Lecture 9: Quadratic Optimization
KKT Optimality Conditions

Oct 20, 2025
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Quick Announcements

Regular class this Friday

My office hours this week: Wednesday, 3:15-4:15pm (same Google cal link)

Monday (Oct 27) - midterm review with the CAs

Agenda for today
- Duality in Quadratic Optimization
- A tiny bit of Saddle Theory
- KKT Optimality Conditions
- Fenchel duality
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Last Time: Convex Duality Framework

minimizexex fo(x)
subject to f;(x) <0, i=1,...,m,
hi(x)=0, j=1,...,s

variable x ¢ R"

® With A;, v; denoting Lagrange multipliers for g;, h;, respectively, Lagrangian is:

i=1

LA V) = H(x) + 3 Nifi(x) + Z vihi(x),

e With g(A,v) :=infyex L(x, A, v), the dual problem becomes:

maximize g(\, v)

subject to A > 0.

® For a convex optimization problem (f;, f; convex, h; affine), strong duality holds
if the Slater condition holds: Ix € relint(X) such that fi(x) <0 fori=1,...,m
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QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

1

min EXTQX + c'x
A1X = b1
A2X S bg

where Q@ = Q".




QPs and QCQPs

Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

1

min EXTQX + c'x
A1X = b1
A2X S bg

where Q@ = Q".

Quadratically Constrained Quadratic Programs

A Quadratically Constrainted Quadratic Program (QCQP) is a problem:

1

min EXTQ()X—F x
XQix+gx+b<0,i=1,....,m
Ax=0b

where Q;,i = 0,..., m are symmetric matrices.

Convex if Qg = 0, Q; = 0. Gurobi can now handle non-convex QCQPs!




One Problem to Warm Up

Convex QCQP

o1
minimize EXTQ()X + qu +rn

1
subject to §XTQ,‘X +qx+r<0, i=1,...,m,

where @ = 0and Q; =0

® What is the Lagrangian? What is the dual? Does Slater Condition hold?



Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For @ = Q", consider the following unconstrained problem:

1
min f(x) := 5 TQx + q'x

® What is the optimal value p*?



Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For @ = Q", consider the following unconstrained problem:

1
min f(x) := 5 TQx + q'x

® What is the optimal value p*?
Vif(x)=0 & Qx=—q

= {; "Qfg if @ =0and g€ R(Q)

—00 otherwise.

® For @ with singular value decomposition Q@ = UL VI QF .= vI—1yr
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1
minimize EXTQ()X + qu +r

1
subject to §XTQ,'X +qx+r<0, i=1,...,m,

where Qg = 0 and Q; = 0

® The Lagrangian is:



Convex QCQP

1
minimize EXTQ()X + qu +r

1
subject to §XTQ,'X +qx+r<0, i=1,...,m,

where Qg = 0 and Q; = 0

® The Lagrangian is:
1
£0x,0) = 27 QU)X+ g+ r(3),
where QA) = Qo+ >, NiQi, g(A) =qo+ > 7 Nigi, r(N)=r+> 0, Air



Convex QCQP

1
minimize EXTQ()X + qu +r

1
subject to EXTQ,'X +qx+r<0, i=1,...,m,

where Qg = 0 and Q; = 0

® The Lagrangian is:
£0x,0) = 27 QU)X+ g+ r(3),
where Q(\) = Qo+ X7, M@ a(N) = do+ 7 Mg, r(\) = 1o+ X7 Ao
® Because A > 0, we have Q(A) > 0 and therefore:
g(0) = inf L(x, 2) = 2 a(QM) 'g(N) + r().
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maxj>o — %Q()\)TQ()\)_IQ(A) +r(A)



Convex QCQP

1
minimize EXTQ()X + qu +r

1
subject to EXTQ,'X +qx+r<0, i=1,...,m,

where Qg = 0 and Q; = 0

® The Lagrangian is:
1
£(x.3) = 37Qx -+ a(Ax -+ (),
where QA) = Qo+ >, NiQi, g(A) =qo+ > 7 Nigi, r(N)=r+> 0, Air
® Because A > 0, we have Q(A) > 0 and therefore:

g(0) = inf L(x, 2) = 2 a(QM) 'g(N) + r().

® We can express the dual problem as:
1 _
maxj>o — EQ()\)TQ()\) lq(A) +r(A)
® Slater condition holds if there exists an x with

1
EXTQfX+q7X+rf<07 i=1,...,m.



Other Important Examples in the Notes

e A non-convex QCQP: for Q = Q" and @ # 0, consider:

minimize x"Qx + 2¢c'x

subject to x"x < 1

® Regularized Support Vector Machines (SVM)

® Entropy Maximization
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Saddle Point Theory

® Optional reading in the notes, but very insightful
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Saddle Point Theory

® Optional reading in the notes, but very insightful

Alternative Formulation of Primal and Dual Problems

We can express the optimal values of the primal and dual as:

p* = inf sup L(x, \) d* =supinf L(x,\)
xXEX A>0 A>0xeX




Saddle Point Theory

® Optional reading in the notes, but very insightful

Alternative Formulation of Primal and Dual Problems

We can express the optimal values of the primal and dual as:

p* = inf sup L(x, \) d* =supinf L(x,\)
xXEX A>0 A>0xeX

® Weak duality restatement:

sup inf L£(x,A) < inf sup L(x, \)
A>0 xEX xeX \>0

® Strong duality restatement:

sup inf L(x,\) = inf sup L(x, ).
A>0 xeX xeX x>0

® Strong duality holds exactly when we can interchange the order of min and max



Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

Ve TR o) T8 e oY)
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

Ve TR o) T8 e oY)

® Game theoretic interpretation : zero-sum game

® y player maximizes, x player minimizes. Difference is who moves first.
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

Ve TR o) T8 e oY)

® For any f, X, Y, the max-min inequality (i.e., “weak duality”) holds:

inf(x,y) <mi f(x,
Ve TR T00Y) S T s )
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

a f axf
TE R oY) T )

® When do f, X, Y satisfy the saddle-point property, i.e., equality holds:

max m|n f(x,y) = m|n max f(x,y)?
YEY x eX ye

fix,y) =x2—y? (surface) fix,y) = x2 — y2 (contours)
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

f f
Ve TR o) T8 e oY)

Sion-Kakutani Theorem

Let X CR" and Y C R™ be convex and compact subsets and let f : X X Y — R be
a continuous function that is convex in x € X for any fixed y € Y and is concave in
y € Y for any fixed x € X. Then,

min max f = max min f
10 G (x,¥) i il (x,¥)-

Generalizations possible: Y only needs to be convex (not compact); f(-, y) must be
quasi-convex on X and with closed lower level sets (for any y € Y); and f(x,-) must be
quasi-concave on Y and with closed upper level sets (for any x € X)



Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minimize

variables

fo(x)
fi(x)<0, i=1,...,m
hi(x)=0, j=1,...,s
xeX
x € R".

® Will not assume convexity unless explicitly stated...

® Key Q: “We have a feasible x. What are the conditions (necessary, sufficient,

necessary and sufficient) for x to be optimal?”

® What to hope for?
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Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minimize fo(x)
fi(x)<0, i=1....m
hi(x)=0, j=1,...,s
x e X
variables x € R".

Will not assume convexity unless explicitly stated...

Key Q: “We have a feasible x. What are the conditions (necessary, sufficient,
necessary and sufficient) for x to be optimal?”

What to hope for?

- necessary conditions for the optimality of x*
- sufficient conditions for the local optimality of x*

® Cannot expect global optimality of x* without some “global” requirement on
fi, hj (e.g., convexity)
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Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minimize fo(x)
A= fi(x)<0, i=1,....m
Vi — hj(X)IO, j=1...,s
x € X
variables x € R".

¢ If we had strong duality and x* optimal for (P) and \*,v* optimal for (D):

fo(x*) = g(\*,v") = lnf [fO + Z/\* )+ Zs:yfhj(x)}
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Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minimize fo(x)
A= fi(x)<0, i=1,....m
Vi — hj(X)IO, j=1...,s
x € X
variables x € R".

¢ If we had strong duality and x* optimal for (P) and \*,v* optimal for (D):

fo(x*) = g(\*,v") = lnf [fO + Z/\* )+ Zs:yfhj(x)}

< fo(x +Z/\*

< fo(x*)
® This implies complementary slackness: \} - fi(x*) = 0, or equivalently,
A >0=fi(x*)=0 and filx*)<0=A=0
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Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem
We will be concerned with the following optimization problem:

(P) min,  fo(x)
N—) filx)<0, i=1,....m
(I/j*)) hj(X)IO, jI].,...,S
x e X.

o x*c X, \* € R™ and v* dual variables
¢ The Karush-Kuhn-Tucker (KKT) conditions at x* are given by:

KKT Conditions
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Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:
(P) min,  fo(x)
(A =) fi(x)<0, i=1,....,m
(vi=) h(x)=0, j=1,...;s
x e X.

o x*c X, \* € R™ and v* dual variables

¢ The Karush-Kuhn-Tucker (KKT) conditions at x* are given by:

KKT Conditions

0= Vf(x*)+ Z)\* Vfi(x Z vi - Vhi(x*),  (“Stationarity”)
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Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:
(P) min,  fo(x)
(A =) fi(x)<0, i=1,....,m
(vi=) h(x)=0, j=1,...;s
x e X.

o x*c X, \* € R™ and v* dual variables
¢ The Karush-Kuhn-Tucker (KKT) conditions at x* are given by:

KKT Conditions

0= Vf(x*)+ Z)\* Vfi(x Z vi - Vhi(x*),  (“Stationarity”)

fi(x*)<0,i=1,....,m hj(x*)=0,,=1,...,s, (“Primal Feasibility”)
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Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:
(P) min,  fo(x)
(A =) fi(x)<0, i=1,....,m
(vi=) h(x)=0, j=1,...;s
x e X.

o x*c X, \* € R™ and v* dual variables
¢ The Karush-Kuhn-Tucker (KKT) conditions at x* are given by:

KKT Conditions

(“Stationarity” )

0= Vf(x

A*>0

+Z)\* Vfi(x

fi(x*)<0,i=1,....,m;

Z j?( ) th(X*),

=0,j=1,...,s, (“Primal Feasibility")

(“Dual Feasibility")
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Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) min,  fo(x)

(A =) fi(x)<0, i=1,....,m
(vi—) h(x)=0, j=1,....s
x e X.

o x*c X, \* € R™ and v* dual variables
¢ The Karush-Kuhn-Tucker (KKT) conditions at x* are given by:

KKT Conditions

0= Vf(x*)+ Z)\* Vfi(x Z vi - Vhi(x*),  (“Stationarity”)
Jj=1
fi(x*)<0,i=1,....,m hj(x*)=0,,=1,...,s, (“Primal Feasibility”)
A*>0 (“Dual Feasibility")
ANifi(x*)=0, i=1,...,m (“Complementary Slackness”).

13/30



Geometry Behind KKT Conditions: Inequality Case
KKT Conditions For Case Without Equality Constraints

0= Vfi(x*)+ Z AF - ViEi(xY) (“Stationarity”)
i=1
Aifi(x*)=0, i=1,...,m (“Complementary Slackness”).
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Geometry Behind KKT Conditions: Inequality Case
KKT Conditions For Case Without Equality Constraints

0= Vfi(x*)+ Z AF - ViEi(xY) (“Stationarity”)
i=1

Aifi(x*)=0, i=1,...,m (“Complementary Slackness”).

~fi(z) =0

VAT _vpe)

® Consider all active constraints at x*, i.e., {/ : fi(x*) =0}

® Stationarity: —Vfy(x*) is conic combination of gradients Vfi(x*) of active constraints

(Complementary slackness: only active constraints have \; > 0)
® FYI: Ne(x*) :={>"", \iVfi(x*) : A > 0} is the normal cone at x*
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Failure of KKT Conditions

® |n some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing

® |s this a convex optimization problem? What is p*? What is x*?
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Failure of KKT Conditions

® |n some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing

® |s this a convex optimization problem? What is p*? What is x*?

® fo(x) = x and f1(x) = —x3. Nonconvex because of f;.

Feasible set is (—o0, 0]; optimal value is p* = 0, optimal solution x* = 0.

® KKT condition fails because Vfy(x*) = 1 while VA (x*) =0

There is no A > 0 such that —Vfi(x*) = AVA(x*).
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Failure of KKT Conditions - More Subtle

KKT Conditions Failing Y
min  — x 1
x,y€R

y—(1-xP°<0
x,y >0 0] 1 T
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Failure of KKT Conditions - More Subtle

KKT Conditions Failing

min  — x
x,y€R

y—(1-xP°<0
x,y >0

0] 1 =

* filx,y) = —x Alxy) =y - (1-x)° f(x,y) = —x and f(x,y) = —y.

® Gradients of objective and binding constraints f; and f3 at (x*,y*) := (1, 0):

vite )= (o). aw) = (7). vaen = (1)

No A1, A3 > 0 satisfy —Viy(x*, y*) = MVA(X*, y*) + A3V i(x*, y*)

Reason for failing: the linearization of constraint f; < 0 around (1,0) is y <0,

which is parallel to the existing constraint f3(x,y) := —y >0
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Constraint Qualification Conditions

Setup: x* feasible. Active inequality constraints: /(x*) = {i € {1,...,m} : fi(x*) = 0}.
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Setup: x* feasible. Active inequality constraints: /(x*) = {i € {1,..., m}: fi(x*) = 0}.
If one of the following holds, KKT conditions are necessary for x* to be optimal:

1. Affine Active Constraints
® || active constraints are affine functions
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1. Affine Active Constraints
® || active constraints are affine functions

2. Slater Conditions
® all functions {h;}s_,; in equality constraints are affine

® all functions {f; : i € I(x)} in active inequality constraints are convex
® Jx c relint(X) : fi(x) < 0 for all / € I(x*)
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® Jx c relint(X) : fi(x) < 0 for all / € I(x*)
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Constraint Qualification Conditions

Setup: x* feasible. Active inequality constraints: /(x*) = {i € {1,..., m} : fi(x*) = 0}.
If one of the following holds, KKT conditions are necessary for x* to be optimal:

1. Affine Active Constraints
® || active constraints are affine functions

2. Slater Conditions
® all functions {h;}s_,; in equality constraints are affine

® all functions {f; : i € I(x)} in active inequality constraints are convex

® Jx c relint(X) : fi(x) < 0 for all / € I(x*)

3. Regular Point (Linearly Independent Gradients)

® x* is a regular point: gradients of all active constraints
{Vfi(x) i e I(x*)} U{Vhj(x):j=1,...,s} are linearly independent

4. Mangasarian-Fromovitz

® the gradients of equality constraints are linearly independent
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Second Order Necessary Conditions

Second Order Necessary Optimality Conditions

x* feasible for problem (P) and regular, {f;}T;, {h;};_; twice continuously differen-
tiable in neighborhood of x*. Let £(x; A, v) denote the Lagrangian function.
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x* feasible for problem (P) and regular, {f;}T;, {h;};_; twice continuously differen-
tiable in neighborhood of x*. Let £(x; A, v) denote the Lagrangian function.

If x* is locally optimal, then there exist unique \* > 0 and v* such that:

® (A\*,v*) certify that x* satisfies KKT conditions:
ANfi(x*)=0, i=1,...,m

Vo L(x*; N\, v*) = +Z/\*Vf )+ > v Vh(x*) =
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Second Order Necessary Conditions

Second Order Necessary Optimality Conditions

x* feasible for problem (P) and regular, {f;}T;, {h;};_; twice continuously differen-
tiable in neighborhood of x*. Let £(x; A, v) denote the Lagrangian function.

If x* is locally optimal, then there exist unique \* > 0 and v* such that:

® (A\*,v*) certify that x* satisfies KKT conditions:
ANfi(x*)=0, i=1,...,m

Vo L(x*; N\, v*) = +Z/\*Vf )+ > v Vh(x*) =

® The Hessian V2L (x*; \*,v*) of L in x is positive semidefinite on the
orthogonal complement M* to the set of gradients of active constraints at x*:
dT V2L(x*; \*,v*)d > 0 for any d € M*
where M* 1= {d | d"Vfi(x*) =0, Vi€ I(x*), d"Vhj(x*)=0,j=1,...,s}.

18 /30



Second Order Sufficient Conditions

Second Order Sufficient Local Optimality Conditions

x* feasible for problem (P) and regular, {f;}T;, {h;};_, twice continuously differen-
tiable in neighborhood of x*. Let L£(x; A, v) denote the Lagrangian function.

Assume there exist Lagrange multipliers A* > 0 and v* such that
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x* feasible for problem (P) and regular, {f;}T;, {h;};_, twice continuously differen-
tiable in neighborhood of x*. Let L£(x; A, v) denote the Lagrangian function.

Assume there exist Lagrange multipliers A* > 0 and v* such that
® (\*,v*) certify that x* satisfies KKT conditions;

® The Hessian V2L(x*; \*,v*) of L in x is positive definite on the orthogonal
complement M** to the set of gradients of equality constraints and active
inequality constraints at x* that have positive Lagrange multipliers \*:
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Second Order Sufficient Conditions

Second Order Sufficient Local Optimality Conditions

x* feasible for problem (P) and regular, {f;}T;, {h;};_, twice continuously differen-
tiable in neighborhood of x*. Let L£(x; A, v) denote the Lagrangian function.

Assume there exist Lagrange multipliers A* > 0 and v* such that
® (\*,v*) certify that x* satisfies KKT conditions;

® The Hessian V2L(x*; \*,v*) of L in x is positive definite on the orthogonal
complement M** to the set of gradients of equality constraints and active
inequality constraints at x* that have positive Lagrange multipliers \*:

d"V2L(x*; \*,v*)d > 0 for any d € M**

where M** := {d | d'V£i(x*) =0, Vi € I(x*) : \¥ > 0 and
d'Vhi(x*)=0,j=1,...,s}.

Then x* is locally optimal for (P).

19/30



KKT Conditions and Local vs Global Optimality

To summarize...

KKT Conditions and Optimality Notions

® To use the KKT conditions you must first check that one of the constraint
qualification conditions holds. Typically, the Slater Conditions might be easiest;
the Mangasarian-Fromovitz are the most general from the ones we stated

® |f the constraint qualification conditions hold, then:
- For a general optimization problem, the KKT conditions are necessary or
sufficient (depending on which variant you use) for local optimality at x*

- For a convex optimization problem, the KKT conditions are necessary and
sufficient for global optimality at x*
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A Consumer’s Constrained Consumption Problem

An Example

Consider a consumer trying to maximize his utility function u(x) by choosing which
bundle of goods x € R} to purchase. The goods have prices p > 0 and the consumer
has a budget B > 0. The consumer’s problem can be stated as:

maximize u(x)
such that p'x < B
x>0,

where u(x) is a concave utility function.

® Write down the first-order KKT conditions and try to interpret them.
® Are these conditions necessary for optimality?

® Are these conditions sufficient for optimality?
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A Consumer’s Constrained Consumption Problem

minimize — u(x)
(A=) pPx<B
(n—=) —x<0,
With XA € R4, u € R denoting the Lagrange multipliers, the Lagrangian becomes:
L(x, A, 1) = —u(x) + MNp'x — B) — x'p.
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A Consumer’s Constrained Consumption Problem

minimize — u(x)
(A=) pPx<B
(n—=) —x<0,
With XA € R4, u € R denoting the Lagrange multipliers, the Lagrangian becomes:
L(x, A, 1) = —u(x) + MNp'x — B) — x'p.

ou . .
— +Api—pi, i=1,....n
aX,'

pTX <B, x>0 “Primal Feasibility")

0= (
(

A>0, pn>0 (“Dual Feasibility”)
(
(

‘Stationarity”)

A (px—B)=0 ‘
pi-xi =0

‘Complementary Slackness” 1)

“Complementary Slackness” 2).
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A Consumer’s Constrained Consumption Problem

minimize — u(x)
(A=) pPx<B
(n—=) —x<0,
With XA € R4, u € R denoting the Lagrange multipliers, the Lagrangian becomes:
L(x, A, 1) = —u(x) + MNp'x — B) — x'p.
ou .

0= ~ % +Api—pi, i=1,...,n (“Stationarity”)

px<B, x>0 (“Primal Feasibility")

A>0, pn>0 (“Dual Feasibility”)

A (Px—B)=0 (“Complementary Slackness” 1)
wi-xi=0 (“Complementary Slackness” 2).

Case 1. If the budget constraint is not binding, p'x < B

® A\=0and pj =0,Vi:x >0 (complementary slackness)

® For any x; > 0, we must have: % =—ui=20

® The consumer purchases the unconstrained optimal amount of each good /
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A Consumer’s Constrained Consumption Problem

0
0= 24 +Api—pi, i=1,...,n (“Stationarity”)
8X,'
pPx<B, x>0 (“Primal Feasibility")
A>0, u>0 (“Dual Feasibility”)
A (p'x—B)=0 ("Complementary Slackness” 1)
wi-xi =0 (“Complementary Slackness” 2).
Case 2.
° pTX = B, then can have A =0 or A > 0.
® Case A > 0:
ou ou
iix>0 =pu=0 = =) \p & 2=
0x; Pi
Ju Ou

i:x>0,j:x=0 = LLAEE N
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0= 24 +Api—pi, i=1,...,n (“Stationarity”)
8X,'
pPx<B, x>0 (“Primal Feasibility")
A>0, u>0 (“Dual Feasibility”)
A (p'x—B)=0 ("Complementary Slackness” 1)
wi-xi =0 (“Complementary Slackness” 2).
Case 2.
° pTX = B, then can have A =0 or A > 0.
® Case A > 0:
ou Lu
iix>0 =pu=0 = =) \p & 2=
0x; Pi
du Ou
i:x>0,j:x=0 = %:)‘>%:)‘*NJ
Xij Xj

Ou
® Bang-for-the-buck %X/ for all consumed goods (x; > 0) must be the same, and

larger than for unconsumed goods
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Let f : R"” — R. The conjugate of f is the function 7* : R” — R defined as:

f(y)= sup {yx—f(x)}
x€dom(f)

f(CE) (7ya 1)

A=) = jnf {—yTe+ f2)}
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® |s f* convex or concave?
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Fenchel Duality

® Elegant and concise theory of optimization duality

Conjugate of a function
Let f : R"” — R. The conjugate of f is the function 7* : R” — R defined as:

f*(y)= sup {y'x—f(x)}

x€dom(f)

f(CE) (7ya 1)

A=) = jnf {—yTe+ f2)}

X

® |f f convex and epi(f) closed, f* characterizes f in terms of supporting hyperplanes
24/30



Conjugates - Examples

f(y)= sup {y'x—f(x)}

xedom(f)

The zero function.

For f(x) = 0, the conjugate will depend on the relevant domain:
o |f f:R — R, then
o If f:R,y — R, then

If f:[-1,1] — R, then

If f:]0,1] — R, then
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For f(x) = 0, the conjugate will depend on the relevant domain:
° If f:R— R, then 7*: {0} — R and f*(y) =0.
o If f:Ry — R, then f*:(—00,0] = R and f*(y) = 0.

If f:[-1,1] = R, then f*: R — R and *(y) = |y|.
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Conjugates - Examples

f(y)= sup {y'x—f(x)}

xedom(f)

The zero function.

For f(x) = 0, the conjugate will depend on the relevant domain:
° If f:R— R, then 7*: {0} — R and f*(y) =0.
o If f:Ry — R, then f*:(—00,0] = R and f*(y) = 0.

If f:[-1,1] = R, then f*: R — R and *(y) = |y|.

If f:]0,1] — R, then f* : R — R and f*(y) =y ™.

Affine functions.

For f : R — R with f(x) = ax + b, f*: {a} = R and f*(a) = —b.

What are the conjugates of the following functions?

® f:(0,00),f(x) =—logx
e f:R—-R,f(x)=¢"
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Conjugate - Examples

Negative logarithm.
f:(0,00) — R with f(x) = —log x.

yx + log x is unbounded above if y > 0 and reaches its maximum at x = —1/y
otherwise. Therefore, f* : (—00,0) — R and f*(y) = —log(—y) — 1 for y < 0.
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Conjugate - Examples

Negative logarithm.

f:(0,00) — R with f(x) = —log x.

yx + log x is unbounded above if y > 0 and reaches its maximum at x = —1/y
otherwise. Therefore, f* : (—00,0) — R and f*(y) = —log(—y) — 1 for y < 0.

Exponential.
f:R—R,f(x)=¢€".

yx —e* is unbounded if y < 0. For y > 0, yx — e~ reaches its maximum at x = log y,
so we have f*(y) = ylogy —y. For y =0,

*(y) =sup —e* =0.

In summary, f*: Ry — R and

. ylogy—y y>0
f(y)={0 =0 (1)
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Fenchel-Young Inequality

Consider the Fenchel conjugate 7* of a function f:

f(y) = sup {y"x—f(x)}, yeR"
xeRn
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Fenchel-Young Inequality

Consider the Fenchel conjugate 7* of a function f:

F*(y) = sup {y"x—f(x)}, yeR"
xeRn

Fenchel-Young Inequality

F(y) = y'x — f(x)

® Having access to f* allows generating lower bounds on f(x) > y™x — f*(y)
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Double Conjugate and Convex Envelope

Consider the conjugate of the conjugate, a.k.a. the double conjugate, **:

F*(x) = sup{y"x — f*(y)}, x€R"
yER?
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Consider the conjugate of the conjugate, a.k.a. the double conjugate, **:

*(x) = sup{yTX —f*(y)}, xeR"™
y€eR?

Conjugacy Theorem.

Let f : R"” — R be such that epi(f) is closed. Then:
a) f(x) > **(x), forall x € R".
b) If f is convex, f(x) = f**(x), Vx € R".
c) **(x) is the convex envelope of f, i.e., epi(f**) is the smallest closed, convex

set containing epi(f).

f(z)

[ ()
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Double Conjugate and Convex Envelope

Consider the conjugate of the conjugate, a.k.a. the double conjugate, **:

F(x) = sup {y "x — F*(y)}, x€R".
y€ERn

Conjugacy Theorem.

Let f : R” — R be such that epi(f) is closed. Then:
a) f(x) > **(x), forall x € R".
b) If fis convex, f(x) = **(x), Vx € R".

c) **(x) is the convex envelope of f, i.e., epi(f**) is the smallest closed, convex
set containing epi(f).

® The optimal value when minimizing an arbitrary f — if finite — equals the optimal
value when minimizing the convex envelope of f

® |F we had access to f**, we could solve a convex optimization problem to
determine the optimal value of any function f

® Key caveat: Gaining access to f** is difficult for general f!
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Fenchel Duality

Starting Problem.
Consider f; : R" — R and X; C R” for i = 1,2 and the problem:

minimize f;(x) + f(x)

subject to x € X1 N X,

® Assume optimal value p* is finite. Problem can be converted into:
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Fenchel Duality

Starting Problem.
Consider f; : R" — R and X; C R” for i = 1,2 and the problem:

minimize f;(x) + f(x)

subject to x € X1 N X,

® Assume optimal value p* is finite. Problem can be converted into:
minimize fi(y) + f(z)
subjectto y =z, y € X1, z € Xs.

® Can dualize the constraint y = z. For A € R", define the following functions:

g = _inf_ (R0 +5() + (YN
= —sup{y"A — A(y)} — sup{—2'\ — r(2)}
yeXy zeXs

= —g1(\) — &(-1),
® What are gi(\) and g»(\) here?
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Fenchel Duality

Starting Problem.
Consider f; : R" — R and X; C R” for i = 1,2 and the problem:

minimize f;(x) + f(x)

subject to x € X1 N X,

® Assume optimal value p* is finite. Problem can be converted into:
minimize fi(y) + f(z)
subjectto y =z, y € X1, z € Xs.

® Can dualize the constraint y = z. For A € R", define the following functions:
_ AT
g = _inf_ {A()+5(2) + (=)
= — sup {y"\ — fi(y)} — sup {~2'\ — f(2)}
yeXy zeXs
= —g1(A) — g&(—X),
[ ]

What are g1(\) and g»()\) here?
® gi(\) is the conjugate of fi(x),i =1,2
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Fenchel Duality

Starting Problem.
Consider f; : R" — R and X; C R” for i = 1,2 and the problem:

minimize fi(x) + f(x)

subject to x € X1 N X,

® Dual objective is: g(A) = —g1(A\) — g2(—))
® The dual problem can be rewritten as:

Te%{*gl(/\) —g(=A)} A A%Qn{gl()\) + (=M}
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Fenchel Duality

Starting Problem.
Consider f; : R" — R and X; C R” for i = 1,2 and the problem:

minimize f;(x) + f2(x)

subject to x € X1 N X,

® Dual objective is: g(A) = —g1(A\) — g2(—))
® The dual problem can be rewritten as:

Teaﬂé{*gl(/\) —g(=A)} A /\fglgn{gl()\) + (=M}

Fenchel Duality

Suppose f; and f, are convex and either

(i) relint(dom(#)) Nrelint(dom(f) # ()

or

(ii) dom(f;) is polyhedral and f; can be extended to R-valued convex functions over
R” for i =1,2.

Then, there exists A* € R” such that p* = g(\*) and strong duality holds.
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