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Discrete Optimization
Today, we consider optimization problems with discrete variables:

min ¢’ x+dy
Ax+ By =b
x,y >0

X integer
This is called a mixed integer programming (MIP) problem
Without continuous variables y, it is called an integer program (IP)
If instead of x € Z" we have x € {0,1}" : binary optimization problem

Very powerful modeling paradigm
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Example: Knapsack

® nitems
® |tem j has weight w; and reward r;
® Have a bound K on the weight that can be carried in the knapsack

® \Want to select items to maximize the total value
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Example: Knapsack

® nitems
® |tem j has weight w; and reward r;
® Have a bound K on the weight that can be carried in the knapsack

® \Want to select items to maximize the total value

n

maximize E I‘JXJ
j=1

n
subject to Z wix; < K
j=1
x;€4{0,1}, j=1,...,n
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Example: Facility Location

® 1 potential locations to open facilities
® Cost ¢; for opening a facility at location j

® m clients who need service

Cost dj; for serving client i from facility j

Smallest cost for opening facilities while serving all clients
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Example: Facility Location
® n potential locations to open facilities
® Cost ¢ for opening a facility at location

® m clients who need service

Cost dj; for serving client i from facility j

Smallest cost for opening facilities while serving all clients

min chyj +szuxy

i=1 j=1

Zx,-j =1, Vi
j=1

xij <y, Vi, Vj
Xij, Yj € {0, ].}
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Example: Facility Location
® n potential locations to open facilities
® Cost ¢ for opening a facility at location

® m clients who need service

Cost dj; for serving client i from facility j

Smallest cost for opening facilities while serving all clients

min ZCJM+ZZduXU min chyj—l—zz:duxu

i=1 j=1 i=1 j=1
Zx,-,-:l, Vi ZXU:L Vi
j=1 j=1
< Vi, Vj m
= T S xp < my, Vi
j = >
x,-j,yje{O,l} :
X,'_/',yJ'E{O,].}.
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Example: Piecewise Linear Cost

f(z)
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Example: Piecewise Linear Cost

K
® ldea: x =), ; Niaj

f(z) e Cost: Y1, Nif(ay)

® How to impose adjacency?

X = Ajaj + Aip1aiq1
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Example: Piecewise Linear Cost

f(z)

az

as

ag

® |dea: x = Zle Aia;
e Cost: fozl Aif(a;)
® How to impose adjacency?

X = Ajaj + Aip1aiq1

® New binary variables {y;}%_; to impose:

yi=1 = A=0fori¢{jj+1)

Ko o= 1
i=1 )
A1 < yi,
Ai S y/'—l‘f'}/h I:27 7k_17
A < Ykt
ngll Yi = 1:
)\i 2 07
yi € {0, 1}, Vi.
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Example: Piecewise Linear Cost

K
® ldea: x =), ; Niaj

f(z) e Cost: Y1, Nif(ay)

® How to impose adjacency?

X = Ajaj + Aip1aiq1

® New binary variables {y;}%_; to impose:

0l a1 as as ag x

i=1 = X\=0fori Jj+1
Nowadays, easy to model. In Gurobipy: Yi ori¢{jj+1}

k
® y =1 implies £(x) >0 : YA =1
ddc ((y==1) >> ({(x)>=0)) LS o
* onstr a (X) - Al' S Yi—-1 +}/i7 I:27 7k_17
A < Ykt
° — .
y =) Zf;ll yi = 1,
addGenConstrPWL(x,y,xpnts,ypnts) A > 0,
Yi € {Oa 1}7 Vi
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Example: Matching Problems

® Set U of jobs/tasks to complete; set V of persons available to work
® FEach task assigned to at most one person; a person can only complete some tasks

® Reward wj; if task i € U completed by person j € V
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Example: Matching Problems

® Set U of jobs/tasks to complete; set V of persons available to work

® FEach task assigned to at most one person; a person can only complete some tasks

Reward wj; if task i € U completed by person j € V

® Graph representation G = (N, €)

e ={i,j} € € indicates j € V can complete task i € U

Jobs Persons
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Example: Matching Problems

® Set U of jobs/tasks to complete; set V of persons available to work

® FEach task assigned to at most one person; a person can only complete some tasks

Reward wj; if task i € U completed by person j € V

® Graph representation G = (N, €)

e ={i,j} € € indicates j € V can complete task i € U
xe € {0,1} : whether edge selected
Jobs Persons
maximize Z WeXe
ecE
Z xe <1, VieN,
ecd(i)

Xe € {07 1}7

0(i):={ee E:e={ij}forje N} :all
edges incident on /
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Example: Matching Problems

® Set U of jobs/tasks to complete; set V of persons available to work

® FEach task assigned to at most one person; a person can only complete some tasks

Reward wj; if task i € U completed by person j € V

® Graph representation G = (N, €)

e ={i,j} € £ indicates j € V can complete task i € U
xe € {0,1} : whether edge selected
Jobs Persons
maximize Z WeXe
ecE
Z xe <1, VYi€eN,
ecd(i)

Xe € {07 1}7

0(i):={ee E:e={ij}forje N} :all
edges incident on /

Many variations: minimize cost, require jobs completed, perfect matching, ...
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Example: Minimum Spanning Tree

® Given an undirected graph G = (N, &); M| = n,

El=m
® Edge e € £ has associated cost ¢,

® Find minimum spanning tree (MST)
(subset of edges that connect all nodes in N at minimum cost)
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Example: Minimum Spanning Tree

® Given an undirected graph G = (N, &); IN| =n, |E|=m
® Edge e € £ has associated cost c.

® Find minimum spanning tree (MST)
(subset of edges that connect all nodes in N at minimum cost)

min g CeXe

ec&

xe € {0,1}
(Connectivity) er =n-1

ect

(Cutset) Z xe>1, SCN,S#0D

ecd(S)
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Example: Minimum Spanning Tree

® Given an undirected graph G = (N, &); IN| =n, |E|=m
® Edge e € £ has associated cost c.

® Find minimum spanning tree (MST)
(subset of edges that connect all nodes in N at minimum cost)

min g CeXe

ec&
xe € {0,1}
(Connectivity) er =n-1
ecf
(Cutset) Z xe>1, SCN,S#0D
ecd(S)
. or ...
(Subtour-elimination) Z Xe <|S]=1, SCN,S#0

ec&(S)

Both exponentially-sized formulations! Any preference between them?
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Example: Traveling Salesperson Problem (TSP)

® Given an undirected graph G = (N, &); M| = n,

El=m
® Edge e € £ has associated cost ¢,

® Find a tour (cycle that visits each node exactly once) with minimum cost
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Example: Traveling Salesperson Problem (TSP)

® Given an undirected graph G = (N, &); M| = n,

El=m
® Edge e € £ has associated cost ¢,

® Find a tour (cycle that visits each node exactly once) with minimum cost

min E CeXe

ecf
xe € {0,1}
(Connectivity) Z Xe =2,Vie N
eco({i})
(Cutset) Z xe >2,VSCN,S#(
ecé(S)
. OrF ...
(Subtour-elimination) Z Xe <|S|—1,VSCN,S#D
ec&(S)

Again exponentially-sized formulations! Any preference between them?
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Bad News First
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Bad News First

Example. The optimal solution in an IP might not exist:

sup x + \[2)/
X,y

1
X"‘\ﬁygﬁ
X,y € Z.
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Bad News First

Example. The optimal solution in an IP might not exist:

sup x + \[2)/
Xy
1
X+ \ﬁy < 5
X,y € Z.
Example. Consider the following pair of problems:
i D
(P) min x (D) max p

2x =1 2p<1
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Bad News First

Example. The optimal solution in an IP might not exist:

sup x + \[2)/
X,y
1
X+ \ﬁy < 5
X,y € Z.
Example. Consider the following pair of problems:
i D
(P) min x (D) max p
2x =1 2p <1

® x,p € R = this is a primal-dual pair; optimal value % by strong duality
® x,p € Z = (P) infeasible, (D) has optimal value 0.

Strong duality does not hold in IPs
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Bad News First

Unfortunately, (M)IPs are significantly harder than LPs

Theorem
Given a matrix A € Qm*" and a vector b € Q™, the problem: “does Ax < b have an
integral solution x” is NP-complete.

® |P “feasibility problem” is already in the hardest class of problems in NP
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Bad News First

Unfortunately, (M)IPs are significantly harder than LPs

Theorem
Given a matrix A € Qm*" and a vector b € Q™, the problem: “does Ax < b have an

integral solution x” is NP-complete.

® |P “feasibility problem” is already in the hardest class of problems in NP
® Despite this, substantial theory and scalable algorithms exist for IPs

® We will focus on optimization problems with rational entries:
AceQm " beQm ce Q" (in fact, often integer)

® \\e assume that the feasible set is bounded
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Lower Bounds Again
Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!
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Definition (LP relaxation)
The linear programming relaxation for the integer program
min c'x + d'y
Ax+ By =b
x,y >0
x e {0,1}™ )y € Z™,
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Lower Bounds Again
Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)
The linear programming relaxation for the integer program
min c'x + d'y
Ax+ By =b
x,y >0
x e {0,1}™ )y € Z™,
is obtained by replacing x € {0,1}™ with x € [0,1]™ and y € Z™ with y € R™.

Observation
1) OPT(LP relaxation) < OPT(IP optimal value).
2) If LP relaxation’s optimal solution is feasible for the IP, it is optimal for the IP.

Key Q: How good is this bound?
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LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL) (AFL)

n n
g xj =1, i=1,...,m E xj=1, i=1...,m
Jj=1 Jj=1

xj <y, i=1....m j=1,...,n

m
xj <my, j=1,...,n
leayje{071} ;

xij, ¥j € {0,1}.
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LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL)

Soxi=1, i=1,....m

j=1

xj <y, i=1....m j=1,...,n
xij, y; € {0,1}

® Pri, PapL : feasible sets for LP relaxations

® Pri C PapL and can have strict inclusion

(AFL)

n
E xj=1, i=1...,m
Jj=1

m
Zxﬁgmyj, j=1...,n
i=1

xij, ¥j € {0,1}.

h
IPAFL QL\

ey
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LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(AFL)

(FL)

n
g xj =1, i=1,...,m
Jj=1

xj <y, i=1....,m j=1,...
xij, y; € {0,1}

n

)

PreL, ParL : feasible sets for LP relaxations

PrL C PafpL and can have strict inclusion

(FL) provides better lower bound than (AFL)

Same IP feasible set, smaller LP feasible set!

n
E xj=1, i=1...,m
Jj=1

m
Zxﬁgmyj, j=1...,n
i=1

xij, ¥j € {0,1}.

b

PAFT, 2

iy
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LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST) (Subtour-elimination MST)

er:nfl, er:nfl,

ecé ecé

Y xe>1, SCN,S#0 Y xe<IS|-1, SCN,S#0,
ecd(S) ec&(S)
xe € {0,1} xe € {0,1}.

® Py, Psub : feasible sets for LP relaxations
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LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

er:nfl

(Subtour-elimination MST)

er:nfl,

ecé eec&
Y xe>1, SCN,S#0 Y xe<IS|-1, SCN,S#0,
ecd(S) ec&(S)
xe € {0,1} xe € {0,1}.
Preuts Psub : feasible sets for LP relaxations ‘
Peut o
Psub € Pyt and can have strict inclusion Cu/%}
(Proof in the notes) 3 N
" T Psub\,'
(SUB) provides better lower bound than (CUT) i) o 0
1 1
\\\ 'l
N~ K
Same IP feasible set, smaller LP feasible set!
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LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP) (Subtour-elimination TSP)
Z xe =2,Vi €N Z xe =2,¥ieN
ecs({i}) ecs({i})
Y % =2 VSCN,S#D Y xe<|S|-1,YSCN,S#0.
ecd(S) ec&(S)

® Put, Psub : feasible sets for LP relaxations
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LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP) (Subtour-elimination TSP)
Z xe =2,Vi €N Z xe =2,¥ieN
ecs({i}) ecs({i})
Y % =2 VSCN,S#D Y xe<|S|-1,YSCN,S#0.
ecd(S) ec&(S)

® Put, Psub : feasible sets for LP relaxations

® Pob=Pcu




Strength of IP Formulation

® Different formulations of the same IP can result in different LP relaxations

® What is an “ideal” formulation?
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Strength of IP Formulation

(a)

® Consider an IP with bounded feasible set
e T . all feasible points to the IP

® P : feasible set for LP relaxation to IP
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Strength of IP Formulation

<a
\\\.\\\.\\\\\ R

N \
Nconv (7))

(a) (b)

Consider an IP with bounded feasible set
T : all feasible points to the IP
P : feasible set for LP relaxation to IP

conv(T) : the convex hull of T
- a polyhedron because we assumed bounded feasible set
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Strength of IP Formulation

s
RN S

(a) (b)

G

Consider an IP with bounded feasible set
T : all feasible points to the IP

P : feasible set for LP relaxation to IP
conv(T) : the convex hull of T

- a polyhedron because we assumed bounded feasible set
We always have: T C conv(T) C P.
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Strength of IP Formulation

e
EPRBBINNERS S

N \
N conv (7))

(a) (b)

Consider an IP with bounded feasible set
T : all feasible points to the IP

P : feasible set for LP relaxation to IP
conv(T) : the convex hull of T

- a polyhedron because we assumed bounded feasible set
We always have: T C conv(T) C P.

Ideal LP relaxation would have P = conv(T)

19/28



Strength of IP Formulation

\\\\\\\\\\\\\\\\

o)

| \\\\\\\\\

® Quality of IP formulation : how closely its LP relaxation approximates conv(T)
® For an IP and two equivalent formulations A, B: A is stronger than B if P, C Pg

® Constraints play a more subtle role in IPs than in LPs
- Adding valid constraints for T that cut off fractional points from P is very useful!
- More constraints not necessarily worse in P!
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Strength of IP Formulation

\\\\\\\\\\\\\\\\

| \\\\\\\\\

® Quality of IP formulation : how closely its LP relaxation approximates conv(T)
® For an IP and two equivalent formulations A, B: A is stronger than B if P, C Pg

® Constraints play a more subtle role in IPs than in LPs
- Adding valid constraints for T that cut off fractional points from P is very useful!
- More constraints not necessarily worse in P!

1. Discuss a few ideal formulations : P = conv(T)
2. Discuss how to improve formulations by adding cuts

3. Discuss algorithms/solution approaches
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Ideal Formulations

Setup:
® P ={x € R} | Ax < b} polyhedral set, with A€ Z™*" and b € Z™

® Goal: conditions on A so that P is integral, i.e., P=convx € P: x € Z"

Can anyone recall Cramer's rule?
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® P ={x € R} | Ax < b} polyhedral set, with A€ Z™*" and b € Z™

® Goal: conditions on A so that P is integral, i.e., P=convx € P: x € Z"

Can anyone recall Cramer's rule?

Proposition (Cramer’s Rule)

Let A € R"*" be a nonsingular matrix. For b € R",

~ det(A')
det(A)

where A’ is the matrix with columns AJ"- = A forallj € {1,...,n} \ {i} and A = b.

Ax=b = x=A1h = x , Vi,
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Ideal Formulations

Setup:
® P ={x € R} | Ax < b} polyhedral set, with A€ Z™*" and b € Z™

® Goal: conditions on A so that P is integral, i.e., P=convx € P: x € Z"

Can anyone recall Cramer's rule?

Proposition (Cramer’s Rule)

Let A € R"*" be a nonsingular matrix. For b € R",

~ det(A')
det(A)

where A’ is the matrix with columns AJ"- = A forallj € {1,...,n} \ {i} and A = b.

Ax=b = x=A1h = x , Vi,

If det(A) € {1, —1}, that would be nice!
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(Total) Unimodularity

Definition

1. A€ Z™*" of full row rank is unimodular if the det(Ag) € {1, —1} for every basis
B.

2. A€ Z™" is totally unimodular if the determinant of each square submatrix of A
is0, 1, or -1.

® Unimodularity allows handling standard form {x € Z" | Ax = b}

® Total Unimodularity (TU) allows handling inequality form {x € Z7 | Ax < b}
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(Total) Unimodularity

Definition

1. A€ Z™*" of full row rank is unimodular if the det(Ag) € {1, —1} for every basis
B.

2. A€ Z™" is totally unimodular if the determinant of each square submatrix of A
is0, 1, or -1.

® Unimodularity allows handling standard form {x € Z" | Ax = b}
® Total Unimodularity (TU) allows handling inequality form {x € Z7 | Ax < b}

® Note: a TU matrix must belong to {0,1,—1}"*", but not a unimodular matrix:

3 2
eg. A= L 1]
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(Total) Unimodularity

Definition

1. A€ Z™*" of full row rank is unimodular if the det(Ag) € {1, —1} for every basis
B.

2. A€ Z™" is totally unimodular if the determinant of each square submatrix of A
is0, 1, or -1.

Unimodaularity allows handling standard form {x € Z | Ax = b}

Total Unimodularity (TU) allows handling inequality form {x € Z | Ax < b}

Note: a TU matrix must belong to {0,1, —1}™*", but not a unimodular matrix:
3 2
g A=
s 4=

Will provide easier ways to test for U and TU, but first let's see why we care...
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(Total) Unimodularity Yields Integral LP Relaxations

Theorem
1. The matrix A € Z™*" of full row rank is unimodular if and only if the
polyhedron P(b) = {x € R, | Ax = b} is integral for all b € Z™ with P(b) # 0.
2. The matrix A is totally unimodular if and only if the polyhedron
P(b) = {x € R" | Ax < b} is integral for all b € Z™ with P(b) # 0.
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Proof. (a) “=" Because A unimodular, for any b € Z™ with P(b) # 0, any basic feasible
solution x = (xg, xn) € P(b) must satisfy xg = Ag'b € Z!5.
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® Then Ag'-b=z+Az'e
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(Total) Unimodularity Yields Integral LP Relaxations

Theorem
1. The matrix A € Z™*" of full row rank is unimodular if and only if the
polyhedron P(b) = {x € R | Ax = b} is integral for all b € Z™ with P(b) # 0.
2. The matrix A is totally unimodular if and only if the polyhedron
P(b) = {x € R" | Ax < b} is integral for all b € Z™ with P(b) # 0.

Proof. (a) “=" Because A unimodular, for any b € Z™ with P(b) # 0, any basic feasible
solution x = (xg, xn) € P(b) must satisfy xg = Ag'b € Z!5.

“<" We have that P(b) # 0 is integral b € Z™. Let B be any basis of A.

e Sufficient to prove that Ag' is integral; (Ag integral and det(Ag) - det(A5") = 1 would
imply that det(Ag) € {1, —1} and thus A is unimodular)

® To prove A;l integral, consider b = Ag - z + e where z is an integral vector
® Then Ag'-b=z+Az'e

® By choosing z large so z + Az'e; > 0, we obtain a b.f.s. for P(b)

® Because P(b) integral, A;'e; must be integral

® Repeat argument for all e to proves that AEI is integral.

(b) Similar logic, omitted (see notes)
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Checking for Total Unimodularity

Proposition

Consider a matrix A € {0,1,—1}"*". The following are equivalent:
1. A is totally unimodular.

. AT is totally unimodular.
. [AT — AT | — 1] is totally unimodular.

2

3

4. {x € R} | Ax = b,0 < x < u} is integral for all integral b, u.
5. {x]a< Ax < b,l < x < u} is integral for all integral a, b, (, u.
6

. Each collection of columns of A can be partitioned into two parts so that the sum of the
columns in one part minus the sum of the columns in the other part is a vector with
entries 0, +1, and —1. (By part 2, a similar result also holds for the rows of A.)

7. Each nonsingular submatrix of A has a row with an odd number of non-zero components.

8. The sum of entries in any square submatrix with even row and column sums is divisible
by four.

9. No square submatrix of A has determinant +2 or -2.

#6 perhaps most useful in practice...
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Examples of TU Matrices #1
® G = (N,€&) undirected graph

e Ac {0,1}NI*I€l is the node-edge incidence matrix of G
Aie=1ifand only ifi € e

oNgFe

2

{1,5} {2,3} {2,6} {43} {4,5} {4,6}
1] 1 0 0 0 0 0
21 0 1 1 0 0 0
31 0 1 0 1 0 0
4 0 0 0 1 1 1
50 1 0 0 0 1 0
6| 0 0 1 0 0 1
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Examples of TU Matrices #1

® G = (N,€&) undirected graph

e Ac {0,1}NI*I€l is the node-edge incidence matrix of G

Aie=1ifand only ifi € e

{1,5} {2,3} {2,6} {4,3} {4,5} {4,6}
0 e 1] 1 0 0 0 0 0
/ 21 0 1 1 0 0 0
9('6 3| 0 1 0 1 0 0
4] 0 0 0 1 1 1
LN 5/ 10 0 0 1 0
° e 6| 0 0 1 0 0 1

e Ais TU if and only if G is bipartite

® Bipartite matching problems have integral LP relaxations...
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Examples of TU Matrices #2
e D= (V,A) is a directed graph

® M is the V x A incidence matrix of D

1 if and only if a = (-, v) (arc a enters node v)
M, .= <¢ -1 ifand onlyif a=(v,-) (arc a leaves node v)
0 otherwise.
a o (1,2) (1,3) (24 43) (3,5 (54 (46) (506)
1] -1 -1 0 0 0 0 0 0
2 1 0 -1 0 0 0 0 0
o e 3/ 0 1 0 1 -1 0 0 0
4 0 0 1 -1 0 1 -1 0
5 0 0 0 0 1 -1 0 -1
(3) (s) 6 o o o o 0 0 1 1
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Examples of TU Matrices #2
e D=(V,A)is a directed graph

® M is the V x A incidence matrix of D

1 if and only if a= (-, v) (arc a enters node v)
M, .= <¢ -1 ifand onlyif a=(v,-) (arc a leaves node v)
0 otherwise.
a o (1,2) (1,3) (24 43) (3,5 (54 (46) (506)
1| -1 -1 0 0 0 0 0 0
2 1 0 -1 0 0 0 0 0
a e 3/ 0 1 0 1 -1 0 0 0
4 0 0 1 -1 0 1 -1 0
5 0 0 0 0 1 -1 0 -1
(3) (s) 6/ o o o o o o0 1 1

® Then Mis TU

® Network flow problems (e.g., Prosche Motors) with integral arc capacities and
integral supply/demand have integral LP relaxations
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Examples of TU Matrices #3

® D= (V,A)is a directed graph, T = (V, Ao) is a directed tree on V
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Examples of TU Matrices #3

® D= (V,A) is a directed graph, T = (V, Ap) is a directed tree on V
D (N, A) =(N,4")

’G 0 (&)

® M is the Ay x A matrix defined as follows: for a = (v,w) € A and &’ € Ay,

+1 if the unique v — w path in T passes through a’ forwardly
M, , = ¢ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.
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Examples of TU Matrices #3

® D= (V,A) is a directed graph, T = (V, Ap) is a directed tree on V
D (N, A) =(N,4")

’G 0 (&)

® M is the Ay x A matrix defined as follows: for a = (v,w) € A and &’ € Ay,

+1 if the unique v — w path in T passes through a’ forwardly
M, , = ¢ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.

(1,2) (1,3) (2,4) (43) (35 (54) (46) (56)
(1,3) | 1 1 1 0 0 0 0 0
24| -1 0 0 0 0 0 0 0
(43)] -1 0 0 1 0 -1 1 0
(3,5)| 0 0 0 0 1 ~1 1 0
(56) | 0 0 0 0 0 0 1 1
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Examples of TU Matrices #3

® D= (V,A)is a directed graph, T = (V/, Ap) is a directed tree on V
= (N, A) = (N, A"

0 ’G 0 (&)

M is the Ag x A matrix defined as follows: for a = (v,w) € A and a’ € Ao,

+1 if the unique v — w path in T passes through a’ forwardly
M. ;= ¢ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.

Then M is TU

All previous examples were special cases of this
® Paul Seymour: all TU matrices generated from network matrices and two other matrices
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