

Lecture 9: Quadratic Optimization

KKT Optimality Conditions

Oct 20, 2025

Quick Announcements

- Regular class this Friday
- My office hours this week: Wednesday, 3:15-4:15pm (same Google cal link)
- Monday (Oct 27) - midterm review with the CAs
- Agenda for today
 - Duality in Quadratic Optimization
 - A tiny bit of Saddle Theory
 - KKT Optimality Conditions
 - Fenchel duality

Last Time: Convex Duality Framework

$$\begin{aligned} & \text{minimize}_{x \in X} f_0(x) \\ & \text{subject to } f_i(x) \leq 0, \quad i = 1, \dots, m, \\ & \quad h_j(x) = 0, \quad j = 1, \dots, s \\ & \text{variable } x \in \mathbb{R}^n \end{aligned}$$

- With λ_i, ν_j denoting Lagrange multipliers for g_i, h_j , respectively, Lagrangian is:

$$\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^s \nu_j h_j(x),$$

- With $g(\lambda, \nu) := \inf_{x \in X} \mathcal{L}(x, \lambda, \nu)$, the dual problem becomes:

$$\begin{aligned} & \text{maximize } g(\lambda, \nu) \\ & \text{subject to } \lambda \geq 0. \end{aligned}$$

- For a **convex optimization problem** (f_0, f_i convex, h_j affine), strong duality holds if the **Slater condition** holds: $\exists x \in \text{rel int}(X)$ such that $f_i(x) < 0$ for $i = 1, \dots, m$

QPs and QCQPs

Quadratic Programs

A **Quadratic Program (QP)** is an optimization problem of the form:

$$\min \frac{1}{2} x^T Q x + c^T x$$

$$A_1 x = b_1$$

$$A_2 x \leq b_2$$

where $Q = Q^T$.

QPs and QCQPs

Quadratic Programs

A **Quadratic Program (QP)** is an optimization problem of the form:

$$\min \frac{1}{2} x^T Q x + c^T x$$

$$A_1 x = b_1$$

$$A_2 x \leq b_2$$

where $Q = Q^T$.

Quadratically Constrained Quadratic Programs

A **Quadratically Constrained Quadratic Program (QCQP)** is a problem:

$$\min \frac{1}{2} x^T Q_0 x + c^T x$$

$$x^T Q_i x + q_i^T x + b_i \leq 0, i = 1, \dots, m$$

$$Ax = b$$

where $Q_i, i = 0, \dots, m$ are **symmetric** matrices.

Convex if $Q_0 \succeq 0, Q_i \succeq 0$. Gurobi can now handle **non-convex** QCQPs!

One Problem to Warm Up

Convex QCQP

$$\text{minimize} \quad \frac{1}{2} x^T Q_0 x + q_0^T x + r_0$$

$$\text{subject to} \quad \frac{1}{2} x^T Q_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m,$$

where $Q_0 \succ 0$ and $Q_i \succeq 0$

- **What is the Lagrangian? What is the dual? Does Slater Condition hold?**

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^T$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2}x^T Q x + q^T x$$

- What is the optimal value p^* ?

Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For $Q = Q^T$, consider the following unconstrained problem:

$$\min f(x) := \frac{1}{2}x^T Q x + q^T x$$

- What is the optimal value p^* ?

$$\nabla_x f(x) = 0 \Leftrightarrow Qx = -q$$

$$p^* = \begin{cases} -\frac{1}{2}q^T Q^\dagger q & \text{if } Q \succeq 0 \text{ and } q \in \mathcal{R}(Q) \\ -\infty & \text{otherwise.} \end{cases}$$

- For Q with singular value decomposition $Q = U\Sigma V^T$, $Q^\dagger := V\Sigma^{-1}U^T$

Convex QCQP

QCQP

$$\text{minimize} \quad \frac{1}{2} x^T Q_0 x + q_0^T x + r_0$$

$$\text{subject to} \quad \frac{1}{2} x^T Q_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m,$$

where $Q_0 \succ 0$ and $Q_i \succeq 0$

- The Lagrangian is:

Convex QCQP

QCQP

$$\text{minimize} \quad \frac{1}{2} x^T Q_0 x + q_0^T x + r_0$$

$$\text{subject to} \quad \frac{1}{2} x^T Q_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m,$$

where $Q_0 \succ 0$ and $Q_i \succeq 0$

- The Lagrangian is:

$$\mathcal{L}(x, \lambda) = \frac{1}{2} x^T Q(\lambda) x + q(\lambda)^T x + r(\lambda),$$

$$\text{where } Q(\lambda) = Q_0 + \sum_{i=1}^m \lambda_i Q_i, \quad q(\lambda) = q_0 + \sum_{i=1}^m \lambda_i q_i, \quad r(\lambda) = r_0 + \sum_{i=1}^m \lambda_i r_i$$

Convex QCQP

QCQP

$$\begin{aligned} & \text{minimize} \quad \frac{1}{2} x^T Q_0 x + q_0^T x + r_0 \\ & \text{subject to} \quad \frac{1}{2} x^T Q_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m, \end{aligned}$$

where $Q_0 \succ 0$ and $Q_i \succeq 0$

- The Lagrangian is:

$$\mathcal{L}(x, \lambda) = \frac{1}{2} x^T Q(\lambda) x + q(\lambda)^T x + r(\lambda),$$

where $Q(\lambda) = Q_0 + \sum_{i=1}^m \lambda_i Q_i$, $q(\lambda) = q_0 + \sum_{i=1}^m \lambda_i q_i$, $r(\lambda) = r_0 + \sum_{i=1}^m \lambda_i r_i$

- Because $\lambda \geq 0$, we have $Q(\lambda) \succ 0$ and therefore:

$$g(\lambda) = \inf_x \mathcal{L}(x, \lambda) = -\frac{1}{2} q(\lambda)^T Q(\lambda)^{-1} q(\lambda) + r(\lambda).$$

- We can express the dual problem as:

$$\max_{\lambda \geq 0} -\frac{1}{2} q(\lambda)^T Q(\lambda)^{-1} q(\lambda) + r(\lambda)$$

Convex QCQP

QCQP

$$\text{minimize} \quad \frac{1}{2} x^T Q_0 x + q_0^T x + r_0$$

$$\text{subject to} \quad \frac{1}{2} x^T Q_i x + q_i^T x + r_i \leq 0, \quad i = 1, \dots, m,$$

where $Q_0 \succ 0$ and $Q_i \succeq 0$

- The Lagrangian is:

$$\mathcal{L}(x, \lambda) = \frac{1}{2} x^T Q(\lambda) x + q(\lambda)^T x + r(\lambda),$$

where $Q(\lambda) = Q_0 + \sum_{i=1}^m \lambda_i Q_i$, $q(\lambda) = q_0 + \sum_{i=1}^m \lambda_i q_i$, $r(\lambda) = r_0 + \sum_{i=1}^m \lambda_i r_i$

- Because $\lambda \geq 0$, we have $Q(\lambda) \succ 0$ and therefore:

$$g(\lambda) = \inf_x \mathcal{L}(x, \lambda) = -\frac{1}{2} q(\lambda)^T Q(\lambda)^{-1} q(\lambda) + r(\lambda).$$

- We can express the dual problem as:

$$\max_{\lambda \geq 0} -\frac{1}{2} q(\lambda)^T Q(\lambda)^{-1} q(\lambda) + r(\lambda)$$

- Slater condition holds if there exists an x with

$$\frac{1}{2} x^T Q_i x + q_i^T x + r_i < 0, \quad i = 1, \dots, m.$$

Other Important Examples in the Notes

- A **non-convex** QCQP: for $Q = Q^T$ and $Q \not\succeq 0$, consider:

$$\begin{aligned} & \text{minimize } x^T Q x + 2c^T x \\ & \text{subject to } x^T x \leq 1 \end{aligned}$$

- Regularized Support Vector Machines (SVM)
- Entropy Maximization

Saddle Point Theory

- Optional reading in the notes, but very insightful

Saddle Point Theory

- Optional reading in the notes, but very insightful

Alternative Formulation of Primal and Dual Problems

We can express **the optimal values of the primal and dual** as:

$$p^* = \inf_{x \in X} \sup_{\lambda \geq 0} \mathcal{L}(x, \lambda)$$

$$d^* = \sup_{\lambda \geq 0} \inf_{x \in X} \mathcal{L}(x, \lambda)$$

Saddle Point Theory

- Optional reading in the notes, but very insightful

Alternative Formulation of Primal and Dual Problems

We can express **the optimal values of the primal and dual** as:

$$p^* = \inf_{x \in X} \sup_{\lambda \geq 0} \mathcal{L}(x, \lambda)$$

$$d^* = \sup_{\lambda \geq 0} \inf_{x \in X} \mathcal{L}(x, \lambda)$$

- **Weak duality** restatement:

$$\sup_{\lambda \geq 0} \inf_{x \in X} \mathcal{L}(x, \lambda) \leq \inf_{x \in X} \sup_{\lambda \geq 0} \mathcal{L}(x, \lambda)$$

- **Strong duality** restatement:

$$\sup_{\lambda \geq 0} \inf_{x \in X} \mathcal{L}(x, \lambda) = \inf_{x \in X} \sup_{\lambda \geq 0} \mathcal{L}(x, \lambda).$$

- Strong duality holds exactly when we can interchange the order of **min** and **max**

Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

- Game theoretic interpretation : zero-sum game
- y player maximizes, x player minimizes. Difference is who moves first.

Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

- For any f, X, Y , the **max-min inequality** (i.e., “weak duality”) holds:

$$\max_{y \in Y} \min_{x \in X} f(x, y) \leq \min_{x \in X} \max_{y \in Y} f(x, y)$$

Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

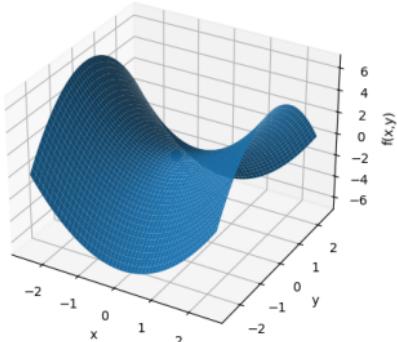
$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

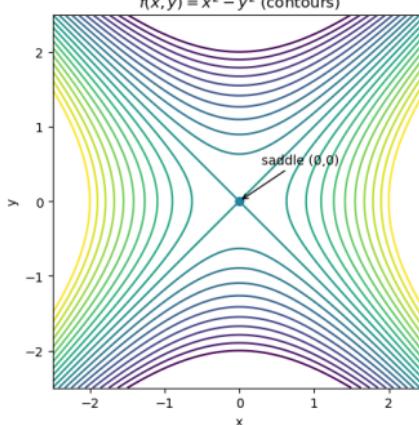
- When do f, X, Y satisfy the **saddle-point property**, i.e., equality holds:

$$\max_{y \in Y} \min_{x \in X} f(x, y) = \min_{x \in X} \max_{y \in Y} f(x, y) ?$$

$$f(x, y) = x^2 - y^2 \text{ (surface)}$$



$$f(x, y) = x^2 - y^2 \text{ (contours)}$$



Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

$$\max_{y \in Y} \min_{x \in X} f(x, y)$$

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

Sion-Kakutani Theorem

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$ be convex and compact subsets and let $f : X \times Y \rightarrow \mathbb{R}$ be a continuous function that is convex in $x \in X$ for any fixed $y \in Y$ and is concave in $y \in Y$ for any fixed $x \in X$. Then,

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Generalizations possible: Y only needs to be convex (not compact); $f(\cdot, y)$ must be quasi-convex on X and with closed lower level sets (for any $y \in Y$); and $f(x, \cdot)$ must be quasi-concave on Y and with closed upper level sets (for any $x \in X$)

Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \text{minimize} && f_0(x) \\ & && f_i(x) \leq 0, \quad i = 1, \dots, m \\ & && h_j(x) = 0, \quad j = 1, \dots, s \\ & && x \in X \\ \text{variables} \quad &&& x \in \mathbb{R}^n. \end{aligned}$$

- Will **not** assume convexity unless explicitly stated...
- **Key Q:** “We have a feasible x . What are the conditions (necessary, sufficient, necessary and sufficient) for x to be optimal?”
- What to hope for?

Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \text{minimize} && f_0(x) \\ & && f_i(x) \leq 0, \quad i = 1, \dots, m \\ & && h_j(x) = 0, \quad j = 1, \dots, s \\ & && x \in X \\ & \text{variables} && x \in \mathbb{R}^n. \end{aligned}$$

- Will **not** assume convexity unless explicitly stated...
- **Key Q:** “We have a feasible x . What are the conditions (necessary, sufficient, necessary and sufficient) for x to be optimal?”
- What to hope for?
 - **necessary** conditions for the optimality of x^*
 - **sufficient** conditions for the **local optimality** of x^*
- Cannot expect **global optimality** of x^* without some “global” requirement on f_i, h_j (e.g., convexity)

Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \text{minimize} && f_0(x) \\ & \lambda_i \rightarrow && f_i(x) \leq 0, \quad i = 1, \dots, m \\ & \nu_j \rightarrow && h_j(x) = 0, \quad j = 1, \dots, s \\ & && x \in X \\ \text{variables} & && x \in \mathbb{R}^n. \end{aligned}$$

- If we had **strong duality** and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right]$$

Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \text{minimize} && f_0(x) \\ & \lambda_i \rightarrow && f_i(x) \leq 0, \quad i = 1, \dots, m \\ & \nu_j \rightarrow && h_j(x) = 0, \quad j = 1, \dots, s \\ & && x \in X \\ & \text{variables} && x \in \mathbb{R}^n. \end{aligned}$$

- If we had **strong duality** and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$\begin{aligned} f_0(x^*) = g(\lambda^*, \nu^*) &= \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right] \\ &\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) \end{aligned}$$

Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \text{minimize} && f_0(x) \\ & \lambda_i \rightarrow && f_i(x) \leq 0, \quad i = 1, \dots, m \\ & \nu_j \rightarrow && h_j(x) = 0, \quad j = 1, \dots, s \\ & && x \in X \\ & \text{variables} && x \in \mathbb{R}^n. \end{aligned}$$

- If we had **strong duality** and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$\begin{aligned} f_0(x^*) &= g(\lambda^*, \nu^*) = \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right] \\ &\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) \\ &\leq f_0(x^*) \end{aligned}$$

Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \text{minimize} && f_0(x) \\ & \lambda_i \rightarrow && f_i(x) \leq 0, \quad i = 1, \dots, m \\ & \nu_j \rightarrow && h_j(x) = 0, \quad j = 1, \dots, s \\ & && x \in X \\ & \text{variables} && x \in \mathbb{R}^n. \end{aligned}$$

- If we had **strong duality** and x^* optimal for (\mathcal{P}) and λ^*, ν^* optimal for (\mathcal{D}) :

$$\begin{aligned} f_0(x^*) &= g(\lambda^*, \nu^*) = \inf_{x \in X} \left[f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^s \nu_j^* h_j(x) \right] \\ &\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) \\ &\leq f_0(x^*) \end{aligned}$$

- This implies **complementary slackness**: $\lambda_i^* \cdot f_i(x^*) = 0$, or equivalently,

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0 \quad \text{and} \quad f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \min_x \quad f_0(x) \\ (\lambda_i \rightarrow) \quad & f_i(x) \leq 0, \quad i = 1, \dots, m \\ (\nu_j \rightarrow) \quad & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X. \end{aligned}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The **Karush-Kuhn-Tucker (KKT) conditions** at x^* are given by:

KKT Conditions

Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \min_x \quad f_0(x) \\ (\lambda_i \rightarrow) \quad & f_i(x) \leq 0, \quad i = 1, \dots, m \\ (\nu_j \rightarrow) \quad & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X. \end{aligned}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The **Karush-Kuhn-Tucker (KKT) conditions** at x^* are given by:

KKT Conditions

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) + \sum_{j=1}^p \nu_j^* \cdot \nabla h_j(x^*), \quad (\text{"Stationarity"})$$

Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \min_x \quad f_0(x) \\ (\lambda_i \rightarrow) \quad & f_i(x) \leq 0, \quad i = 1, \dots, m \\ (\nu_j \rightarrow) \quad & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X. \end{aligned}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The **Karush-Kuhn-Tucker (KKT) conditions** at x^* are given by:

KKT Conditions

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) + \sum_{j=1}^p \nu_j^* \cdot \nabla h_j(x^*), \quad (\text{"Stationarity"})$$

$$f_i(x^*) \leq 0, \quad i = 1, \dots, m; \quad h_j(x^*) = 0, \quad j = 1, \dots, s, \quad (\text{"Primal Feasibility"})$$

Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \min_x \quad f_0(x) \\ (\lambda_i \rightarrow) \quad & f_i(x) \leq 0, \quad i = 1, \dots, m \\ (\nu_j \rightarrow) \quad & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X. \end{aligned}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The **Karush-Kuhn-Tucker (KKT) conditions** at x^* are given by:

KKT Conditions

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) + \sum_{j=1}^s \nu_j^* \cdot \nabla h_j(x^*), \quad (\text{"Stationarity"})$$

$$f_i(x^*) \leq 0, \quad i = 1, \dots, m; \quad h_j(x^*) = 0, \quad j = 1, \dots, s, \quad (\text{"Primal Feasibility"})$$

$$\lambda^* \geq 0 \quad (\text{"Dual Feasibility"})$$

Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

$$\begin{aligned} (\mathcal{P}) \quad & \min_x \quad f_0(x) \\ (\lambda_i \rightarrow) \quad & f_i(x) \leq 0, \quad i = 1, \dots, m \\ (\nu_j \rightarrow) \quad & h_j(x) = 0, \quad j = 1, \dots, s \\ & x \in X. \end{aligned}$$

- $x^* \in X$, $\lambda^* \in \mathbb{R}^m$ and ν^* dual variables
- The **Karush-Kuhn-Tucker (KKT) conditions** at x^* are given by:

KKT Conditions

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) + \sum_{j=1}^s \nu_j^* \cdot \nabla h_j(x^*), \quad (\text{"Stationarity"})$$

$$f_i(x^*) \leq 0, \quad i = 1, \dots, m; \quad h_j(x^*) = 0, \quad j = 1, \dots, s, \quad (\text{"Primal Feasibility"})$$

$$\lambda^* \geq 0 \quad (\text{"Dual Feasibility"})$$

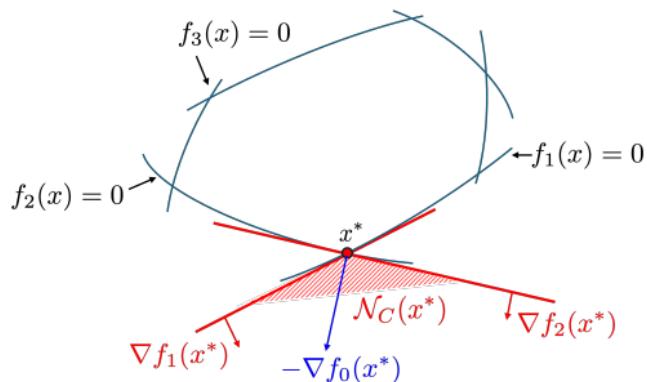
$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m \quad (\text{"Complementary Slackness"}).$$

Geometry Behind KKT Conditions: Inequality Case

KKT Conditions For Case Without Equality Constraints

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) \quad (\text{"Stationarity"})$$

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m \quad (\text{"Complementary Slackness"}).$$

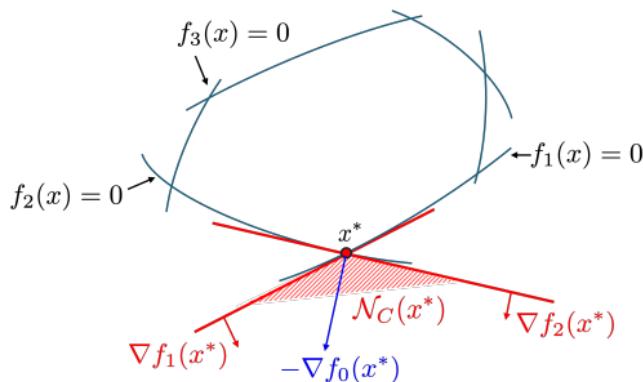


Geometry Behind KKT Conditions: Inequality Case

KKT Conditions For Case Without Equality Constraints

$$0 = \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla f_i(x^*) \quad (\text{"Stationarity"})$$

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m \quad (\text{"Complementary Slackness"}).$$



- Consider all **active** constraints at x^* , i.e., $\{i : f_i(x^*) = 0\}$
- **Stationarity:** $-\nabla f_0(x^*)$ is conic combination of gradients $\nabla f_i(x^*)$ of **active constraints**
- (Complementary slackness: only **active** constraints have $\lambda_i > 0$)
- FYI: $\mathcal{N}_C(x^*) := \{\sum_{i=1}^m \lambda_i \nabla f_i(x^*) : \lambda \geq 0\}$ is the **normal cone** at x^*

Failure of KKT Conditions

- In some cases, KKT conditions **are not necessary** at optimality

KKT Conditions Failing

$$\begin{aligned} \min_{x \in \mathbb{R}} \quad & x \\ \text{subject to} \quad & x^3 \geq 0. \end{aligned}$$

- Is this a convex optimization problem? What is p^* ? What is x^* ?

Failure of KKT Conditions

- In some cases, KKT conditions **are not necessary** at optimality

KKT Conditions Failing

$$\begin{aligned} \min_{x \in \mathbb{R}} \quad & x \\ \text{subject to} \quad & x^3 \geq 0. \end{aligned}$$

- Is this a convex optimization problem? What is p^* ? What is x^* ?
- $f_0(x) = x$ and $f_1(x) = -x^3$. Nonconvex because of f_1 .
- Feasible set is $(-\infty, 0]$; optimal value is $p^* = 0$, optimal solution $x^* = 0$.
- KKT condition fails because $\nabla f_0(x^*) = 1$ while $\nabla f_1(x^*) = 0$
- There is no $\lambda \geq 0$ such that $-\nabla f_0(x^*) = \lambda \nabla f_1(x^*)$.

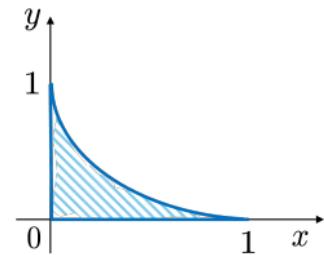
Failure of KKT Conditions - More Subtle

KKT Conditions Failing

$$\min_{x,y \in \mathbb{R}} -x$$

$$y - (1 - x)^3 \leq 0$$

$$x, y \geq 0$$



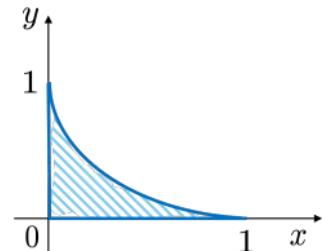
Failure of KKT Conditions - More Subtle

KKT Conditions Failing

$$\min_{x,y \in \mathbb{R}} -x$$

$$y - (1 - x)^3 \leq 0$$

$$x, y \geq 0$$



- $f_0(x, y) := -x$, $f_1(x, y) := y - (1 - x)^3$, $f_2(x, y) := -x$ and $f_3(x, y) := -y$.
- Gradients of objective and binding constraints f_1 and f_3 at $(x^*, y^*) := (1, 0)$:

$$\nabla f_0(x^*, y^*) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \quad \nabla f_1(x^*, y^*) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \nabla f_3(x^*, y^*) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}.$$

- No $\lambda_1, \lambda_3 \geq 0$ satisfy $-\nabla f_0(x^*, y^*) = \lambda_1 \nabla f_1(x^*, y^*) + \lambda_3 \nabla f_3(x^*, y^*)$
- Reason for failing: the linearization of constraint $f_1 \leq 0$ around $(1, 0)$ is $y \leq 0$, which is parallel to the existing constraint $f_3(x, y) := -y \geq 0$

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, \dots, m\} : f_i(x^*) = 0\}$.

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, \dots, m\} : f_i(x^*) = 0\}$.

If one of the following holds, KKT conditions are **necessary** for x^* to be optimal:

1. Affine Active Constraints

- all **active** constraints are affine functions

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, \dots, m\} : f_i(x^*) = 0\}$.

If one of the following holds, KKT conditions are **necessary** for x^* to be optimal:

1. Affine Active Constraints

- all **active** constraints are affine functions

2. Slater Conditions

- all functions $\{h_j\}_{j=1}^s$ in equality constraints are **affine**
- all functions $\{f_i : i \in I(x)\}$ in **active** inequality constraints are **convex**
- $\exists \bar{x} \in \text{rel int}(X) : f_i(\bar{x}) < 0$ for all $i \in I(x^*)$

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, \dots, m\} : f_i(x^*) = 0\}$.

If one of the following holds, KKT conditions are **necessary** for x^* to be optimal:

1. Affine Active Constraints

- all **active** constraints are affine functions

2. Slater Conditions

- all functions $\{h_j\}_{j=1}^s$ in equality constraints are **affine**
- all functions $\{f_i : i \in I(x)\}$ in **active** inequality constraints are **convex**
- $\exists \bar{x} \in \text{rel int}(X) : f_i(\bar{x}) < 0$ for all $i \in I(x^*)$

3. Regular Point (Linearly Independent Gradients)

- x^* is a **regular** point: gradients of all active constraints $\{\nabla f_i(x) : i \in I(x^*)\} \cup \{\nabla h_j(x) : j = 1, \dots, s\}$ are linearly independent

Constraint Qualification Conditions

Setup: x^* feasible. Active inequality constraints: $I(x^*) = \{i \in \{1, \dots, m\} : f_i(x^*) = 0\}$.

If one of the following holds, KKT conditions are **necessary** for x^* to be optimal:

1. Affine Active Constraints

- all **active** constraints are affine functions

2. Slater Conditions

- all functions $\{h_j\}_{j=1}^s$ in equality constraints are **affine**
- all functions $\{f_i : i \in I(x)\}$ in **active** inequality constraints are **convex**
- $\exists \bar{x} \in \text{rel int}(X) : f_i(\bar{x}) < 0$ for all $i \in I(x^*)$

3. Regular Point (Linearly Independent Gradients)

- x^* is a **regular** point: gradients of all active constraints $\{\nabla f_i(x) : i \in I(x^*)\} \cup \{\nabla h_j(x) : j = 1, \dots, s\}$ are linearly independent

4. Mangasarian-Fromovitz

- the gradients of equality constraints are linearly independent
- $\exists v \in \mathbb{R}^n : v^T \nabla f_i(x^*) < 0$ for $i \in I(x^*)$ and $v^T \nabla h_j(x^*) = 0, j = 1, \dots, s$

Second Order **Necessary** Conditions

Second Order **Necessary** Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Second Order **Necessary** Conditions

Second Order **Necessary** Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

If x^* is locally optimal, then there exist unique $\lambda^* \geq 0$ and ν^* such that:

Second Order **Necessary** Conditions

Second Order **Necessary** Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

If x^* is locally optimal, then there exist unique $\lambda^* \geq 0$ and ν^* such that:

- (λ^*, ν^*) certify that x^* satisfies KKT conditions:

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m$$

$$\nabla_x \mathcal{L}(x^*; \lambda^*, \nu^*) = \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^s \nu_j^* \nabla h_j(x^*) = 0.$$

Second Order **Necessary** Conditions

Second Order **Necessary** Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

If x^* is **locally optimal**, then there exist unique $\lambda^* \geq 0$ and ν^* such that:

- (λ^*, ν^*) certify that x^* satisfies KKT conditions:

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m$$

$$\nabla_x \mathcal{L}(x^*; \lambda^*, \nu^*) = \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^s \nu_j^* \nabla h_j(x^*) = 0.$$

- The Hessian $\nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*)$ of \mathcal{L} in x is **positive semidefinite** on the orthogonal complement M^* to the set of gradients of active constraints at x^* :

$$d^T \nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*) d \geq 0 \text{ for any } d \in M^*$$

where $M^* := \{d \mid d^T \nabla f_i(x^*) = 0, \forall i \in I(x^*), d^T \nabla h_j(x^*) = 0, j = 1, \dots, s\}$.

Second Order **Sufficient** Conditions

Second Order **Sufficient** Local Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^* \geq 0$ and ν^* such that

Second Order **Sufficient** Conditions

Second Order **Sufficient** Local Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^* \geq 0$ and ν^* such that

- (λ^*, ν^*) certify that x^* satisfies KKT conditions;

Second Order **Sufficient** Conditions

Second Order **Sufficient** Local Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^* \geq 0$ and ν^* such that

- (λ^*, ν^*) certify that x^* satisfies KKT conditions;
- The Hessian $\nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*)$ of \mathcal{L} in x is **positive definite** on the orthogonal complement M^{**} to the set of gradients of **equality constraints** and **active inequality constraints at x^* that have positive Lagrange multipliers λ_i^*** :

Second Order **Sufficient** Conditions

Second Order **Sufficient** Local Optimality Conditions

x^* feasible for problem (\mathcal{P}) and **regular**, $\{f_i\}_{i=1}^m, \{h_j\}_{j=1}^s$ **twice** continuously differentiable in neighborhood of x^* . Let $\mathcal{L}(x; \lambda, \nu)$ denote the Lagrangian function.

Assume there exist Lagrange multipliers $\lambda^* \geq 0$ and ν^* such that

- (λ^*, ν^*) certify that x^* satisfies KKT conditions;
- The Hessian $\nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*)$ of \mathcal{L} in x is **positive definite** on the orthogonal complement M^{**} to the set of gradients of **equality constraints** and **active inequality constraints at x^* that have positive Lagrange multipliers λ_i^*** :

$$d^T \nabla_x^2 \mathcal{L}(x^*; \lambda^*, \nu^*) d > 0 \text{ for any } d \in M^{**}$$

where $M^{**} := \{d \mid d^T \nabla f_i(x^*) = 0, \forall i \in I(x^*) : \lambda_i^* > 0 \text{ and}$

$$d^T \nabla h_j(x^*) = 0, j = 1, \dots, s\}.$$

Then x^* is locally optimal for (\mathcal{P}) .

KKT Conditions and Local vs Global Optimality

To summarize...

KKT Conditions and Optimality Notions

- To use the KKT conditions you must first check that one of the constraint qualification conditions holds. Typically, the Slater Conditions might be easiest; the Mangasarian-Fromovitz are the most general from the ones we stated
- If the constraint qualification conditions hold, then:
 - For a **general** optimization problem, the KKT conditions are **necessary or sufficient** (depending on which variant you use) for **local optimality** at x^*
 - For a **convex** optimization problem, the KKT conditions are **necessary and sufficient for global optimality** at x^*

A Consumer's Constrained Consumption Problem

An Example

Consider a consumer trying to maximize his utility function $u(x)$ by choosing which bundle of goods $x \in \mathbb{R}_n^+$ to purchase. The goods have prices $p > 0$ and the consumer has a budget $B > 0$. The consumer's problem can be stated as:

$$\text{maximize } u(x)$$

$$\text{such that } p^T x \leq B$$

$$x \geq 0,$$

where $u(x)$ is a concave utility function.

- Write down the first-order KKT conditions and try to interpret them.
- Are these conditions **necessary** for optimality?
- Are these conditions **sufficient** for optimality?

A Consumer's Constrained Consumption Problem

$$\text{minimize } -u(x)$$

$$(\lambda \rightarrow) \quad p^T x \leq B$$

$$(\mu \rightarrow) \quad -x \leq 0,$$

With $\lambda \in \mathbb{R}_+$, $\mu \in \mathbb{R}_+^n$ denoting the Lagrange multipliers, the Lagrangian becomes:

$$\mathcal{L}(x, \lambda, \mu) = -u(x) + \lambda(p^T x - B) - x^T \mu.$$

A Consumer's Constrained Consumption Problem

$$\text{minimize } -u(x)$$

$$(\lambda \rightarrow) \quad p^T x \leq B$$

$$(\mu \rightarrow) \quad -x \leq 0,$$

With $\lambda \in \mathbb{R}_+$, $\mu \in \mathbb{R}_+^n$ denoting the Lagrange multipliers, the Lagrangian becomes:

$$\mathcal{L}(x, \lambda, \mu) = -u(x) + \lambda(p^T x - B) - x^T \mu.$$

$$0 = -\frac{\partial u}{\partial x_i} + \lambda p_i - \mu_i, \quad i = 1, \dots, n \quad (\text{"Stationarity"})$$

$$p^T x \leq B, \quad x \geq 0 \quad (\text{"Primal Feasibility"})$$

$$\lambda \geq 0, \quad \mu \geq 0 \quad (\text{"Dual Feasibility"})$$

$$\lambda \cdot (p^T x - B) = 0 \quad (\text{"Complementary Slackness" 1})$$

$$\mu_i \cdot x_i = 0 \quad (\text{"Complementary Slackness" 2}).$$

A Consumer's Constrained Consumption Problem

$$\text{minimize } -u(x)$$

$$(\lambda \rightarrow) \quad p^T x \leq B$$

$$(\mu \rightarrow) \quad -x \leq 0,$$

With $\lambda \in \mathbb{R}_+$, $\mu \in \mathbb{R}_+^n$ denoting the Lagrange multipliers, the Lagrangian becomes:

$$\mathcal{L}(x, \lambda, \mu) = -u(x) + \lambda(p^T x - B) - x^T \mu.$$

$$0 = -\frac{\partial u}{\partial x_i} + \lambda p_i - \mu_i, \quad i = 1, \dots, n \quad (\text{"Stationarity"})$$

$$p^T x \leq B, \quad x \geq 0 \quad (\text{"Primal Feasibility"})$$

$$\lambda \geq 0, \quad \mu \geq 0 \quad (\text{"Dual Feasibility"})$$

$$\lambda \cdot (p^T x - B) = 0 \quad (\text{"Complementary Slackness" 1})$$

$$\mu_i \cdot x_i = 0 \quad (\text{"Complementary Slackness" 2}).$$

Case 1. If the budget constraint is not binding, $p^T x < B$

- $\lambda = 0$ and $\mu_i = 0, \forall i : x_i > 0$ (complementary slackness)
- For any $x_i > 0$, we must have: $\frac{\partial u}{\partial x_i} = -\mu_i = 0$
- The consumer purchases the unconstrained optimal amount of each good i

A Consumer's Constrained Consumption Problem

$$0 = -\frac{\partial u}{\partial x_i} + \lambda p_i - \mu_i, \quad i = 1, \dots, n \quad (\text{"Stationarity"})$$

$$p^T x \leq B, \quad x \geq 0 \quad (\text{"Primal Feasibility"})$$

$$\lambda \geq 0, \quad \mu \geq 0 \quad (\text{"Dual Feasibility"})$$

$$\lambda \cdot (p^T x - B) = 0 \quad (\text{"Complementary Slackness" 1})$$

$$\mu_i \cdot x_i = 0 \quad (\text{"Complementary Slackness" 2}).$$

Case 2.

- $p^T x = B$, then can have $\lambda = 0$ or $\lambda > 0$.
- Case $\lambda > 0$:

$$i : x_i > 0 \quad \Rightarrow \mu_i = 0 \quad \Rightarrow \quad \frac{\partial u}{\partial x_i} = \lambda p_i \quad \Leftrightarrow \quad \frac{\frac{\partial u}{\partial x_i}}{p_i} = \lambda$$

$$i : x_i > 0, \quad j : x_j = 0 \quad \Rightarrow \quad \frac{\frac{\partial u}{\partial x_i}}{x_i} = \lambda > \frac{\frac{\partial u}{\partial x_j}}{x_j} = \lambda - \mu_j$$

A Consumer's Constrained Consumption Problem

$$0 = -\frac{\partial u}{\partial x_i} + \lambda p_i - \mu_i, \quad i = 1, \dots, n \quad (\text{"Stationarity"})$$

$$p^T x \leq B, \quad x \geq 0 \quad (\text{"Primal Feasibility"})$$

$$\lambda \geq 0, \quad \mu \geq 0 \quad (\text{"Dual Feasibility"})$$

$$\lambda \cdot (p^T x - B) = 0 \quad (\text{"Complementary Slackness" 1})$$

$$\mu_i \cdot x_i = 0 \quad (\text{"Complementary Slackness" 2}).$$

Case 2.

- $p^T x = B$, then can have $\lambda = 0$ or $\lambda > 0$.
- Case $\lambda > 0$:

$$i : x_i > 0 \quad \Rightarrow \mu_i = 0 \quad \Rightarrow \quad \frac{\partial u}{\partial x_i} = \lambda p_i \quad \Leftrightarrow \quad \frac{\frac{\partial u}{\partial x_i}}{p_i} = \lambda$$

$$i : x_i > 0, \quad j : x_j = 0 \quad \Rightarrow \quad \frac{\frac{\partial u}{\partial x_i}}{x_i} = \lambda > \frac{\frac{\partial u}{\partial x_j}}{x_j} = \lambda - \mu_j$$

- **Bang-for-the-buck** $\frac{\frac{\partial u}{\partial x_i}}{x_i}$ for all **consumed** goods ($x_i > 0$) must be the same, and larger than for **unconsumed** goods

Fenchel Duality

- Elegant and concise theory of optimization duality

Fenchel Duality

- Elegant and concise theory of optimization duality

Conjugate of a function

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$. The **conjugate** of f is the function $f^* : \mathbb{R}^n \rightarrow \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

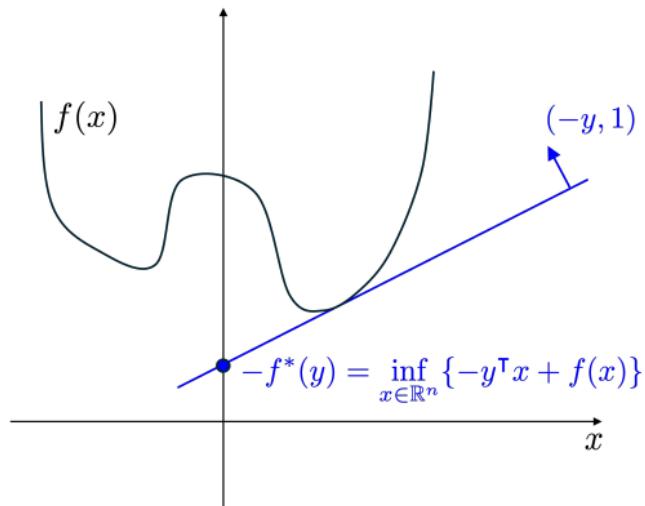
Fenchel Duality

- Elegant and concise theory of optimization duality

Conjugate of a function

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$. The **conjugate** of f is the function $f^* : \mathbb{R}^n \rightarrow \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$



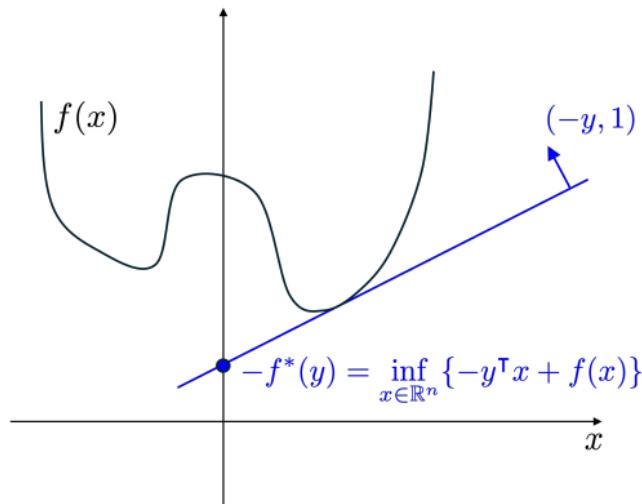
Fenchel Duality

- Elegant and concise theory of optimization duality

Conjugate of a function

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$. The **conjugate** of f is the function $f^* : \mathbb{R}^n \rightarrow \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$



- Is f^* convex or concave?

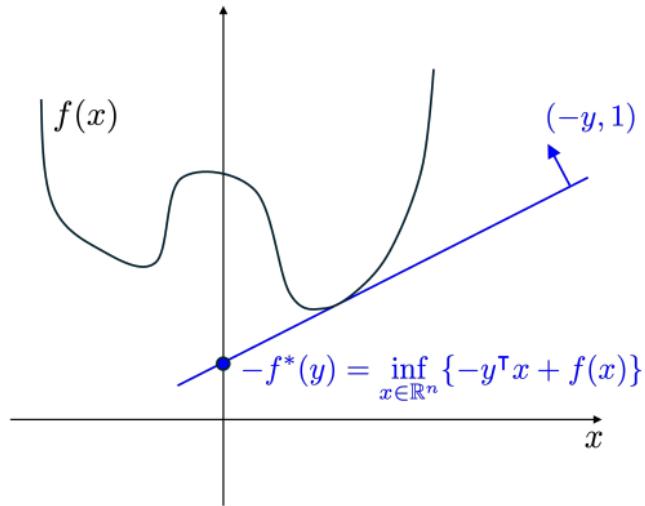
Fenchel Duality

- Elegant and concise theory of optimization duality

Conjugate of a function

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$. The **conjugate** of f is the function $f^* : \mathbb{R}^n \rightarrow \mathbb{R}$ defined as:

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$



- If f convex and $\text{epi}(f)$ closed, f^* characterizes f in terms of supporting hyperplanes

Conjugates - Examples

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

The zero function.

For $f(x) = 0$, the conjugate will depend on the relevant domain:

- If $f : \mathbb{R} \rightarrow \mathbb{R}$, then
- If $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, then
- If $f : [-1, 1] \rightarrow \mathbb{R}$, then
- If $f : [0, 1] \rightarrow \mathbb{R}$, then

Conjugates - Examples

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

The zero function.

For $f(x) = 0$, the conjugate will depend on the relevant domain:

- If $f : \mathbb{R} \rightarrow \mathbb{R}$, then $f^* : \{0\} \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, then
- If $f : [-1, 1] \rightarrow \mathbb{R}$, then
- If $f : [0, 1] \rightarrow \mathbb{R}$, then

Conjugates - Examples

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

The zero function.

For $f(x) = 0$, the conjugate will depend on the relevant domain:

- If $f : \mathbb{R} \rightarrow \mathbb{R}$, then $f^* : \{0\} \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, then $f^* : (-\infty, 0] \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : [-1, 1] \rightarrow \mathbb{R}$, then
- If $f : [0, 1] \rightarrow \mathbb{R}$, then

Conjugates - Examples

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

The zero function.

For $f(x) = 0$, the conjugate will depend on the relevant domain:

- If $f : \mathbb{R} \rightarrow \mathbb{R}$, then $f^* : \{0\} \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, then $f^* : (-\infty, 0] \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : [-1, 1] \rightarrow \mathbb{R}$, then $f^* : \mathbb{R} \rightarrow \mathbb{R}$ and $f^*(y) = |y|$.
- If $f : [0, 1] \rightarrow \mathbb{R}$, then

Conjugates - Examples

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

The zero function.

For $f(x) = 0$, the conjugate will depend on the relevant domain:

- If $f : \mathbb{R} \rightarrow \mathbb{R}$, then $f^* : \{0\} \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, then $f^* : (-\infty, 0] \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : [-1, 1] \rightarrow \mathbb{R}$, then $f^* : \mathbb{R} \rightarrow \mathbb{R}$ and $f^*(y) = |y|$.
- If $f : [0, 1] \rightarrow \mathbb{R}$, then $f^* : \mathbb{R} \rightarrow \mathbb{R}$ and $f^*(y) = y^+$.

Conjugates - Examples

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

The zero function.

For $f(x) = 0$, the conjugate will depend on the relevant domain:

- If $f : \mathbb{R} \rightarrow \mathbb{R}$, then $f^* : \{0\} \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, then $f^* : (-\infty, 0] \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : [-1, 1] \rightarrow \mathbb{R}$, then $f^* : \mathbb{R} \rightarrow \mathbb{R}$ and $f^*(y) = |y|$.
- If $f : [0, 1] \rightarrow \mathbb{R}$, then $f^* : \mathbb{R} \rightarrow \mathbb{R}$ and $f^*(y) = y^+$.

Affine functions.

For $f : \mathbb{R} \rightarrow \mathbb{R}$ with $f(x) = a^T x + b$, $f^* : \{a\} \rightarrow \mathbb{R}$ and $f^*(a) = -b$.

Conjugates - Examples

$$f^*(y) = \sup_{x \in \text{dom}(f)} \{y^T x - f(x)\}$$

The zero function.

For $f(x) = 0$, the conjugate will depend on the relevant domain:

- If $f : \mathbb{R} \rightarrow \mathbb{R}$, then $f^* : \{0\} \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, then $f^* : (-\infty, 0] \rightarrow \mathbb{R}$ and $f^*(y) = 0$.
- If $f : [-1, 1] \rightarrow \mathbb{R}$, then $f^* : \mathbb{R} \rightarrow \mathbb{R}$ and $f^*(y) = |y|$.
- If $f : [0, 1] \rightarrow \mathbb{R}$, then $f^* : \mathbb{R} \rightarrow \mathbb{R}$ and $f^*(y) = y^+$.

Affine functions.

For $f : \mathbb{R} \rightarrow \mathbb{R}$ with $f(x) = a^T x + b$, $f^* : \{a\} \rightarrow \mathbb{R}$ and $f^*(a) = -b$.

What are the conjugates of the following functions?

- $f : (0, \infty), f(x) = -\log x$
- $f : \mathbb{R} \rightarrow \mathbb{R}, f(x) = e^x$

Conjugate - Examples

Negative logarithm.

$f : (0, \infty) \rightarrow \mathbb{R}$ with $f(x) = -\log x$.

$yx + \log x$ is unbounded above if $y \geq 0$ and reaches its maximum at $x = -1/y$ otherwise. Therefore, $f^* : (-\infty, 0) \rightarrow \mathbb{R}$ and $f^*(y) = -\log(-y) - 1$ for $y < 0$.

Conjugate - Examples

Negative logarithm.

$f : (0, \infty) \rightarrow \mathbb{R}$ with $f(x) = -\log x$.

$yx + \log x$ is unbounded above if $y \geq 0$ and reaches its maximum at $x = -1/y$ otherwise. Therefore, $f^* : (-\infty, 0) \rightarrow \mathbb{R}$ and $f^*(y) = -\log(-y) - 1$ for $y < 0$.

Exponential.

$f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = e^x$.

$yx - e^x$ is unbounded if $y < 0$. For $y > 0$, $yx - e^x$ reaches its maximum at $x = \log y$, so we have $f^*(y) = y \log y - y$. For $y = 0$,

$$f^*(y) = \sup_x -e^x = 0.$$

In summary, $f^* : \mathbb{R}_+ \rightarrow \mathbb{R}$ and

$$f^*(y) = \begin{cases} y \log y - y & y > 0 \\ 0 & y = 0. \end{cases} \quad (1)$$

Fenchel-Young Inequality

Consider the Fenchel conjugate f^* of a function f :

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{y^T x - f(x)\}, \quad y \in \mathbb{R}^n.$$

Fenchel-Young Inequality

Consider the Fenchel conjugate f^* of a function f :

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{y^T x - f(x)\}, \quad y \in \mathbb{R}^n.$$

Fenchel-Young Inequality

$$f^*(y) \geq y^T x - f(x)$$

- Having access to f^* allows generating lower bounds on $f(x) \geq y^T x - f^*(y)$

Double Conjugate and Convex Envelope

Consider **the conjugate of the conjugate**, a.k.a. the **double conjugate**, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{y^T x - f^*(y)\}, \quad x \in \mathbb{R}^n.$$

Double Conjugate and Convex Envelope

Consider **the conjugate of the conjugate**, a.k.a. the **double conjugate**, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{y^T x - f^*(y)\}, \quad x \in \mathbb{R}^n.$$

Conjugacy Theorem.

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be such that $\text{epi}(f)$ is closed. Then:

- $f(x) \geq f^{**}(x)$, for all $x \in \mathbb{R}^n$.
- If f is convex, $f(x) = f^{**}(x)$, $\forall x \in \mathbb{R}^n$.
- $f^{**}(x)$ is the **convex envelope of f** , i.e., $\text{epi}(f^{**})$ is the smallest closed, convex set containing $\text{epi}(f)$.

Double Conjugate and Convex Envelope

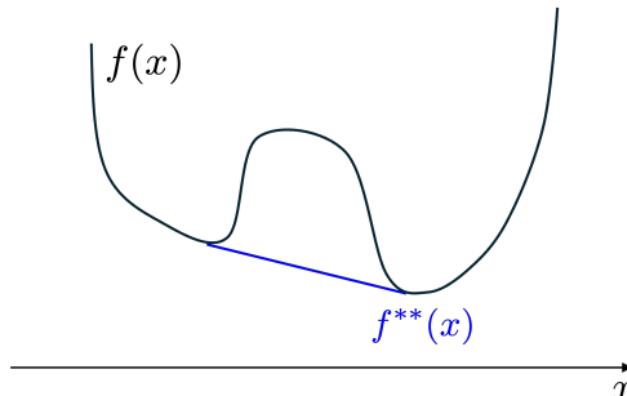
Consider **the conjugate of the conjugate**, a.k.a. the **double conjugate**, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{y^T x - f^*(y)\}, \quad x \in \mathbb{R}^n.$$

Conjugacy Theorem.

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be such that $\text{epi}(f)$ is closed. Then:

- $f(x) \geq f^{**}(x)$, for all $x \in \mathbb{R}^n$.
- If f is convex, $f(x) = f^{**}(x)$, $\forall x \in \mathbb{R}^n$.
- $f^{**}(x)$ is the **convex envelope of f** , i.e., $\text{epi}(f^{**})$ is the smallest closed, convex set containing $\text{epi}(f)$.



Double Conjugate and Convex Envelope

Consider **the conjugate of the conjugate**, a.k.a. the **double conjugate**, f^{**} :

$$f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{y^T x - f^*(y)\}, \quad x \in \mathbb{R}^n.$$

Conjugacy Theorem.

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be such that $\text{epi}(f)$ is closed. Then:

- $f(x) \geq f^{**}(x)$, for all $x \in \mathbb{R}^n$.
- If f is convex, $f(x) = f^{**}(x)$, $\forall x \in \mathbb{R}^n$.
- $f^{**}(x)$ is the **convex envelope of f** , i.e., $\text{epi}(f^{**})$ is the smallest closed, convex set containing $\text{epi}(f)$.

- The optimal value when minimizing an **arbitrary** f – if finite – equals the optimal value when minimizing the convex envelope of f
- IF** we had access to f^{**} , we could solve a convex optimization problem to determine the optimal value of any function f
- Key caveat:** Gaining access to f^{**} is difficult for general f !

Fenchel Duality

Starting Problem.

Consider $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for $i = 1, 2$ and the problem:

$$\begin{aligned} & \text{minimize } f_1(x) + f_2(x) \\ & \text{subject to } x \in X_1 \cap X_2 \end{aligned}$$

- Assume optimal value p^* is finite. Problem can be converted into:

Fenchel Duality

Starting Problem.

Consider $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for $i = 1, 2$ and the problem:

$$\begin{aligned} & \text{minimize } f_1(x) + f_2(x) \\ & \text{subject to } x \in X_1 \cap X_2 \end{aligned}$$

- Assume optimal value p^* is finite. Problem can be converted into:

$$\begin{aligned} & \text{minimize } f_1(y) + f_2(z) \\ & \text{subject to } y = z, \quad y \in X_1, \quad z \in X_2. \end{aligned}$$

Fenchel Duality

Starting Problem.

Consider $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for $i = 1, 2$ and the problem:

$$\begin{aligned} & \text{minimize } f_1(x) + f_2(x) \\ & \text{subject to } x \in X_1 \cap X_2 \end{aligned}$$

- Assume optimal value p^* is finite. Problem can be converted into:

$$\begin{aligned} & \text{minimize } f_1(y) + f_2(z) \\ & \text{subject to } y = z, \quad y \in X_1, \quad z \in X_2. \end{aligned}$$

- Can dualize the constraint $y = z$. For $\lambda \in \mathbb{R}^n$, define the following functions:

Fenchel Duality

Starting Problem.

Consider $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for $i = 1, 2$ and the problem:

$$\begin{aligned} & \text{minimize } f_1(x) + f_2(x) \\ & \text{subject to } x \in X_1 \cap X_2 \end{aligned}$$

- Assume optimal value p^* is finite. Problem can be converted into:

$$\begin{aligned} & \text{minimize } f_1(y) + f_2(z) \\ & \text{subject to } y = z, \quad y \in X_1, \quad z \in X_2. \end{aligned}$$

- Can dualize the constraint $y = z$. For $\lambda \in \mathbb{R}^n$, define the following functions:

$$\begin{aligned} g(\lambda) &= \inf_{y \in X_1, z \in X_2} \{f_1(y) + f_2(z) + (z - y)^T \lambda\} \\ &= -\sup_{y \in X_1} \{y^T \lambda - f_1(y)\} - \sup_{z \in X_2} \{-z^T \lambda - f_2(z)\} \\ &= -g_1(\lambda) - g_2(-\lambda), \end{aligned}$$

- What are $g_1(\lambda)$ and $g_2(\lambda)$ here?

Fenchel Duality

Starting Problem.

Consider $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for $i = 1, 2$ and the problem:

$$\begin{aligned} & \text{minimize } f_1(x) + f_2(x) \\ & \text{subject to } x \in X_1 \cap X_2 \end{aligned}$$

- Assume optimal value p^* is finite. Problem can be converted into:

$$\begin{aligned} & \text{minimize } f_1(y) + f_2(z) \\ & \text{subject to } y = z, \quad y \in X_1, \quad z \in X_2. \end{aligned}$$

- Can dualize the constraint $y = z$. For $\lambda \in \mathbb{R}^n$, define the following functions:

$$\begin{aligned} g(\lambda) &= \inf_{y \in X_1, z \in X_2} \{f_1(y) + f_2(z) + (z - y)^T \lambda\} \\ &= -\sup_{y \in X_1} \{y^T \lambda - f_1(y)\} - \sup_{z \in X_2} \{-z^T \lambda - f_2(z)\} \\ &= -g_1(\lambda) - g_2(-\lambda), \end{aligned}$$

- What are $g_1(\lambda)$ and $g_2(\lambda)$ here?

- $g_i(\lambda)$ is the conjugate of $f_i(x)$, $i = 1, 2$

Fenchel Duality

Starting Problem.

Consider $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for $i = 1, 2$ and the problem:

$$\begin{aligned} & \text{minimize } f_1(x) + f_2(x) \\ & \text{subject to } x \in X_1 \cap X_2 \end{aligned}$$

- Dual objective is: $g(\lambda) = -g_1(\lambda) - g_2(-\lambda)$
- The dual problem can be rewritten as:

$$\max_{\lambda \in \mathbb{R}^n} \{-g_1(\lambda) - g_2(-\lambda)\} \quad \Leftrightarrow \quad \min_{\lambda \in \mathbb{R}^n} \{g_1(\lambda) + g_2(-\lambda)\}.$$

Fenchel Duality

Starting Problem.

Consider $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ and $X_i \subseteq \mathbb{R}^n$ for $i = 1, 2$ and the problem:

$$\begin{aligned} & \text{minimize } f_1(x) + f_2(x) \\ & \text{subject to } x \in X_1 \cap X_2 \end{aligned}$$

- Dual objective is: $g(\lambda) = -g_1(\lambda) - g_2(-\lambda)$
- The dual problem can be rewritten as:

$$\max_{\lambda \in \mathbb{R}^n} \{-g_1(\lambda) - g_2(-\lambda)\} \quad \Leftrightarrow \quad \min_{\lambda \in \mathbb{R}^n} \{g_1(\lambda) + g_2(-\lambda)\}.$$

Fenchel Duality

Suppose f_1 and f_2 are convex and **either**

(i) $\text{rel int}(\text{dom}(f_1)) \cap \text{rel int}(\text{dom}(f_2)) \neq \emptyset$

or

(ii) $\text{dom}(f_i)$ is polyhedral and f_i can be extended to \mathbb{R} -valued convex functions over \mathbb{R}^n for $i = 1, 2$.

Then, there exists $\lambda^* \in \mathbb{R}^n$ such that $p^* = g(\lambda^*)$ and strong duality holds.