Lecture 8 : Duality in Convex Optimization

October 15, 2025
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Today’s Agenda: Convex Duality

Primal Problem

(P) minimize,  fo(x)
fi(x)<0, i=1,....m (1)
x € X.

® Convex domain X C R"
® Every function f; : X C R" — R (real-valued), convex

® Equality constraints Ax = b can be included in X



Today’s Agenda: Convex Duality

Primal Problem

(P) minimize,  fo(x)
f(x)<0, i=1,...
x € X.

® Convex domain X C R"
® Every function f; : X C R" — R (real-valued), convex

® Equality constraints Ax = b can be included in X

® Many developments deal with the “interior” of X

Definition : Interior
The interior of a set X is the set of all points x € X so that:

Ir>0: B(x,r) ={y:lly—x||<r}CX




Today’s Agenda: Convex Duality

Primal Problem

(P) minimize,  fo(x)
fi(x)<0, i=1,....m (1)
x € X.

Convex domain X C R"

Every function f; : X C R" — R (real-valued), convex

Equality constraints Ax = b can be included in X

Many developments deal with the “interior” of X

Definition : Interior

The interior of a set X is the set of all points x € X so that:

Ir>0: B(x,r) ={y:lly—x||<r}CX

What is the interior of a set X that is not full-dimensional?



Relative Interior

® Recall: Affine hull of X is aff(X) := {f1x1 + -+ 0kxk : x; € X, fo:l 0; =1}
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Relative Interior

* Recall: Affine hull of X is aff(X) := {fixi + -+ 0kxx : x € X, S, 0, =1}

Definition Relative Interior

The relative interior of a set X is:

relint(X) := {x € X : 3r > 0 so that B(x,r) Naff(X) € X}. (2)

What is the relative interior of the following sets?
{(x,y) e R* | (x,y) € [0,1]*}

* {(x,y) eR?[x+y=1,x>0,y >0}

{(y) eR? |2 +y? =1}



Convex Duality

Primal Problem

(P) minimize,  fo(x)
fi(x)<0, i=1,....m
x € X.

® Convex domain X C R"
® Every function f; : X C R" — R (real-valued), convex

® Equality constraints Ax = b can be included in X

Assume relint(X) # 0

Assume that (P) has an optimal solution x*, optimal value p* = fo(x*)

e Core questions:
1. For x feasible for (P), how to quantify the optimality gap fo(x) — p*?
2. How to certify that x* is optimal in (P)?
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Convex Duality

Primal Problem

(P) minimize,  fo(x)
filx) <0, i=1,....,m
x € X.

® To construct lower bounds for (P), define the Lagrangian function: for A > 0,

L(x,\) = fy(x +Z)\f



Convex Duality

Primal Problem

(P) minimize,  fo(x)
filx) <0, i=1,....,m
x € X.

® To construct lower bounds for (P), define the Lagrangian function: for A > 0,

L(x,\) = fy(x +Z)\f

® By construction, £(x, A) < fo(x) for any x feasible in (P)



Convex Duality

Primal Problem

(P) minimize,  fo(x)
filx) <0, i=1,....,m
x € X.

® To construct lower bounds for (P), define the Lagrangian function: for A > 0,
L(x,\) = fo(x) + Z/\ fi(x

® By construction, £(x, A) < fo(x) for any x feasible in (P)

® For a lower bound on p*, minimize £(x, \) over x € X to get:

g(N\) == infeex L(x, ).

Dual Problem

(D) s g(\).

Q: Is the dual (D) a convex optimization problem?
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Convex Duality

Primal Problem

(P) minimize,  fo(x)
filx) <0, i=1,....,m
x € X.

® To construct lower bounds for (P), define the Lagrangian function: for A > 0,
L(x,\) = fo(x) + Z/\ fi(x

® By construction, £(x, A) < fo(x) for any x feasible in (P)

® For a lower bound on p*, minimize £(x, \) over x € X to get:

g(N\) == infeex L(x, ).

Dual Problem

(D) s g(\).

Q: Is the dual (D) a convex optimization problem? Yes, even if (P) isn't!
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Geometric Interpretation

Primal-Dual Pair

(P) p* = inf fo(x) (D) d*:=sup g(A)

fi(x) <0, i=1,...,m

® Suppose X = R" and (P) has just one inequality constraint, i.e., m=1
o Let G:={(u,t) eR?: Ix e R", t = fh(x), u=f(x)}

t

What do feasible points in (P) correspond to? Where is p*?

How to express the Lagrangian £(x, \) using the t, u variables?



Geometric Interpretation

Primal-Dual Pair
(P) p* = X|2§< fo(x) (D) d* :=sup g(N)

fi(x) <0, i=1,...,m

® Suppose X = R" and (P) has just one inequality constraint, i.e., m=1
o Let G:={(u,t) eR?: Ix € R", t = fi(x), u=Ffi(x)}

L(x, ) is the same as t + A - u.



Geometric Interpretation

Primal-Dual Pair
(P) p* = X|2§< fo(x) (D) d* :=sup g(N)

fi(x) <0, i=1,...,m

® Suppose X = R" and (P) has just one inequality constraint, i.e., m=1
o Let G:={(u,t) eR?: Ix e R", t = fh(x), u=f(x)}

For A > 0, we have g(\) = infxex(fo(x) + )\ﬂ(x)) =inf, neg(t+ A - u)
What is the value of g()\1) in this figure?



Geometric Interpretation

Primal-Dual Pair
(P) p* = X|2§< fo(x) (D) d* :=sup g(N)

fi(x) <0, i=1,...,m

® Suppose X = R" and (P) has just one inequality constraint, i.e., m=1
o Let G:={(u,t) eR?: Ix e R", t = fh(x), u=f(x)}

The optimal pairs (u, t) yield a supporting hyperplane for G

Intersection with u = 0 is value of g(A1)



Geometric Interpretation

Primal-Dual Pair

(P) p* = inf fo(x) (D) d*:=sup g(A)

fi(x) <0, i=1,...,m

® Suppose X = R" and (P) has just one inequality constraint, i.e., m=1
o Let G:={(u,t) eR?: Ix e R", t = fh(x), u=f(x)}

g(/\l) = /\1 cu+t
9(A1)

\ gA2) =X u+t

What is the value of maxy>og(\)?



Geometric Interpretation

Primal-Dual Pair

(P) p* = inf fo(x) (D) d*:=sup g(A)

fi(x) <0, i=1,...,m

® Suppose X = R" and (P) has just one inequality constraint, i.e., m=1
o Let G:={(u,t) eR?: Ix e R", t = fh(x), u=f(x)}

gM) =X u+t

* g(X2) =Xo-u+t

Here, strong duality does not hold: d* < p*. But the set G is not convex!



Strong Duality in Convex Optimization?
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Strong Duality in Convex Optimization?

Non-zero duality gap

Let X = {(x,y) | y > 1} and consider the problem:

minimize e~
(x,y)eX

x?/y <0.

® |s this a convex optimization problem?
® What are p*, L, g, d*?

® Does p* = d* hold for any primal convex optimization problem if p* finite?



Strong Duality in Convex Optimization?

Non-zero duality gap

Let X = {(x,y) | y > 1} and consider the problem:

minimize e~
(x,y)eX

x?/y <0.

® |s this a convex optimization problem?
® What are p*, L, g, d*?

® Does p* = d* hold for any primal convex optimization problem if p* finite?

pr=1, L(x,y,\)=e *+x?/y



Strong Duality in Convex Optimization?

Non-zero duality gap

Let X = {(x,y) | y > 1} and consider the problem:

minimize e~
(x,y)eX

x?/y <0.

® |s this a convex optimization problem?
® What are p*, L, g, d*?

® Does p* = d* hold for any primal convex optimization problem if p* finite?
pr=1, L(x,y,\)=e *+x?/y

X2
= XA ) = > 0.
g(N) x,l)gl <e +)\y) 0 for any A >0



Strong Duality in Convex Optimization?

Non-zero duality gap

Let X = {(x,y) | y > 1} and consider the problem:

minimize e~
(x,y)eX

x?/y <0.

Is this a convex optimization problem?
What are p*, L, g, d*?
® Does p* = d* hold for any primal convex optimization problem if p* finite?

pr=1, L(x,y,\)=e*+ %)y

X2
= i - —_ = > 0.
g(\) X];lél (e +)\y) 0 for any A >0

® We can write the dual problem as d* = maxy>o 0, with optimal value d* =0



Strong Duality in Convex Optimization?
Non-zero duality gap

Let X = {(x,y) | y > 1} and consider the problem:

minimize e~
(x,y)eX

x?/y <0.

® |s this a convex optimization problem?
® What are p*, L, g, d*?
® Does p* = d* hold for any primal convex optimization problem if p* finite?

pr=1, L(x,y,\)=e*+ %)y

X2
= i - —_ = > 0.
g(\) x,l;gl (e +)\y) 0 for any A >0

® We can write the dual problem as d* = maxy>o 0, with optimal value d* =0
® We have a duality gap: p* —d* =1

® Primal and dual both have finite optimal value, but a gap exists!

® Examples also exist where (D) does not achieve its optimal value... (notes)



Conditions Leading to Strong Duality

Primal Problem

(P) minimize,  fo(x)
fl) <0, i=1
x € X.

P




Conditions Leading to Strong Duality

Primal Problem
(P) minimize,  fo(x)
f(x)<0, i=1,...,m
x e X.

Slater Condition

The functions fi,...,f, : X € R” — R satisfy the Slater condition on X if
there exists x € relint(X) such that

filx)<0, j=1,....,m.




Conditions Leading to Strong Duality

Primal Problem

(P) minimize,  fo(x)
f(x)<0, i=1,....,m
x € X.

Slater Condition

The functions fi,...,f, : X € R” — R satisfy the Slater condition on X if
there exists x € relint(X) such that

filx)<0, j=1,....,m.

® A point x that is strictly feasible
e If all f;(x) are affine, we do not need this (i.e., feasibility is enough)

® |f some f; are affine, we only require f;(x) < O for the non-linear f;



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.




Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

t

AL, DT () u

Geometric intuition for proof:

® Recall G := {(u,t) e R™! : Ix € R", t = fy(x), u; = fi(x),i=1,...,m}



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

t
A

(AL DT g(\) u

® Recall G :={(u,t) e R™!:3x € R", t = fy(x), u= fi(x)} (above, m = 1)
® Same p* if we replace G with A={(u, t)eR™1:IxcR" t > fo(x), u; > fi(x),Vi}



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

t
A

(AL DT g(\) u

® Same p* if we replace G with A={(u, t)eR™:IxeR", t > fo(x), u; > fi(x),Vi}

® |s A a convex set?



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

t
A

1n
D

® Define B:= {(0,t) eR™" xR | t < p*}
e Claim. ANB=10



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® The Separating Hyperplane Theorem will give us the optimal A* and p* = d*



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® The Slater point will guarantee that the hyperplane is not vertical



Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Define the convex set
A={(u,t) eR" xR:3Ix € X,

t>fo(x),ui > fi(x),i=1,...,m}.

® Define the convex set B={(0,t) e R" xR | t < p*}. g
* ANB=0.

o]
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

Define the convex set

A={(u,t) eR" xR:3Ix € X,
t>fo(x),ui > fi(x),i=1,...,m}. i

A )T

Define the convex set B={(0,t) e R" xR | t < p*}. g
ANB=10.

® (Non-strict) Separating Hyperplane Theorem:

o]

(1) (A p)#0,
I\ ) €R™ beR:S(2) Nu+put>b V(ut)eA
(3) MNu+ pt < b, Y(u,t)eB.
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:
(1) (A p) #0,
I\ p) ER™ bER:S(2) Nu+put>bV(u,t)eA
(3) MNu+pt < b,¥(u,t)€B.

® (2) implies A > 0 and p > 0.
Otherwise, inf(, tye.a(Nu+ ut) = —co so # b.

(A )T

[}
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:

(1) (A p)#0,
I\ p) ER™ bER:S(2) Nu+put>bV(u,t)eA
(3) MNu+pt < b,¥(u,t)€B. t
A
® (2) implies A > 0 and p > 0. o G

Otherwise, inf(, tye.a(Nu+ ut) = —co so # b.

® (3) simplifies to ut < b for all t < p*, so up* < b.

[}
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, fi,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® Separating Hyperplane Theorem:

1) (Aw)#0,

I\ p) ER™ bER:S(2) Nu+put>bV(u,t)eA
(3) MNu+pt < b,¥(u,t)€B.

® (2) implies A > 0 and p > 0.
Otherwise, inf(, tye.a(Nu+ ut) = —co so # b.

® (3) simplifies to ut < b for all t < p*, so up* < b.

® Recap: We found A > 0, > 0:

m

L(x,A) 1= > Nifi(x) + pfo(x) > b > pp", Vx € X

i=1

(A )T

[}
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® We found A >0, > 0:

Z/\f )+ pho(x) > b > pp*, Vx e X .

(A, )T

® Case 1. i > 0 (non-vertical hyper-plane) P

o]
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® We found A >0, > 0:

Z/\f )+ pho(x) > b > pp*, Vx e X

(A, )T

® Case 1. i > 0 (non-vertical hyper-plane)
® Divide (4) by u to get: L(x,\/u) > p*, Vx € X.

® This implies g(\/p) := infxex L(x, A\/p) > p*.

o]
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Strong Duality in Convex Optimization

Theorem (Strong Duality in Convex Optimization)

Let X C R” be convex and fy, f1,...,fn : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® We found A >0, > 0:

Z/\f )+ pho(x) > b > pp*, Vx e X

® Case 1. i > 0 (non-vertical hyper-plane)
Divide (4) by u to get: L(x,\/u) > p*, Vx € X. u
This implies g(A/p) := infrex L(x,\/p) > p*.

Weak duality: g(A/p) < p*, so g(A/u) = p*.
® Strong duality holds: p* = d*.
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Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let X C R" be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® We found A > 0, > 0:

m > (A0)7
(4) L(x,\) == Z Nifi(x) + pfo(x) > b > up*, Vx e X ¢
i=1 A
G
® Case 2. u = 0 (vertical hyperplane) »
® 1 =0so (4) implies > Nifi(x) >0, Vx € X
B
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Strong Duality in Convex Optimization

Strong Duality in Convex Optimization

Let X C R" be convex and fy, f1,...,f, : X — R convex functions on X satisfying
the Slater condition on X. Then, p* = d* and the dual attains its optimal value.

® We found A > 0, > 0:

m = (07
(4) L(x,\) == Z Nifi(x) + pfo(x) > b > up*, Vx e X ¢
i=1 A

Case 2. i = 0 (vertical hyperplane)
=0 so (4) implies Y- Aifi(x) >0, Vx € X

o]

® X satisfies Slater condition = fi(x) <O fori=1,....,m
® This together with A > 0 implies that A =0
Contradicts that (A, p) # 0.
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Explicit Equality Constraints

® In applications, useful to make the equality constraints explicit:
minimizeyex fo(x)

subjecttof() 0, i=1,...,m,

<
=b.

where f;,i =0,..., m are convex and A € RP*" has rank p.
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Explicit Equality Constraints

® In applications, useful to make the equality constraints explicit:

minimizeyex fo(x)

subjecttof() 0, i=1,...,m,

<
=b.

where f;,i =0,..., m are convex and A € RP*" has rank p.

® With v € RP denoting Lagrange multipliers for Ax = b, Lagrangian is:

L(x,\,v) = fo(x +Z)\f V'(Ax — b),
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Explicit Equality Constraints

® In applications, useful to make the equality constraints explicit:

minimizeyex fo(x)

subjecttof() 0, i=1,...,m,

<
=b.
where f;,i =0,..., m are convex and A € RP*" has rank p.

® With v € RP denoting Lagrange multipliers for Ax = b, Lagrangian is:

L(x,\,v) = fo(x +Z)\f V'(Ax — b),

e With g(\,v) :=infyex L£(x, A, ), the dual problem becomes:

maximizey , g(\,v)

subject to A > 0.

No sign constraints on v!
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Minimum Euclidean Distance Problem

® Given y € R” and affine set {z : Az = b}
e A e RPX" has full rank p < n. b € RP.

min {||z—y|3 : Az=b}

® Change of variables x := z — y and with b := b — Ay,

min {||x||§ : Ax = b}
® What is the optimal value p*?
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Minimum Euclidean Distance Problem

® Given y € R” and affine set {z : Az = b}

e AcRP*" has full rank p < n. b € RP.

min {|z—y|3 : Az= E}

® Change of variables x := z — y and with b := b— Ay,

min {||x||§ : Ax = b}

® Lagrangian L(x,v) = xX'x + v'(Ax — b) : convex quadratic function of x
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Minimum Euclidean Distance Problem

® Given y € R” and affine set {z : Az = b}

e AcRP*" has full rank p < n. b € RP.

min {|z—y|3 : Az= E}

® Change of variables x := z — y and with b := b— Ay,

min {||x||§ : Ax = b}

® Lagrangian L(x,v) = xX'x + v'(Ax — b) : convex quadratic function of x
® Dual objective: g(v) = infx L(x,v). Can find via:

Vil(x,1)=0 & 2x+Av=0 < X:_%ATV
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Minimum Euclidean Distance Problem

® Given y € R” and affine set {z : Az = b}

e AcRP*" has full rank p < n. b € RP.

min {|z—y|3 : Az= E}

® Change of variables x := z — y and with b := b— Ay,
min {||x||§ : Ax = b}

® Lagrangian L(x,v) = xX'x + v'(Ax — b) : convex quadratic function of x
® Dual objective: g(v) = infx L(x,v). Can find via:
1
Vil(x,1)=0 & 2x+Av=0 < ¥

X:_EAV

* g(v)=L(-3Av,v) = —1/AAY — by
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Minimum Euclidean Distance Problem

<

® Given y € R” and affine set {z : Az = b}
® A e RP*" has full rank p < n. b € RP.

min {Hz—yH% ; AZ:B} 5
z {z: Az =1b}

Change of variables x := z — y and with b := b — Ay,
min {HxH% . Ax = b}

Lagrangian L(x,v) = x'x + t"(Ax — b) : convex quadratic function of x

Dual objective: g(v) = infy L(x,v). Can find via:

Vil(x,v) =0 & X+Av =0 < x:—%ATy

glv)=1L (—%ATV, v)=—1 TAAY — b
® Primal satisfies Slater condition because all constraints are affine, so p* = d*
To find d*:

V.g(r)=0 < —%AATI/ =b.
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Minimum Euclidean Distance Problem

oy
~ 1
® Given y € R” and affine set {z : Az = b} !
e A€ RPXM has full rank p < n. b € RP. ;
1
~ 1
min {||z —yl3 : Az = b} o

{z: Az =0}

Change of variables x := z — y and with b := b — Ay,
min {HxH% . Ax = b}

Lagrangian L(x,v) = x'x + t"(Ax — b) : convex quadratic function of x

Dual objective: g(v) = infy L(x,v). Can find via:

Vil(x,v) =0 & X+Av =0 < x:—%ATy

glv)=1L (—%ATV, v)=—1 TAAY — b
® Primal satisfies Slater condition because all constraints are affine, so p* = d*
To find d*:

V.g(r)=0 < —%AATI/ =b.

® AATis invertible, so v* = —2(AA")"'b, p* = d* = g(v*) = b'(AAT) " 'b
° x* = 1AV = A(AA) b
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Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For @ = Q", consider the following unconstrained problem:

1
min f(x) := 5 TQx + g'x

® What is the optimal value p*?
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Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For @ = Q", consider the following unconstrained problem:

1
min f(x) := 5 TQx + g'x

® What is the optimal value p*?

Vif(x)=0 & Q@x=—gq

. [-1d'Qfq ifQ>=0and g R(Q)
—00 otherwise.

® QT is the (Moore-Penrose) pseudo-inverse of Q
® For A with singular value decomposition A = UL VT, AT := vy -1’
® Equals (ATA)71AT if rank(A) = n and AT(AAT)~ 1 if rank(A) = m
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