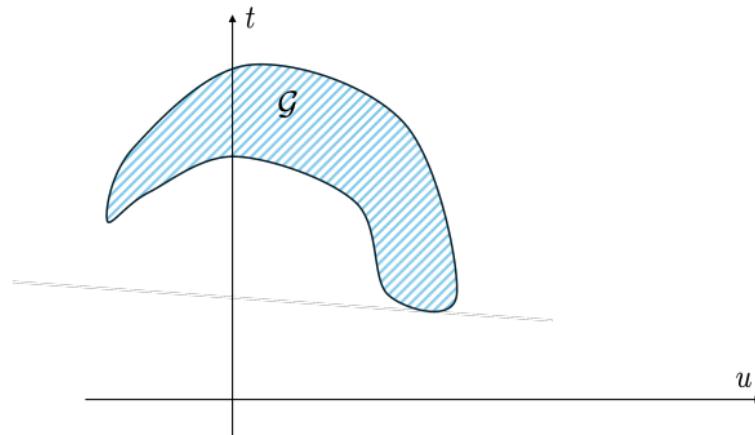
Primal-Dual Pair

$$(\mathcal{P}) \quad p^* := \inf_{x \in X} f_0(x)$$

$$(\mathcal{D}) \quad d^* := \sup_{\lambda \geq 0} g(\lambda)$$

$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., $m = 1$
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, t = f_0(x), u = f_1(x)\}$



What do feasible points in (\mathcal{P}) correspond to? Where is p^* ?

How to express the Lagrangian $\mathcal{L}(x, \lambda)$ using the t, u variables?

Geometric Interpretation

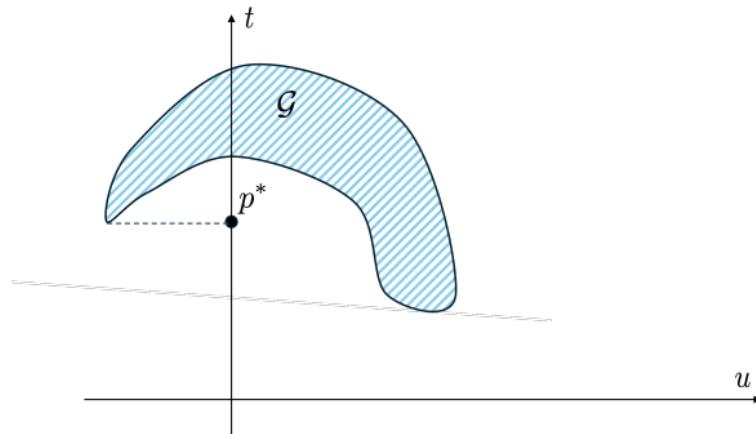
Primal-Dual Pair

$$(\mathcal{P}) \quad p^* := \inf_{x \in X} f_0(x)$$

$$(\mathcal{D}) \quad d^* := \sup_{\lambda \geq 0} g(\lambda)$$

$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., $m = 1$
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, t = f_0(x), u = f_1(x)\}$



$\mathcal{L}(x, \lambda)$ is the same as $t + \lambda \cdot u$.

Geometric Interpretation

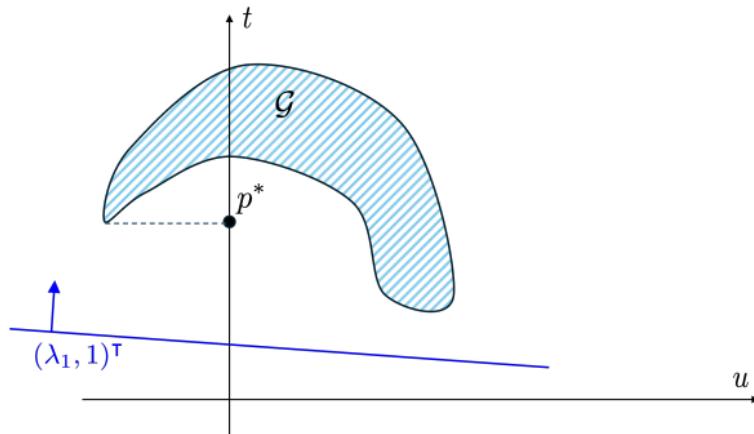
Primal-Dual Pair

$$(\mathcal{P}) \quad p^* := \inf_{x \in X} f_0(x)$$

$$(\mathcal{D}) \quad d^* := \sup_{\lambda \geq 0} g(\lambda)$$

$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., $m = 1$
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, t = f_0(x), u = f_1(x)\}$



For $\lambda \geq 0$, we have $g(\lambda) = \inf_{x \in X} (f_0(x) + \lambda f_1(x)) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda \cdot u)$

What is the value of $g(\lambda_1)$ in this figure?

Geometric Interpretation

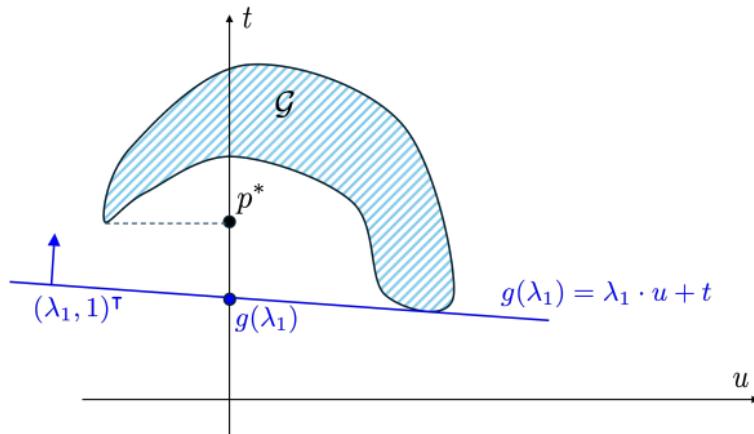
Primal-Dual Pair

$$(\mathcal{P}) \quad p^* := \inf_{x \in X} f_0(x)$$

$$(\mathcal{D}) \quad d^* := \sup_{\lambda \geq 0} g(\lambda)$$

$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., $m = 1$
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, t = f_0(x), u = f_1(x)\}$



The optimal pairs (u, t) yield a **supporting hyperplane** for \mathcal{G}

Intersection with $u = 0$ is value of $g(\lambda_1)$

Geometric Interpretation

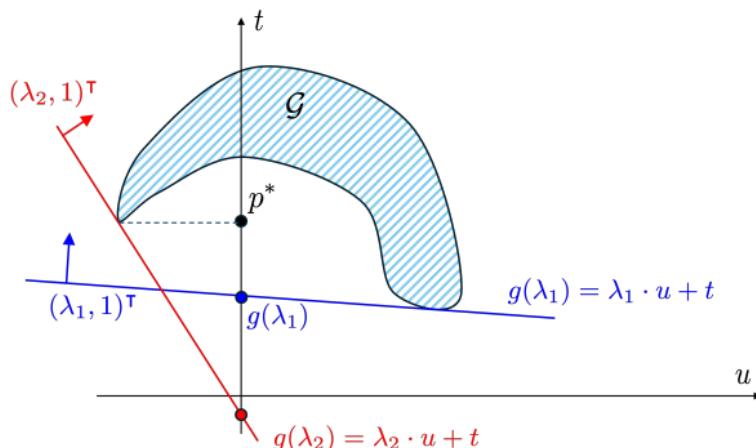
Primal-Dual Pair

$$(\mathcal{P}) \quad p^* := \inf_{x \in X} f_0(x)$$

$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

$$(\mathcal{D}) \quad d^* := \sup_{\lambda \geq 0} g(\lambda)$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., $m = 1$
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, t = f_0(x), u = f_1(x)\}$



What is the value of $\max_{\lambda \geq 0} g(\lambda)$?

Geometric Interpretation

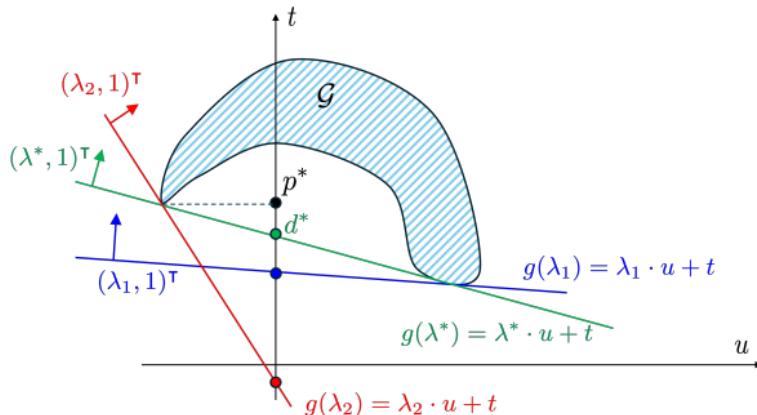
Primal-Dual Pair

$$(\mathcal{P}) \quad p^* := \inf_{x \in X} f_0(x)$$

$$(\mathcal{D}) \quad d^* := \sup_{\lambda \geq 0} g(\lambda)$$

$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

- Suppose $X = \mathbb{R}^n$ and (\mathcal{P}) has just one inequality constraint, i.e., $m = 1$
- Let $\mathcal{G} := \{(u, t) \in \mathbb{R}^2 : \exists x \in \mathbb{R}^n, t = f_0(x), u = f_1(x)\}$



Here, strong duality does not hold: $d^* < p^*$. But the set \mathcal{G} is not convex!

Strong Duality in Convex Optimization?

Strong Duality in Convex Optimization?

Non-zero duality gap

Let $X = \{(x, y) \mid y \geq 1\}$ and consider the problem:

$$\underset{(x,y) \in X}{\text{minimize}} \ e^{-x}$$

$$x^2/y \leq 0.$$

- Is this a convex optimization problem?
- What are p^* , \mathcal{L} , g , d^* ?
- Does $p^* = d^*$ hold for any primal convex optimization problem if p^* finite?

Strong Duality in Convex Optimization?

Non-zero duality gap

Let $X = \{(x, y) \mid y \geq 1\}$ and consider the problem:

$$\underset{(x,y) \in X}{\text{minimize}} \ e^{-x}$$

$$x^2/y \leq 0.$$

- Is this a convex optimization problem?
- What are p^* , \mathcal{L} , g , d^* ?
- Does $p^* = d^*$ hold for any primal convex optimization problem if p^* finite?

$$p^* = 1, \quad \mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2/y$$

Strong Duality in Convex Optimization?

Non-zero duality gap

Let $X = \{(x, y) \mid y \geq 1\}$ and consider the problem:

$$\underset{(x,y) \in X}{\text{minimize}} \ e^{-x}$$

$$x^2/y \leq 0.$$

- Is this a convex optimization problem?
- What are p^* , \mathcal{L} , g , d^* ?
- Does $p^* = d^*$ hold for any primal convex optimization problem if p^* finite?

$$p^* = 1, \quad \mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2/y$$

$$g(\lambda) = \inf_{x, y \geq 1} \left(e^{-x} + \lambda \frac{x^2}{y} \right) = 0 \text{ for any } \lambda \geq 0.$$

Strong Duality in Convex Optimization?

Non-zero duality gap

Let $X = \{(x, y) \mid y \geq 1\}$ and consider the problem:

$$\underset{(x,y) \in X}{\text{minimize}} \ e^{-x}$$

$$x^2/y \leq 0.$$

- Is this a convex optimization problem?
- What are p^* , \mathcal{L} , g , d^* ?
- Does $p^* = d^*$ hold for any primal convex optimization problem if p^* finite?

$$p^* = 1, \quad \mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2/y$$

$$g(\lambda) = \inf_{x, y \geq 1} \left(e^{-x} + \lambda \frac{x^2}{y} \right) = 0 \text{ for any } \lambda \geq 0.$$

- We can write the dual problem as $d^* = \max_{\lambda \geq 0} 0$, with optimal value $d^* = 0$

Strong Duality in Convex Optimization?

Non-zero duality gap

Let $X = \{(x, y) \mid y \geq 1\}$ and consider the problem:

$$\underset{(x,y) \in X}{\text{minimize}} \ e^{-x}$$

$$x^2/y \leq 0.$$

- Is this a convex optimization problem?
- What are p^* , \mathcal{L} , g , d^* ?
- Does $p^* = d^*$ hold for any primal convex optimization problem if p^* finite?

$$p^* = 1, \quad \mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2/y$$

$$g(\lambda) = \inf_{x, y \geq 1} \left(e^{-x} + \lambda \frac{x^2}{y} \right) = 0 \text{ for any } \lambda \geq 0.$$

- We can write the dual problem as $d^* = \max_{\lambda \geq 0} 0$, with optimal value $d^* = 0$
- We have a duality gap: $p^* - d^* = 1$
- Primal and dual both have finite optimal value, but a gap exists!
- Examples also exist where (\mathcal{D}) does not achieve its optimal value... (notes)

Conditions Leading to Strong Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

Conditions Leading to Strong Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

Slater Condition

The functions $f_1, \dots, f_m : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ satisfy **the Slater condition on X** if there exists $x \in \text{rel int}(X)$ such that

$$f_j(x) < 0, \quad j = 1, \dots, m.$$

Conditions Leading to Strong Duality

Primal Problem

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x \quad & f_0(x) \\ & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & x \in X. \end{aligned}$$

Slater Condition

The functions $f_1, \dots, f_m : X \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ satisfy **the Slater condition on X** if there exists $x \in \text{rel int}(X)$ such that

$$f_j(x) < 0, \quad j = 1, \dots, m.$$

- A point x that is **strictly feasible**
- If **all** $f_i(x)$ are **affine**, we do not need this (i.e., feasibility is enough)
- If **some** f_i are affine, we only require $f_i(x) < 0$ for the **non-linear** f_i

Strong Duality in Convex Optimization

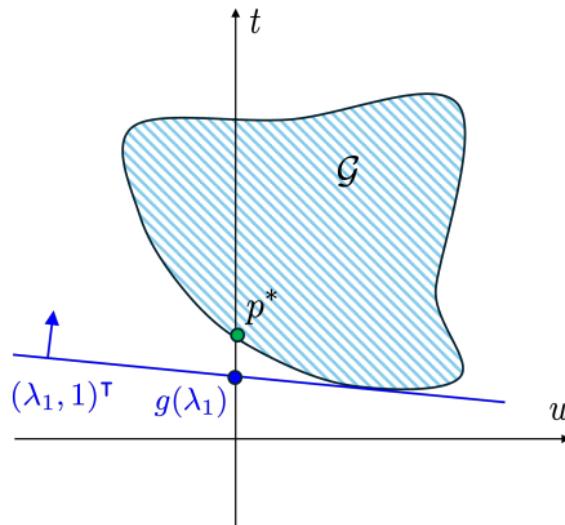
Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.



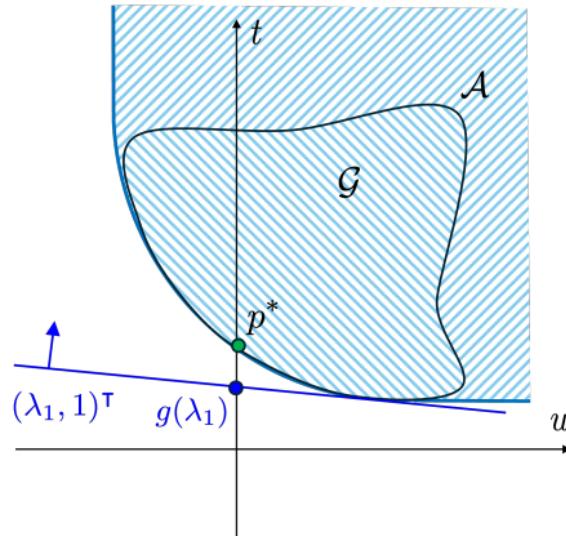
Geometric intuition for proof:

- Recall $\mathcal{G} := \{(u, t) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n, t = f_0(x), u_i = f_i(x), i = 1, \dots, m\}$

Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

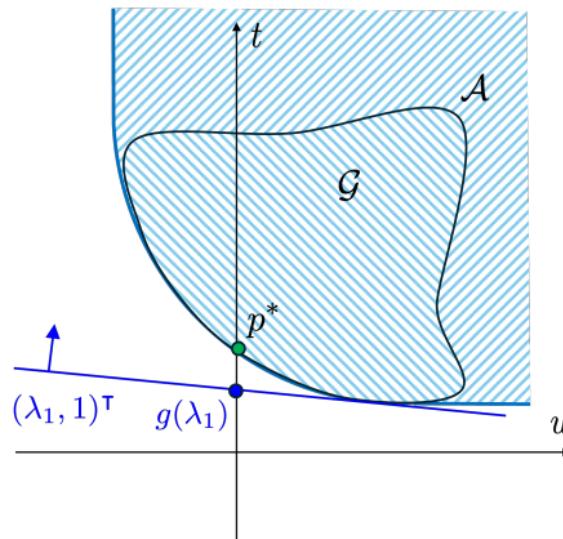


- Recall $\mathcal{G} := \{(u, t) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n, t = f_0(x), u = f_1(x)\}$ (above, $m = 1$)
- Same p^* if we replace \mathcal{G} with $\mathcal{A} = \{(u, t) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n, t \geq f_0(x), u_i \geq f_i(x), \forall i\}$

Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

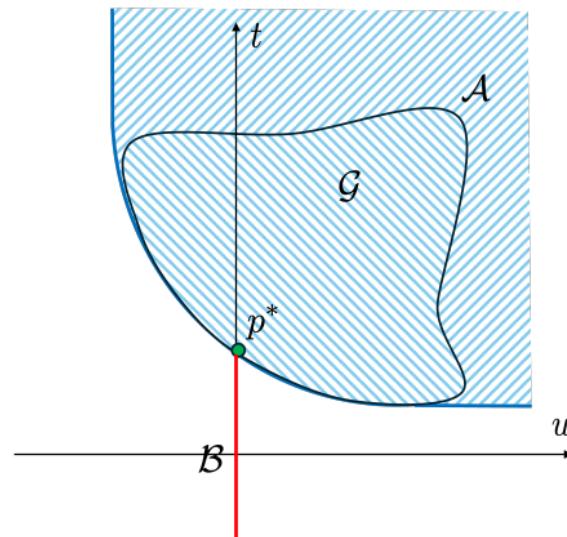


- Same p^* if we replace \mathcal{G} with $\mathcal{A} = \{(u, t) \in \mathbb{R}^{m+1} : \exists x \in \mathbb{R}^n, t \geq f_0(x), u_i \geq f_i(x), \forall i\}$
- **Is \mathcal{A} a convex set?**

Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

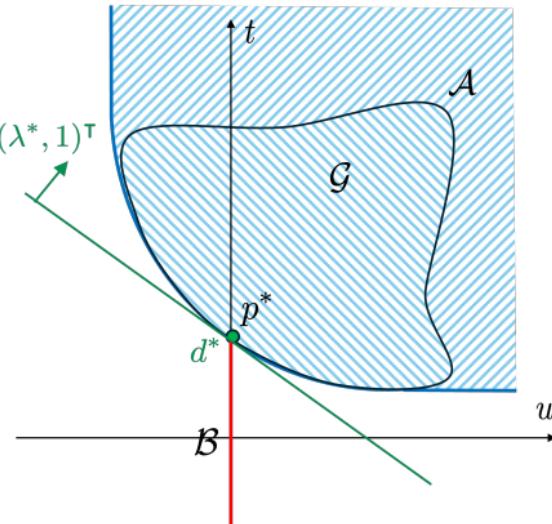


- Define $\mathcal{B} := \{(0, t) \in \mathbb{R}^m \times \mathbb{R} \mid t < p^*\}$
- **Claim.** $\mathcal{A} \cap \mathcal{B} = \emptyset$

Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

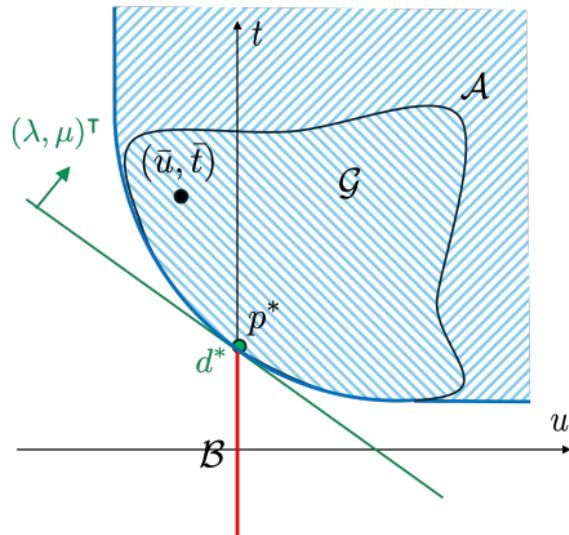


- The Separating Hyperplane Theorem will give us the optimal λ^* and $p^* = d^*$

Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.



- The Slater point will guarantee that the hyperplane is not vertical

Strong Duality in Convex Optimization

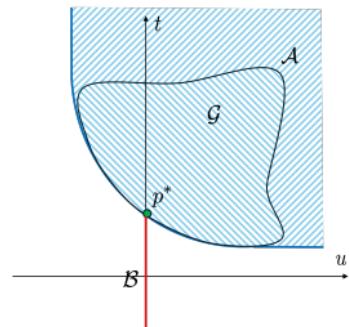
Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- Define the **convex** set

$$\mathcal{A} = \{(u, t) \in \mathbb{R}^m \times \mathbb{R} : \exists x \in X, t \geq f_0(x), u_i \geq f_i(x), i = 1, \dots, m\}.$$

- Define the **convex** set $\mathcal{B} = \{(0, t) \in \mathbb{R}^m \times \mathbb{R} \mid t < p^*\}.$
- $\mathcal{A} \cap \mathcal{B} = \emptyset$.



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

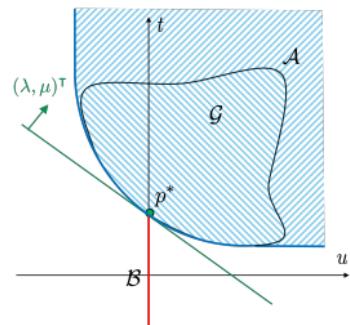
Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- Define the **convex** set

$$\mathcal{A} = \{(u, t) \in \mathbb{R}^m \times \mathbb{R} : \exists x \in X, t \geq f_0(x), u_i \geq f_i(x), i = 1, \dots, m\}.$$

- Define the **convex** set $\mathcal{B} = \{(0, t) \in \mathbb{R}^m \times \mathbb{R} \mid t < p^*\}.$
- $\mathcal{A} \cap \mathcal{B} = \emptyset.$
- (Non-strict) Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \quad b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^T u + \mu t \geq b, \quad \forall (u, t) \in \mathcal{A} \\ (3) & \lambda^T u + \mu t \leq b, \quad \forall (u, t) \in \mathcal{B}. \end{cases}$$



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

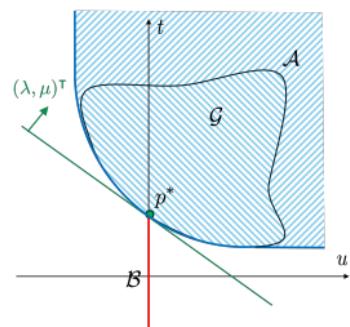
Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \quad b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^T u + \mu t \geq b, \forall (u, t) \in A \\ (3) & \lambda^T u + \mu t \leq b, \forall (u, t) \in B. \end{cases}$$

- (2) implies $\lambda \geq 0$ and $\mu \geq 0$.

Otherwise, $\inf_{(u, t) \in A} (\lambda^T u + \mu t) = -\infty$ so $\not\geq b$.



Strong Duality in Convex Optimization

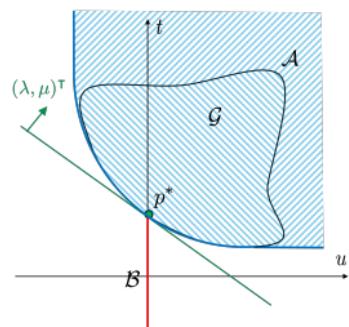
Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \quad b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^T u + \mu t \geq b, \forall (u, t) \in A \\ (3) & \lambda^T u + \mu t \leq b, \forall (u, t) \in B. \end{cases}$$

- (2) implies $\lambda \geq 0$ and $\mu \geq 0$.
Otherwise, $\inf_{(u, t) \in A} (\lambda^T u + \mu t) = -\infty$ so $\not\geq b$.
- (3) simplifies to $\mu t \leq b$ for all $t < p^*$, so $\mu p^* \leq b$.



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

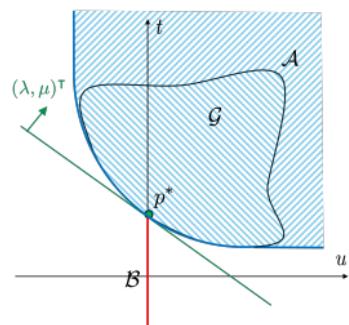
Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- Separating Hyperplane Theorem:

$$\exists (\lambda, \mu) \in \mathbb{R}^{m+1}, \quad b \in \mathbb{R} : \begin{cases} (1) & (\lambda, \mu) \neq 0, \\ (2) & \lambda^T u + \mu t \geq b, \forall (u, t) \in A \\ (3) & \lambda^T u + \mu t \leq b, \forall (u, t) \in B. \end{cases}$$

- (2) implies $\lambda \geq 0$ and $\mu \geq 0$.
Otherwise, $\inf_{(u, t) \in A} (\lambda^T u + \mu t) = -\infty$ so $\not\geq b$.
- (3) simplifies to $\mu t \leq b$ for all $t < p^*$, so $\mu p^* \leq b$.
- Recap: We found $\lambda \geq 0, \mu \geq 0$:

$$\mathcal{L}(x, \lambda) := \sum_{i=1}^m \lambda_i f_i(x) + \mu f_0(x) \geq b \geq \mu p^*, \quad \forall x \in X$$



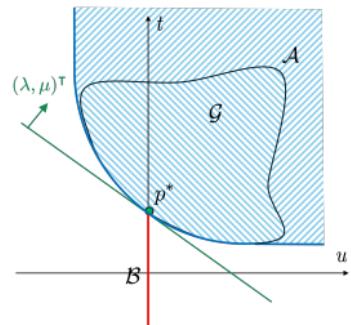
Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \quad \mathcal{L}(x, \lambda) := \sum_{i=1}^m \lambda_i f_i(x) + \mu f_0(x) \geq b \geq \mu p^*, \quad \forall x \in X$$



- **Case 1.** $\mu > 0$ (non-vertical hyper-plane)

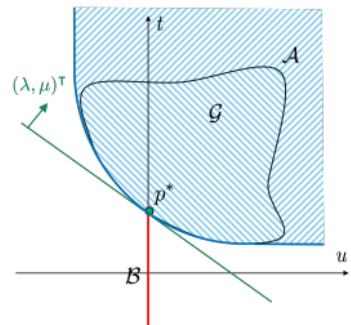
Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \quad \mathcal{L}(x, \lambda) := \sum_{i=1}^m \lambda_i f_i(x) + \mu f_0(x) \geq b \geq \mu p^*, \quad \forall x \in X$$



- **Case 1.** $\mu > 0$ (non-vertical hyper-plane)
- Divide (4) by μ to get: $\mathcal{L}(x, \lambda/\mu) \geq p^*, \quad \forall x \in X$.
- This implies $g(\lambda/\mu) := \inf_{x \in X} \mathcal{L}(x, \lambda/\mu) \geq p^*$.

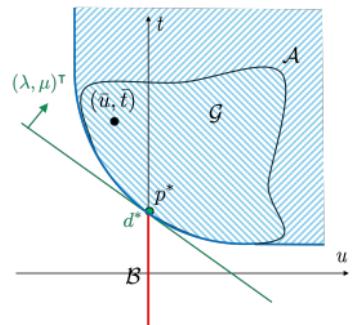
Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \quad \mathcal{L}(x, \lambda) := \sum_{i=1}^m \lambda_i f_i(x) + \mu f_0(x) \geq b \geq \mu p^*, \quad \forall x \in X$$



- **Case 1.** $\mu > 0$ (non-vertical hyper-plane)
- Divide (4) by μ to get: $\mathcal{L}(x, \lambda/\mu) \geq p^*, \forall x \in X$.
- This implies $g(\lambda/\mu) := \inf_{x \in X} \mathcal{L}(x, \lambda/\mu) \geq p^*$.
- Weak duality: $g(\lambda/\mu) \leq p^*$, so $g(\lambda/\mu) = p^*$.
- Strong duality holds: $p^* = d^*$.

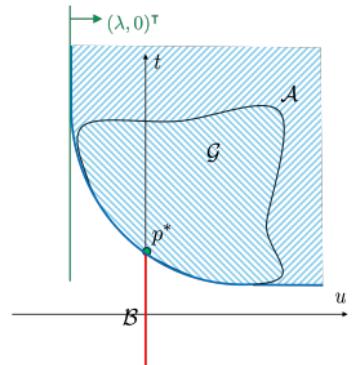
Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \quad \mathcal{L}(x, \lambda) := \sum_{i=1}^m \lambda_i f_i(x) + \mu f_0(x) \geq b \geq \mu p^*, \quad \forall x \in X$$



- **Case 2.** $\mu = 0$ (vertical hyperplane)
- $\mu = 0$ so (4) implies $\sum_{i=1}^m \lambda_i f_i(x) \geq 0, \forall x \in X$

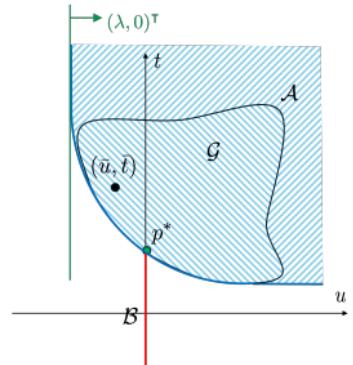
Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let $X \subset \mathbb{R}^n$ be convex and $f_0, f_1, \dots, f_m : X \rightarrow \mathbb{R}$ convex functions on X satisfying the Slater condition on X . Then, $p^* = d^*$ and the dual attains its optimal value.

- We found $\lambda \geq 0, \mu \geq 0$:

$$(4) \quad \mathcal{L}(x, \lambda) := \sum_{i=1}^m \lambda_i f_i(x) + \mu f_0(x) \geq b \geq \mu p^*, \quad \forall x \in X$$



- **Case 2.** $\mu = 0$ (vertical hyperplane)
- $\mu = 0$ so (4) implies $\sum_{i=1}^m \lambda_i f_i(x) \geq 0, \forall x \in X$
- \bar{x} satisfies Slater condition $\Rightarrow f_i(\bar{x}) < 0$ for $i = 1, \dots, m$
- This together with $\lambda \geq 0$ implies that $\lambda = 0$
- Contradicts that $(\lambda, \mu) \neq 0$.

Explicit Equality Constraints

- In applications, useful to make the **equality constraints explicit**:

$$\text{minimize}_{x \in X} f_0(x)$$

$$\text{subject to } f_i(x) \leq 0, \quad i = 1, \dots, m,$$

$$Ax = b.$$

where $f_i, i = 0, \dots, m$ are convex and $A \in \mathbb{R}^{p \times n}$ has rank p .

Explicit Equality Constraints

- In applications, useful to make the **equality constraints explicit**:

$$\text{minimize}_{x \in X} f_0(x)$$

$$\text{subject to } f_i(x) \leq 0, \quad i = 1, \dots, m,$$

$$Ax = b.$$

where $f_i, i = 0, \dots, m$ are convex and $A \in \mathbb{R}^{p \times n}$ has rank p .

- With $\nu \in \mathbb{R}^p$ denoting Lagrange multipliers for $Ax = b$, Lagrangian is:

$$\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax - b),$$

Explicit Equality Constraints

- In applications, useful to make the **equality constraints explicit**:

$$\text{minimize}_{x \in X} f_0(x)$$

$$\text{subject to } f_i(x) \leq 0, \quad i = 1, \dots, m,$$

$$Ax = b.$$

where $f_i, i = 0, \dots, m$ are convex and $A \in \mathbb{R}^{p \times n}$ has rank p .

- With $\nu \in \mathbb{R}^p$ denoting Lagrange multipliers for $Ax = b$, Lagrangian is:

$$\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax - b),$$

- With $g(\lambda, \nu) := \inf_{x \in X} \mathcal{L}(x, \lambda, \nu)$, the dual problem becomes:

$$\text{maximize}_{\lambda, \nu} g(\lambda, \nu)$$

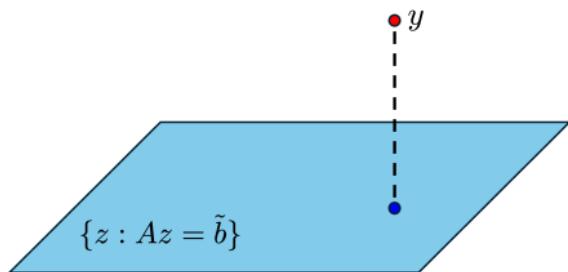
$$\text{subject to } \lambda \geq 0.$$

No sign constraints on ν !

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$ has full rank $p < n$. $\tilde{b} \in \mathbb{R}^p$.

$$\min_z \left\{ \|z - y\|_2^2 : Az = \tilde{b} \right\}$$



- Change of variables $x := z - y$ and with $b := \tilde{b} - Ay$,

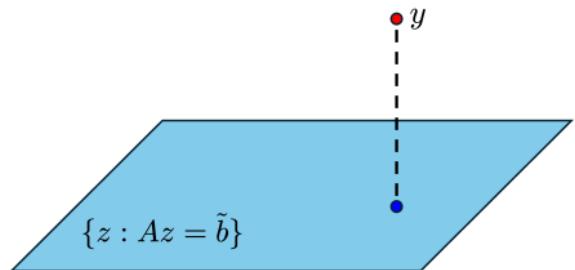
$$\min_x \left\{ \|x\|_2^2 : Ax = b \right\}$$

- What is the optimal value p^* ?**

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$ has full rank $p < n$. $\tilde{b} \in \mathbb{R}^p$.

$$\min_z \left\{ \|z - y\|_2^2 : Az = \tilde{b} \right\}$$



- Change of variables $x := z - y$ and with $b := \tilde{b} - Ay$,

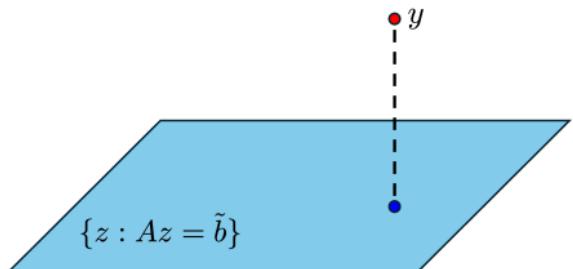
$$\min_x \left\{ \|x\|_2^2 : Ax = b \right\}$$

- Lagrangian $L(x, \nu) = x^T x + \nu^T (Ax - b)$: convex quadratic function of x

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$ has full rank $p < n$. $\tilde{b} \in \mathbb{R}^p$.

$$\min_z \left\{ \|z - y\|_2^2 : Az = \tilde{b} \right\}$$



- Change of variables $x := z - y$ and with $b := \tilde{b} - Ay$,

$$\min_x \left\{ \|x\|_2^2 : Ax = b \right\}$$

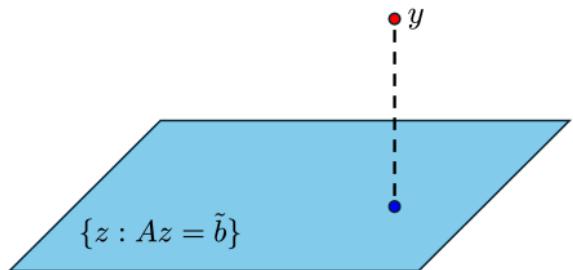
- Lagrangian $L(x, \nu) = x^T x + \nu^T (Ax - b)$: convex quadratic function of x
- Dual objective: $g(\nu) = \inf_x L(x, \nu)$. Can find via:

$$\nabla_x L(x, \nu) = 0 \Leftrightarrow 2x + A^T \nu = 0 \Leftrightarrow x = -\frac{1}{2} A^T \nu$$

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$ has full rank $p < n$. $\tilde{b} \in \mathbb{R}^p$.

$$\min_z \left\{ \|z - y\|_2^2 : Az = \tilde{b} \right\}$$



- Change of variables $x := z - y$ and with $b := \tilde{b} - Ay$,

$$\min_x \left\{ \|x\|_2^2 : Ax = b \right\}$$

- Lagrangian $L(x, \nu) = x^T x + \nu^T (Ax - b)$: convex quadratic function of x
- Dual objective: $g(\nu) = \inf_x L(x, \nu)$. Can find via:

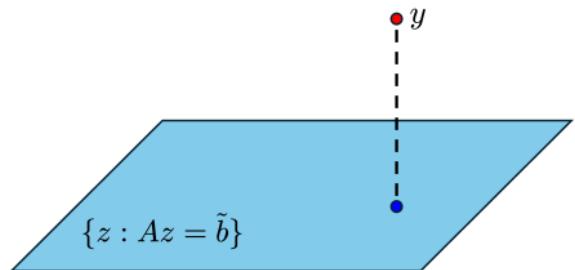
$$\nabla_x L(x, \nu) = 0 \Leftrightarrow 2x + A^T \nu = 0 \Leftrightarrow x = -\frac{1}{2} A^T \nu$$

$$g(\nu) = L\left(-\frac{1}{2} A^T \nu, \nu\right) = -\frac{1}{4} \nu^T A A^T \nu - b^T \nu$$

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$ has full rank $p < n$. $\tilde{b} \in \mathbb{R}^p$.

$$\min_z \left\{ \|z - y\|_2^2 : Az = \tilde{b} \right\}$$



- Change of variables $x := z - y$ and with $b := \tilde{b} - Ay$,

$$\min_x \left\{ \|x\|_2^2 : Ax = b \right\}$$

- Lagrangian $L(x, \nu) = x^T x + \nu^T (Ax - b)$: convex quadratic function of x
- Dual objective: $g(\nu) = \inf_x L(x, \nu)$. Can find via:

$$\nabla_x L(x, \nu) = 0 \Leftrightarrow 2x + A^T \nu = 0 \Leftrightarrow x = -\frac{1}{2} A^T \nu$$

- $g(\nu) = L\left(-\frac{1}{2} A^T \nu, \nu\right) = -\frac{1}{4} \nu^T A A^T \nu - b^T \nu$
- Primal satisfies Slater condition because all constraints are affine, so $p^* = d^*$
- To find d^* :

$$\nabla_\nu g(\nu) = 0 \Leftrightarrow -\frac{1}{2} A A^T \nu = b.$$

Minimum Euclidean Distance Problem

- Given $y \in \mathbb{R}^n$ and affine set $\{z : Az = \tilde{b}\}$
- $A \in \mathbb{R}^{p \times n}$ has full rank $p < n$. $\tilde{b} \in \mathbb{R}^p$.

$$\min_z \left\{ \|z - y\|_2^2 : Az = \tilde{b} \right\}$$



- Change of variables $x := z - y$ and with $b := \tilde{b} - Ay$,

$$\min_x \left\{ \|x\|_2^2 : Ax = b \right\}$$

- Lagrangian $L(x, \nu) = x^T x + \nu^T (Ax - b)$: convex quadratic function of x
- Dual objective: $g(\nu) = \inf_x L(x, \nu)$. Can find via:

$$\nabla_x L(x, \nu) = 0 \Leftrightarrow 2x + A^T \nu = 0 \Leftrightarrow x = -\frac{1}{2} A^T \nu$$

- $g(\nu) = L\left(-\frac{1}{2} A^T \nu, \nu\right) = -\frac{1}{4} \nu^T A A^T \nu - b^T \nu$
- Primal satisfies Slater condition because all constraints are affine, so $p^* = d^*$
- To find d^* :

$$\nabla_\nu g(\nu) = 0 \Leftrightarrow -\frac{1}{2} A A^T \nu = b.$$

- $A A^T$ is invertible, so $\nu^* = -2(A A^T)^{-1} b$, $p^* = d^* = g(\nu^*) = b^T (A A^T)^{-1} b$
- $x^* = -\frac{1}{2} A^T \nu^* = A^T (A A^T)^{-1} b$

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^T$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2}x^T Q x + q^T x$$

- What is the optimal value p^* ?

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^T$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2}x^T Q x + q^T x$$

- What is the optimal value p^* ?

$$\nabla_x f(x) = 0 \Leftrightarrow Qx = -q$$

$$p^* = \begin{cases} -\frac{1}{2}q^T Q^\dagger q & \text{if } Q \succeq 0 \text{ and } q \in \mathcal{R}(Q) \\ -\infty & \text{otherwise.} \end{cases}$$

- Q^\dagger is the (Moore-Penrose) pseudo-inverse of Q
- For A with singular value decomposition $A = U\Sigma V^T$, $A^\dagger := V\Sigma^{-1}U^T$
- Equals $(A^T A)^{-1} A^T$ if $\text{rank}(A) = n$ and $A^T (A A^T)^{-1}$ if $\text{rank}(A) = m$