
Lecture 9: Quadratic Optimization

KKT Optimality Conditions

Oct 20, 2025
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Quick Announcements

• Regular class this Friday

• My office hours this week: Wednesday, 3:15-4:15pm (same Google cal link)

• Monday (Oct 27) - midterm review with the CAs

• Agenda for today
– Duality in Quadratic Optimization
– A tiny bit of Saddle Theory
– KKT Optimality Conditions
– Fenchel duality
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Last Time: Convex Duality Framework

minimizex∈X f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , s

variable x ∈ Rn

• With λi , νj denoting Lagrange multipliers for gi , hj , respectively, Lagrangian is:

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +
s∑

j=1

νjhj(x),

• With g(λ, ν) := infx∈X L(x , λ, ν), the dual problem becomes:

maximize g(λ, ν)

subject to λ ≥ 0.

• For a convex optimization problem (f0, fi convex, hj affine), strong duality holds

if the Slater condition holds: ∃x ∈ rel int(X ) such that fi (x) < 0 for i = 1, . . . ,m
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QPs and QCQPs
Quadratic Programs

A Quadratic Program (QP) is an optimization problem of the form:

min
1

2
xTQx + cTx

A1x = b1

A2x ≤ b2

where Q = QT.

Quadratically Constrained Quadratic Programs

A Quadratically Constrainted Quadratic Program (QCQP) is a problem:

min
1

2
xTQ0x + cTx

xTQix + qTi x + bi ≤ 0, i = 1, . . . ,m

Ax = b

where Qi , i = 0, . . . ,m are symmetric matrices.

Convex if Q0 ⪰ 0,Qi ⪰ 0. Gurobi can now handle non-convex QCQPs!
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One Problem to Warm Up

Convex QCQP

minimize
1

2
xTQ0x + qT0x + r0

subject to
1

2
xTQix + qTi x + ri ≤ 0, i = 1, . . . ,m,

where Q0 ≻ 0 and Qi ⪰ 0

• What is the Lagrangian? What is the dual? Does Slater Condition hold?
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Quadratic Programs - Preliminaries

Unconstrained Quadratic Program

For Q = QT, consider the following unconstrained problem:

min f (x) :=
1

2
xTQx + qTx

• What is the optimal value p⋆?

∇x f (x) = 0 ⇔ Qx = −q

p⋆ =

{
− 1

2q
TQ†q if Q ⪰ 0 and q ∈ R(Q)

−∞ otherwise.

• For Q with singular value decomposition Q = UΣVT, Q† := VΣ−1UT
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Convex QCQP
QCQP

minimize
1

2
xTQ0x + qT0x + r0

subject to
1

2
xTQix + qTi x + ri ≤ 0, i = 1, . . . ,m,

where Q0 ≻ 0 and Qi ⪰ 0

• The Lagrangian is:

L(x , λ) = 1

2
xTQ(λ)x + q(λ)Tx + r(λ),

where Q(λ) = Q0 +
∑m

i=1 λiQi , q(λ) = q0 +
∑m

i=1 λiqi , r(λ) = r0 +
∑m

i=1 λi ri

• Because λ ≥ 0, we have Q(λ) ≻ 0 and therefore:

g(λ) = inf
x
L(x , λ) = −1

2
q(λ)TQ(λ)−1q(λ) + r(λ).

• We can express the dual problem as:

maxλ≥0 −
1

2
q(λ)TQ(λ)−1q(λ) + r(λ)

• Slater condition holds if there exists an x with
1

2
xTQix + qTix + ri < 0, i = 1, . . . ,m.
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Other Important Examples in the Notes

• A non-convex QCQP: for Q = QT and Q ̸⪰ 0, consider:

minimize xTQx + 2cTx

subject to xTx ≤ 1

• Regularized Support Vector Machines (SVM)

• Entropy Maximization
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Saddle Point Theory

• Optional reading in the notes, but very insightful

Alternative Formulation of Primal and Dual Problems

We can express the optimal values of the primal and dual as:

p⋆ = inf
x∈X

sup
λ≥0

L(x , λ) d⋆ = sup
λ≥0

inf
x∈X

L(x , λ)

• Weak duality restatement:

sup
λ≥0

inf
x∈X

L(x , λ) ≤ inf
x∈X

sup
λ≥0

L(x , λ)

• Strong duality restatement:

sup
λ≥0

inf
x∈X

L(x , λ) = inf
x∈X

sup
λ≥0

L(x , λ).

• Strong duality holds exactly when we can interchange the order of min and max
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

max
y∈Y

min
x∈X

f (x , y) min
x∈X

max
y∈Y

f (x , y)
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

max
y∈Y

min
x∈X

f (x , y) min
x∈X

max
y∈Y

f (x , y)

• Game theoretic interpretation : zero-sum game

• y player maximizes, x player minimizes. Difference is who moves first.
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Min-Max and Max-Min

Consider the pair of problems:

max
y∈Y

min
x∈X

f (x , y) min
x∈X

max
y∈Y

f (x , y)

• For any f ,X ,Y , the max-min inequality (i.e., “weak duality”) holds:

max
y∈Y

min
x∈X

f (x , y) ≤ min
x∈X

max
y∈Y

f (x , y)
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

max
y∈Y

min
x∈X

f (x , y) min
x∈X

max
y∈Y

f (x , y)

• When do f ,X ,Y satisfy the saddle-point property, i.e., equality holds:

max
y∈Y

min
x∈X

f (x , y) = min
x∈X

max
y∈Y

f (x , y)?
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Saddle Problem and Game Theoretic Interpretation

Min-Max and Max-Min

Consider the pair of problems:

max
y∈Y

min
x∈X

f (x , y) min
x∈X

max
y∈Y

f (x , y)

Sion-Kakutani Theorem

Let X ⊆ Rn and Y ⊆ Rm be convex and compact subsets and let f : X × Y → R be

a continuous function that is convex in x ∈ X for any fixed y ∈ Y and is concave in

y ∈ Y for any fixed x ∈ X . Then,

min
x∈X

max
y∈Y

f (x , y) = max
y∈Y

min
x∈X

f (x , y).

Generalizations possible: Y only needs to be convex (not compact); f (·, y) must be

quasi-convex on X and with closed lower level sets (for any y ∈ Y ); and f (x , ·) must be

quasi-concave on Y and with closed upper level sets (for any x ∈ X )
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Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minimize f0(x)

fi (x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , s

x ∈ X

variables x ∈ Rn.

• Will not assume convexity unless explicitly stated...

• Key Q: “We have a feasible x. What are the conditions (necessary, sufficient,

necessary and sufficient) for x to be optimal?”

• What to hope for?

– necessary conditions for the optimality of x⋆

– sufficient conditions for the local optimality of x⋆

• Cannot expect global optimality of x⋆ without some “global” requirement on

fi , hj (e.g., convexity)
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Optimality Conditions
Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minimize f0(x)

λi → fi (x) ≤ 0, i = 1, . . . ,m

νj → hj(x) = 0, j = 1, . . . , s

x ∈ X

variables x ∈ Rn.

• If we had strong duality and x⋆ optimal for (P) and λ⋆, ν⋆ optimal for (D):

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x∈X

[
f0(x) +

m∑
i=1

λ⋆
i fi (x) +

s∑
j=1

ν⋆j hj(x)
]

≤ f0(x
⋆) +

m∑
i=1

λ⋆
i fi (x

⋆)

≤ f0(x
⋆)

• This implies complementary slackness: λ⋆
i · fi (x⋆) = 0, or equivalently,

λ⋆
i > 0 ⇒ fi (x

⋆) = 0 and fi (x
⋆) < 0 ⇒ λ⋆

i = 0
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Karush-Kuhn-Tucker Optimality Conditions

Basic Optimization Problem

We will be concerned with the following optimization problem:

(P) minx f0(x)

(λi →) fi (x) ≤ 0, i = 1, . . . ,m

(νj →) hj(x) = 0, j = 1, . . . , s

x ∈ X .

• x⋆ ∈ X , λ⋆ ∈ Rm and ν⋆ dual variables

• The Karush-Kuhn-Tucker (KKT) conditions at x⋆ are given by:

KKT Conditions

0 = ∇f0(x
⋆) +

m∑
i=1

λ⋆
i · ∇fi (x

⋆) +

p∑
j=1

ν⋆j · ∇hj(x
⋆), (“Stationarity”)

fi (x
⋆) ≤ 0, i = 1, . . . ,m; hj(x

⋆) = 0, j = 1, . . . , s, (“Primal Feasibility”)

λ⋆ ≥ 0 (“Dual Feasibility”)

λ⋆
i fi (x

⋆) = 0, i = 1, . . . ,m (“Complementary Slackness”).
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Geometry Behind KKT Conditions: Inequality Case
KKT Conditions For Case Without Equality Constraints

0 = ∇f0(x
⋆) +

m∑
i=1

λ⋆
i · ∇fi (x

⋆) (“Stationarity”)

λ⋆
i fi (x

⋆) = 0, i = 1, . . . ,m (“Complementary Slackness”).

• Consider all active constraints at x⋆, i.e., {i : fi (x
⋆) = 0}

• Stationarity: −∇f0(x
⋆) is conic combination of gradients ∇fi (x

⋆) of active constraints

• (Complementary slackness: only active constraints have λi > 0)

• FYI: NC (x
⋆) := {

∑m
i=1 λi∇fi (x

⋆) : λ ≥ 0} is the normal cone at x⋆
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Failure of KKT Conditions

• In some cases, KKT conditions are not necessary at optimality

KKT Conditions Failing

min
x∈R

x

x3 ≥ 0.

• Is this a convex optimization problem? What is p⋆? What is x⋆?

• f0(x) = x and f1(x) = −x3. Nonconvex because of f1.

• Feasible set is (−∞, 0]; optimal value is p⋆ = 0, optimal solution x⋆ = 0.

• KKT condition fails because ∇f0(x
⋆) = 1 while ∇f1(x

⋆) = 0

• There is no λ ≥ 0 such that −∇f0(x
⋆) = λ∇f1(x

⋆).
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Failure of KKT Conditions - More Subtle

KKT Conditions Failing

min
x,y∈R

− x

y − (1− x)3 ≤ 0

x , y ≥ 0

• f0(x , y) := −x , f1(x , y) := y − (1− x)3, f2(x , y) := −x and f3(x , y) := −y .

• Gradients of objective and binding constraints f1 and f3 at (x⋆, y⋆) := (1, 0):

∇f0(x
⋆, y⋆) =

(
−1

0

)
, ∇f1(x

⋆, y⋆) =

(
0

1

)
, ∇f3(x

⋆, y⋆) =

(
0

−1

)
.

• No λ1, λ3 ≥ 0 satisfy −∇f0(x
⋆, y⋆) = λ1∇f1(x

⋆, y⋆) + λ3∇f3(x
⋆, y⋆)

• Reason for failing: the linearization of constraint f1 ≤ 0 around (1, 0) is y ≤ 0,

which is parallel to the existing constraint f3(x , y) := −y ≥ 0
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Constraint Qualification Conditions

Setup: x⋆ feasible. Active inequality constraints: I (x⋆) = {i ∈ {1, . . . ,m} : fi (x
⋆) = 0}.

If one of the following holds, KKT conditions are necessary for x⋆ to be optimal:

1. Affine Active Constraints
• all active constraints are affine functions

2. Slater Conditions

• all functions {hj}sj=1 in equality constraints are affine

• all functions {fi : i ∈ I (x)} in active inequality constraints are convex

• ∃x̄ ∈ rel int(X ) : fi (x̄) < 0 for all i ∈ I (x⋆)

3. Regular Point (Linearly Independent Gradients)

• x⋆ is a regular point: gradients of all active constraints

{∇fi (x) : i ∈ I (x⋆)} ∪ {∇hj(x) : j = 1, . . . , s} are linearly independent

4. Mangasarian-Fromovitz

• the gradients of equality constraints are linearly independent

• ∃v ∈ Rn : vT∇fi (x
⋆) < 0 for i ∈ I (x⋆) and vT∇hj(x

⋆) = 0, j = 1, . . . , s
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Second Order Necessary Conditions

Second Order Necessary Optimality Conditions

x⋆ feasible for problem (P) and regular, {fi}mi=1, {hj}sj=1 twice continuously differen-

tiable in neighborhood of x⋆. Let L(x ;λ, ν) denote the Lagrangian function.

If x⋆ is locally optimal, then there exist unique λ⋆ ≥ 0 and ν⋆ such that:

• (λ⋆, ν⋆) certify that x⋆ satisfies KKT conditions:

λ⋆
i fi (x

⋆) = 0, i = 1, . . . ,m

∇xL(x⋆;λ⋆, ν⋆) = ∇f (x⋆) +
m∑
i=1

λ⋆
i ∇fi (x

⋆) +
s∑

j=1

ν⋆j ∇hj(x
⋆) = 0.

• The Hessian ∇2
xL(x⋆;λ⋆, ν⋆) of L in x is positive semidefinite on the

orthogonal complement M⋆ to the set of gradients of active constraints at x⋆:

dT ∇2
xL(x⋆;λ⋆, ν⋆) d ≥ 0 for any d ∈ M⋆

where M⋆ := {d | dT∇fi (x
⋆) = 0, ∀ i ∈ I (x⋆), dT∇hj(x

⋆) = 0, j = 1, . . . , s}.
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Second Order Sufficient Conditions

Second Order Sufficient Local Optimality Conditions

x⋆ feasible for problem (P) and regular, {fi}mi=1, {hj}sj=1 twice continuously differen-

tiable in neighborhood of x⋆. Let L(x ;λ, ν) denote the Lagrangian function.

Assume there exist Lagrange multipliers λ⋆ ≥ 0 and ν⋆ such that

• (λ⋆, ν⋆) certify that x⋆ satisfies KKT conditions;

• The Hessian ∇2
xL(x⋆;λ⋆, ν⋆) of L in x is positive definite on the orthogonal

complement M∗∗ to the set of gradients of equality constraints and active

inequality constraints at x⋆ that have positive Lagrange multipliers λ⋆
i :

dT∇2
xL(x⋆;λ⋆, ν⋆)d > 0 for any d ∈ M⋆⋆

where M⋆⋆ := {d | dT∇fi (x
⋆) = 0, ∀ i ∈ I (x⋆) : λ⋆

i > 0 and

dT∇hj(x
⋆) = 0, j = 1, . . . , s}.

Then x⋆ is locally optimal for (P).
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KKT Conditions and Local vs Global Optimality

To summarize...

KKT Conditions and Optimality Notions

• To use the KKT conditions you must first check that one of the constraint

qualification conditions holds. Typically, the Slater Conditions might be easiest;

the Mangasarian-Fromovitz are the most general from the ones we stated

• If the constraint qualification conditions hold, then:
– For a general optimization problem, the KKT conditions are necessary or

sufficient (depending on which variant you use) for local optimality at x⋆

– For a convex optimization problem, the KKT conditions are necessary and

sufficient for global optimality at x⋆
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A Consumer’s Constrained Consumption Problem

An Example

Consider a consumer trying to maximize his utility function u(x) by choosing which

bundle of goods x ∈ R+
n to purchase. The goods have prices p > 0 and the consumer

has a budget B > 0. The consumer’s problem can be stated as:

maximize u(x)

such that pTx ≤ B

x ≥ 0,

where u(x) is a concave utility function.

• Write down the first-order KKT conditions and try to interpret them.

• Are these conditions necessary for optimality?

• Are these conditions sufficient for optimality?
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A Consumer’s Constrained Consumption Problem

minimize − u(x)

(λ →) pTx ≤ B

(µ →) − x ≤ 0,

With λ ∈ R+, µ ∈ Rn
+ denoting the Lagrange multipliers, the Lagrangian becomes:

L(x , λ, µ) = −u(x) + λ(pTx − B)− xTµ.

0 = − ∂u

∂xi
+ λpi − µi , i = 1, . . . , n (“Stationarity”)

pTx ≤ B, x ≥ 0 (“Primal Feasibility”)

λ ≥ 0, µ ≥ 0 (“Dual Feasibility”)

λ · (pTx − B) = 0 (“Complementary Slackness” 1)

µi · xi = 0 (“Complementary Slackness” 2).

Case 1. If the budget constraint is not binding, pTx < B

• λ = 0 and µi = 0, ∀ i : xi > 0 (complementary slackness)

• For any xi > 0, we must have: ∂u
∂xi

= −µi = 0

• The consumer purchases the unconstrained optimal amount of each good i
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A Consumer’s Constrained Consumption Problem

0 = − ∂u

∂xi
+ λpi − µi , i = 1, . . . , n (“Stationarity”)

pTx ≤ B, x ≥ 0 (“Primal Feasibility”)

λ ≥ 0, µ ≥ 0 (“Dual Feasibility”)

λ · (pTx − B) = 0 (“Complementary Slackness” 1)

µi · xi = 0 (“Complementary Slackness” 2).

Case 2.

• pTx = B, then can have λ = 0 or λ > 0.
• Case λ > 0:

i : xi > 0 ⇒ µi = 0 ⇒ ∂u

∂xi
= λpi ⇔

∂u
∂xi

pi
= λ

i : xi > 0, j : xj = 0 ⇒
∂u
∂xi

xi
= λ >

∂u
∂xj

xj
= λ− µj

• Bang-for-the-buck
∂u
∂xi

xi
for all consumed goods (xi > 0) must be the same, and

larger than for unconsumed goods
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Fenchel Duality

• Elegant and concise theory of optimization duality

Conjugate of a function

Let f : Rn → R. The conjugate of f is the function f ∗ : Rn → R defined as:

f ∗(y) = sup
x∈dom(f )

{
yTx − f (x)

}

24 / 30



Fenchel Duality

• Elegant and concise theory of optimization duality

Conjugate of a function

Let f : Rn → R. The conjugate of f is the function f ∗ : Rn → R defined as:

f ∗(y) = sup
x∈dom(f )

{
yTx − f (x)

}

24 / 30



Fenchel Duality

• Elegant and concise theory of optimization duality

Conjugate of a function

Let f : Rn → R. The conjugate of f is the function f ∗ : Rn → R defined as:

f ∗(y) = sup
x∈dom(f )

{
yTx − f (x)

}

24 / 30
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Conjugate of a function

Let f : Rn → R. The conjugate of f is the function f ∗ : Rn → R defined as:

f ∗(y) = sup
x∈dom(f )

{
yTx − f (x)

}

• Is f ∗ convex or concave?
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Fenchel Duality

• Elegant and concise theory of optimization duality

Conjugate of a function

Let f : Rn → R. The conjugate of f is the function f ∗ : Rn → R defined as:

f ∗(y) = sup
x∈dom(f )

{
yTx − f (x)

}

• If f convex and epi(f ) closed, f ∗ characterizes f in terms of supporting hyperplanes
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Conjugates - Examples

f ∗(y) = sup
x∈dom(f )

{
yTx − f (x)

}
The zero function.

For f (x) = 0, the conjugate will depend on the relevant domain:

• If f : R → R, then

f ∗ : {0} → R and f ∗(y) = 0.

• If f : R+ → R, then

f ∗ : (−∞, 0] → R and f ∗(y) = 0.

• If f : [−1, 1] → R, then

f ∗ : R → R and f ∗(y) = |y |.
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Conjugate - Examples

Negative logarithm.

f : (0,∞) → R with f (x) = − log x .

yx + log x is unbounded above if y ≥ 0 and reaches its maximum at x = −1/y

otherwise. Therefore, f ∗ : (−∞, 0) → R and f ∗(y) = − log(−y)− 1 for y < 0.

Exponential.

f : R → R, f (x) = ex .

yx − ex is unbounded if y < 0. For y > 0, yx − ex reaches its maximum at x = log y ,

so we have f ∗(y) = y log y − y . For y = 0,

f ∗(y) = sup
x

−ex = 0.

In summary, f ∗ : R+ → R and

f ∗(y) =

{
y log y − y y > 0

0 y = 0.
(1)
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Fenchel-Young Inequality

Consider the Fenchel conjugate f ∗ of a function f :

f ∗(y) = sup
x∈Rn

{yT x − f (x)}, y ∈ Rn.

Fenchel-Young Inequality

f ∗(y) ≥ yTx − f (x)

• Having access to f ∗ allows generating lower bounds on f (x) ≥ yTx − f ∗(y)
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Double Conjugate and Convex Envelope

Consider the conjugate of the conjugate, a.k.a. the double conjugate, f ∗∗:

f ∗∗(x) = sup
y∈Rn

{yT x − f ∗(y)}, x ∈ Rn.

Conjugacy Theorem.

Let f : Rn → R be such that epi(f ) is closed. Then:

a) f (x) ≥ f ∗∗(x), forall x ∈ Rn.

b) If f is convex, f (x) = f ∗∗(x), ∀ x ∈ Rn.

c) f ∗∗(x) is the convex envelope of f , i.e., epi(f ∗∗) is the smallest closed, convex

set containing epi(f ).
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b) If f is convex, f (x) = f ∗∗(x), ∀ x ∈ Rn.

c) f ∗∗(x) is the convex envelope of f , i.e., epi(f ∗∗) is the smallest closed, convex

set containing epi(f ).

• The optimal value when minimizing an arbitrary f – if finite – equals the optimal

value when minimizing the convex envelope of f

• IF we had access to f ∗∗, we could solve a convex optimization problem to

determine the optimal value of any function f

• Key caveat: Gaining access to f ∗∗ is difficult for general f !

28 / 30



Fenchel Duality

Starting Problem.

Consider fi : Rn → R and Xi ⊆ Rn for i = 1, 2 and the problem:

minimize f1(x) + f2(x)

subject to x ∈ X1 ∩ X2

• Assume optimal value p⋆ is finite. Problem can be converted into:

minimize f1(y) + f2(z)

subject to y = z , y ∈ X1, z ∈ X2.

• Can dualize the constraint y = z . For λ ∈ Rn, define the following functions:

g(λ) = inf
y∈X1,z∈X2

{f1(y) + f2(z) + (z − y)Tλ}

= − sup
y∈X1

{yTλ− f1(y)} − sup
z∈X2

{−zTλ− f2(z)}

= −g1(λ)− g2(−λ),

• What are g1(λ) and g2(λ) here?
• gi (λ) is the conjugate of fi (x), i = 1, 2
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Fenchel Duality
Starting Problem.

Consider fi : Rn → R and Xi ⊆ Rn for i = 1, 2 and the problem:

minimize f1(x) + f2(x)

subject to x ∈ X1 ∩ X2

• Dual objective is: g(λ) = −g1(λ)− g2(−λ)

• The dual problem can be rewritten as:

max
λ∈Rn

{−g1(λ)− g2(−λ)} ⇔ min
λ∈Rn

{g1(λ) + g2(−λ)}.

Fenchel Duality

Suppose f1 and f2 are convex and either

(i) rel int(dom(f1)) ∩ rel int(dom(f2) ̸= ∅
or

(ii) dom(fi ) is polyhedral and fi can be extended to R-valued convex functions over

Rn for i = 1, 2.

Then, there exists λ⋆ ∈ Rn such that p⋆ = g(λ⋆) and strong duality holds.
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