

Lecture 16

November 17, 2025

Discrete Optimization

Today, we consider optimization problems with **discrete variables**:

$$\begin{aligned} & \min c^T x + d^T y \\ & Ax + By = b \\ & x, y \geq 0 \\ & x \text{ integer} \end{aligned}$$

This is called a **mixed integer programming** (MIP) problem

Without continuous variables y , it is called an **integer program** (IP)

If instead of $x \in \mathbb{Z}^n$ we have $x \in \{0, 1\}^n$: **binary optimization** problem

Very powerful modeling paradigm

Example: Knapsack

- n items
- Item j has weight w_j and reward r_j
- Have a bound K on the weight that can be carried in the knapsack
- Want to select items to maximize the total value

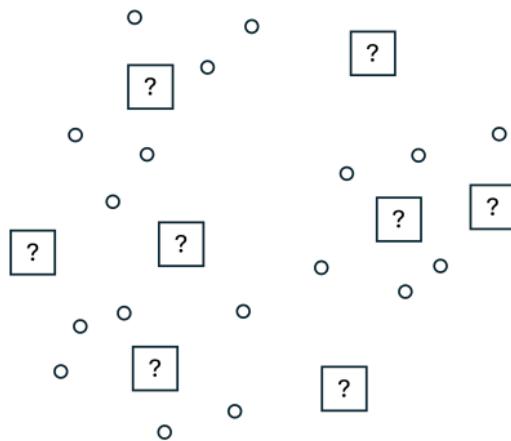
Example: Knapsack

- n items
- Item j has weight w_j and reward r_j
- Have a bound K on the weight that can be carried in the knapsack
- Want to select items to maximize the total value

$$\begin{aligned} & \text{maximize} \quad \sum_{j=1}^n r_j x_j \\ & \text{subject to} \quad \sum_{j=1}^n w_j x_j \leq K \\ & \quad x_j \in \{0, 1\}, \quad j = 1, \dots, n. \end{aligned}$$

Example: Facility Location

- n potential locations to open facilities
- Cost c_j for opening a facility at location j
- m clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients



Example: Facility Location

- n potential locations to open facilities
- Cost c_j for opening a facility at location j
- m clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients

$$\min \sum_{j=1}^n c_j y_j + \sum_{i=1}^m \sum_{j=1}^n d_{ij} x_{ij}$$

$$\sum_{j=1}^n x_{ij} = 1, \quad \forall i$$

$$x_{ij} \leq y_j, \quad \forall i, \forall j$$

$$x_{ij}, y_j \in \{0, 1\}$$

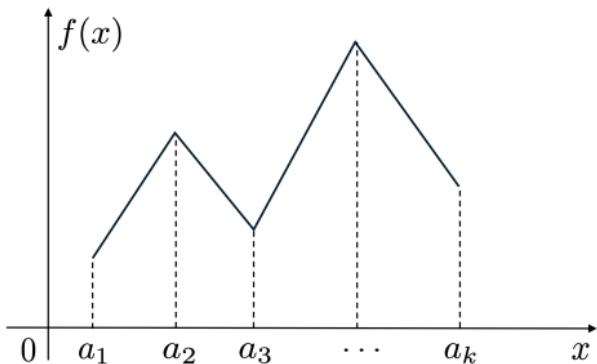
Example: Facility Location

- n potential locations to open facilities
- Cost c_j for opening a facility at location j
- m clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients

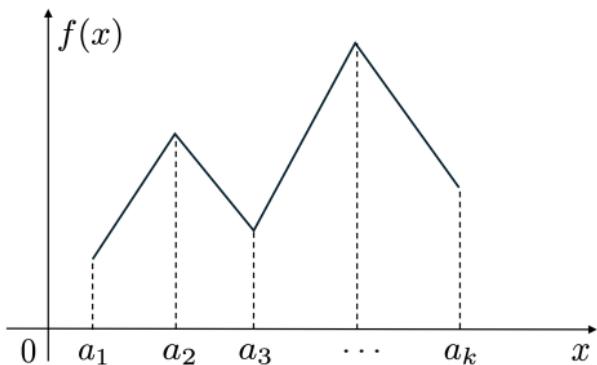
$$\begin{aligned} \min \quad & \sum_{j=1}^n c_j y_j + \sum_{i=1}^m \sum_{j=1}^n d_{ij} x_{ij} \\ \text{subject to} \quad & \sum_{j=1}^n x_{ij} = 1, \quad \forall i \\ & x_{ij} \leq y_j, \quad \forall i, \forall j \\ & x_{ij}, y_j \in \{0, 1\} \end{aligned}$$

$$\begin{aligned} \min \quad & \sum_{j=1}^n c_j y_j + \sum_{i=1}^m \sum_{j=1}^n d_{ij} x_{ij} \\ \text{subject to} \quad & \sum_{j=1}^n x_{ij} = 1, \quad \forall i \\ & \sum_{i=1}^m x_{ij} \leq m y_j, \quad \forall j \\ & x_{ij}, y_j \in \{0, 1\}. \end{aligned}$$

Example: Piecewise Linear Cost



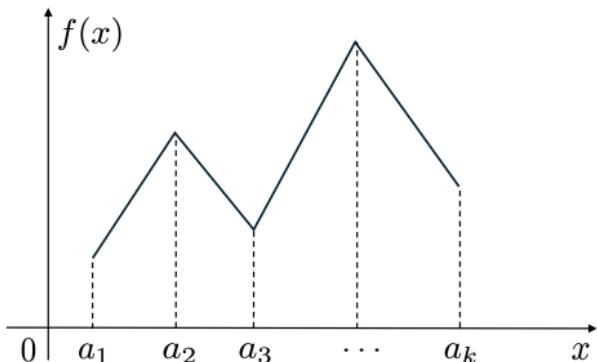
Example: Piecewise Linear Cost



- Idea: $x = \sum_{i=1}^k \lambda_i a_i$
- Cost: $\sum_{i=1}^k \lambda_i f(a_i)$
- How to impose adjacency?

$$x = \lambda_j a_j + \lambda_{j+1} a_{j+1}$$

Example: Piecewise Linear Cost



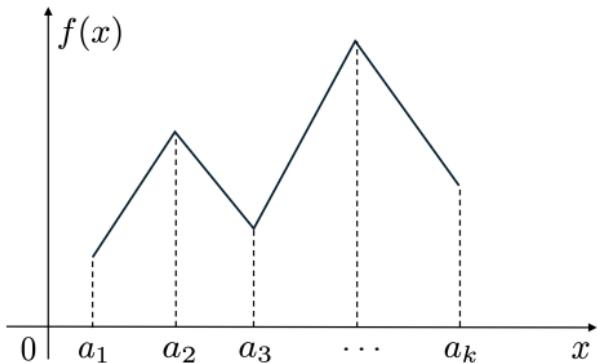
- Idea: $x = \sum_{i=1}^k \lambda_i a_i$
- Cost: $\sum_{i=1}^k \lambda_i f(a_i)$
- How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

- New binary variables $\{y_i\}_{i=1}^k$ to impose:

$$y_j = 1 \Rightarrow \lambda_i = 0 \text{ for } i \notin \{j, j+1\}$$

Example: Piecewise Linear Cost



- Idea: $x = \sum_{i=1}^k \lambda_i a_i$

- Cost: $\sum_{i=1}^k \lambda_i f(a_i)$

- How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

- New binary variables $\{y_i\}_{i=1}^k$ to impose:

$$y_j = 1 \Rightarrow \lambda_i = 0 \text{ for } i \notin \{j, j+1\}$$

$$\sum_{i=1}^k \lambda_i = 1,$$

$$\lambda_1 \leq y_1,$$

$$\lambda_i \leq y_{i-1} + y_i, \quad i = 2, \dots, k-1,$$

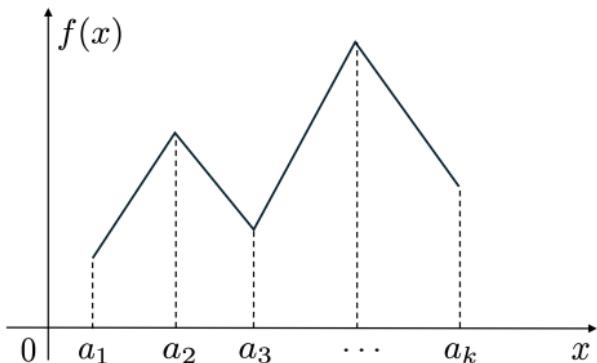
$$\lambda_k \leq y_{k-1},$$

$$\sum_{i=1}^{k-1} y_i = 1,$$

$$\lambda_i \geq 0,$$

$$y_i \in \{0, 1\}, \quad \forall i.$$

Example: Piecewise Linear Cost



- Idea: $x = \sum_{i=1}^k \lambda_i a_i$
- Cost: $\sum_{i=1}^k \lambda_i f(a_i)$
- How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

- New binary variables $\{y_i\}_{i=1}^k$ to impose:

$$y_j = 1 \Rightarrow \lambda_i = 0 \text{ for } i \notin \{j, j+1\}$$

- $y = 1$ implies $\ell(x) \geq 0$:

```
addConstr((y==1) >> (ell(x)>=0))
```

- $y = f(x)$:

```
addGenConstrPWL(x,y,xpnts,ypnts)
```

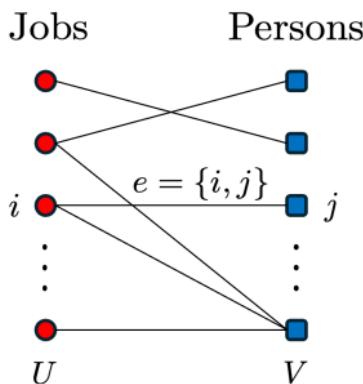
$$\begin{aligned}\sum_{i=1}^k \lambda_i &= 1, \\ \lambda_1 &\leq y_1, \\ \lambda_i &\leq y_{i-1} + y_i, \quad i = 2, \dots, k-1, \\ \lambda_k &\leq y_{k-1}, \\ \sum_{i=1}^{k-1} y_i &= 1, \\ \lambda_i &\geq 0, \\ y_i &\in \{0, 1\}, \quad \forall i.\end{aligned}$$

Example: Matching Problems

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$

Example: Matching Problems

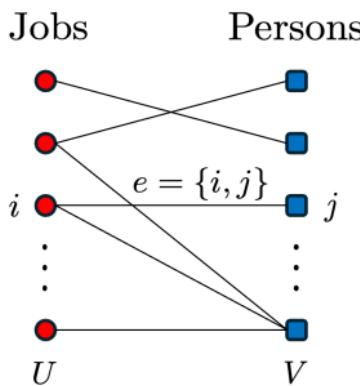
- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$



Example: Matching Problems

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$

$x_e \in \{0, 1\}$: whether edge selected



$$\text{maximize} \sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(i)} x_e \leq 1, \quad \forall i \in N,$$

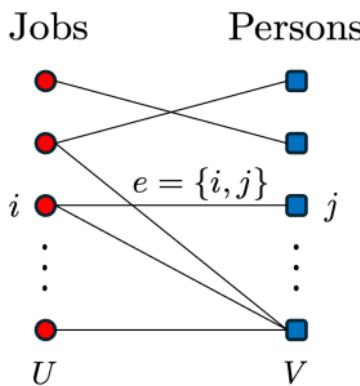
$$x_e \in \{0, 1\},$$

$\delta(i) := \{e \in E : e = \{i, j\} \text{ for } j \in N\}$: all edges incident on i

Example: Matching Problems

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$

$x_e \in \{0, 1\}$: whether edge selected



$$\text{maximize} \sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(i)} x_e \leq 1, \quad \forall i \in N,$$

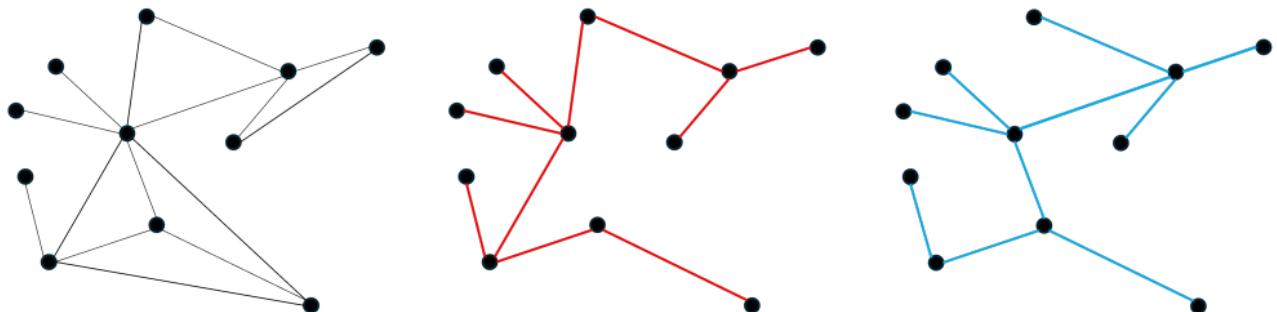
$$x_e \in \{0, 1\},$$

$\delta(i) := \{e \in E : e = \{i, j\} \text{ for } j \in N\}$: all edges incident on i

Many variations: minimize cost, require jobs completed, perfect matching, ...

Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find **minimum spanning tree** (MST)
(subset of edges that connect all nodes in \mathcal{N} at minimum cost)



Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find **minimum spanning tree** (MST)
(subset of edges that connect all nodes in \mathcal{N} at minimum cost)

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$
$$x_e \in \{0, 1\}$$

(Connectivity) $\sum_{e \in \mathcal{E}} x_e = n - 1$

(Cutset) $\sum_{e \in \delta(S)} x_e \geq 1, S \subset \mathcal{N}, S \neq \emptyset$

Example: Minimum Spanning Tree

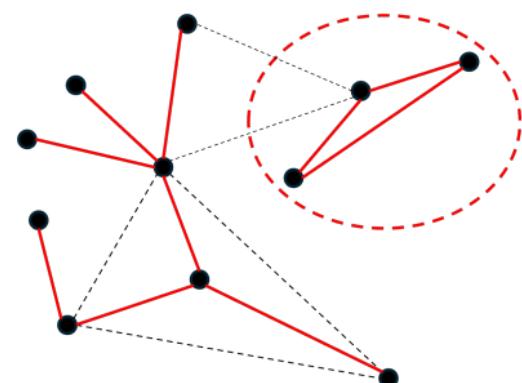
- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find **minimum spanning tree** (MST)
(subset of edges that connect all nodes in \mathcal{N} at minimum cost)

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0, 1\}$$

(Connectivity) $\sum_{e \in \mathcal{E}} x_e = n - 1$

(Cutset) $\sum_{e \in \delta(S)} x_e \geq 1, S \subset \mathcal{N}, S \neq \emptyset$



Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find **minimum spanning tree** (MST)
(subset of edges that connect all nodes in \mathcal{N} at minimum cost)

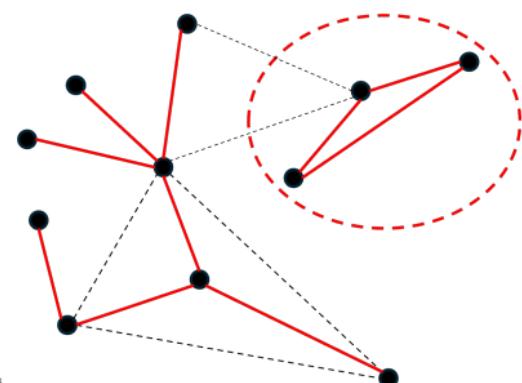
$$\min \sum_{e \in \mathcal{E}} c_e x_e$$
$$x_e \in \{0, 1\}$$

(Connectivity) $\sum_{e \in \mathcal{E}} x_e = n - 1$

(Cutset) $\sum_{e \in \delta(S)} x_e \geq 1, S \subset \mathcal{N}, S \neq \emptyset$

... or ...

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, S \subset \mathcal{N}, S \neq \emptyset$



Example: Minimum Spanning Tree

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find **minimum spanning tree** (MST)
(subset of edges that connect all nodes in \mathcal{N} at minimum cost)

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

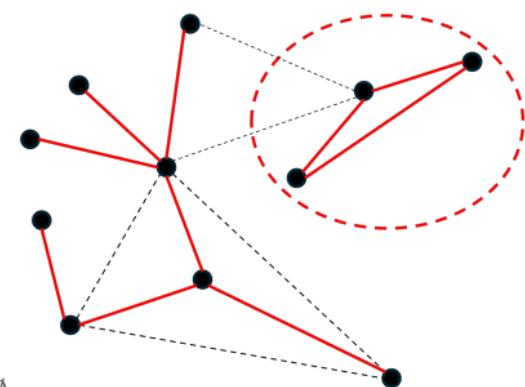
$$x_e \in \{0, 1\}$$

$$(\text{Connectivity}) \quad \sum_{e \in \mathcal{E}} x_e = n - 1$$

$$(\text{Cutset}) \quad \sum_{e \in \delta(S)} x_e \geq 1, \quad S \subset \mathcal{N}, S \neq \emptyset$$

... or ...

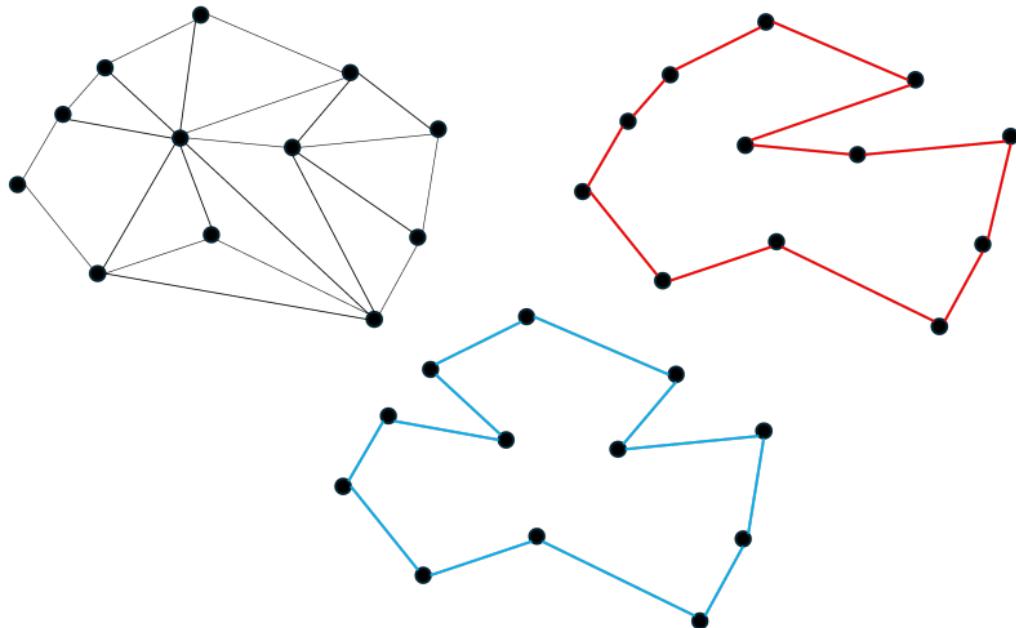
$$(\text{Subtour-elimination}) \quad \sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \quad S \subset \mathcal{N}, S \neq \emptyset$$



Both **exponentially-sized** formulations! Any preference between them?

Example: Traveling Salesperson Problem (TSP)

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (*cycle that visits each node exactly once*) with minimum cost



Example: Traveling Salesperson Problem (TSP)

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (*cycle that visits each node exactly once*) with minimum cost

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0, 1\}$$

(Connectivity) $\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N}$

(Cutset) $\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset$

Example: Traveling Salesperson Problem (TSP)

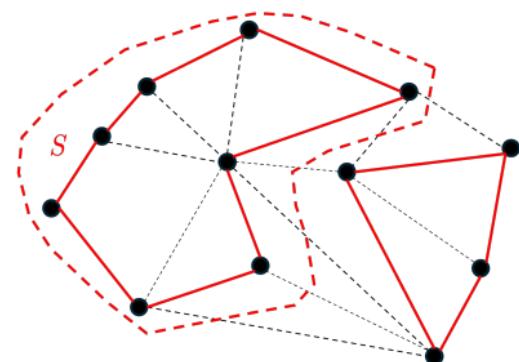
- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (*cycle that visits each node exactly once*) with minimum cost

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0, 1\}$$

(Connectivity) $\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N}$

(Cutset) $\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset$



Example: Traveling Salesperson Problem (TSP)

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (*cycle that visits each node exactly once*) with minimum cost

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

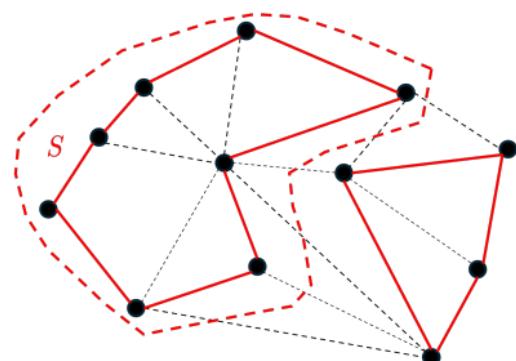
$$x_e \in \{0, 1\}$$

(Connectivity) $\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N}$

(Cutset) $\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset$

... or ...

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \forall S \subset \mathcal{N}, S \neq \emptyset$



Example: Traveling Salesperson Problem (TSP)

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (*cycle that visits each node exactly once*) with minimum cost

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

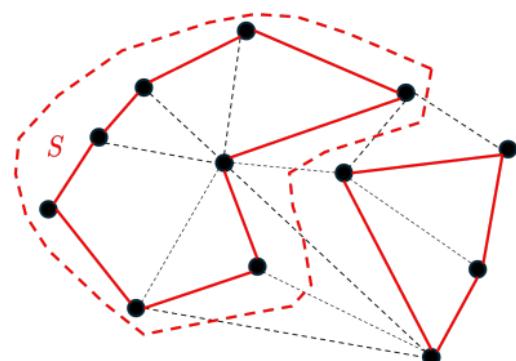
$$x_e \in \{0, 1\}$$

(Connectivity) $\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N}$

(Cutset) $\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset$

... or ...

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \forall S \subset \mathcal{N}, S \neq \emptyset$



Again **exponentially-sized** formulations! Any preference between them?

Bad News First

Bad News First

Example. The optimal solution in an IP **might not exist**:

$$\begin{aligned} & \sup_{x,y} x + \sqrt{2}y \\ & x + \sqrt{2}y \leq \frac{1}{2} \\ & x, y \in \mathbb{Z}. \end{aligned}$$

Bad News First

Example. The optimal solution in an IP **might not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$

$$x + \sqrt{2}y \leq \frac{1}{2}$$

$$x, y \in \mathbb{Z}.$$

Example. Consider the following pair of problems:

$$(\mathcal{P}) \min_{x \geq 0} x$$

$$2x = 1$$

$$(\mathcal{D}) \max_p p$$

$$2p \leq 1$$

Bad News First

Example. The optimal solution in an IP **might not exist**:

$$\begin{aligned} & \sup_{x,y} x + \sqrt{2}y \\ & x + \sqrt{2}y \leq \frac{1}{2} \\ & x, y \in \mathbb{Z}. \end{aligned}$$

Example. Consider the following pair of problems:

$$(\mathcal{P}) \quad \min_{x \geq 0} x$$

$$2x = 1$$

$$(\mathcal{D}) \quad \max_p p$$

$$2p \leq 1$$

- $x, p \in \mathbb{R} \Rightarrow$ this is a primal-dual pair; optimal value $\frac{1}{2}$ by strong duality

Bad News First

Example. The optimal solution in an IP **might not exist**:

$$\begin{aligned} & \sup_{x,y} x + \sqrt{2}y \\ & x + \sqrt{2}y \leq \frac{1}{2} \\ & x, y \in \mathbb{Z}. \end{aligned}$$

Example. Consider the following pair of problems:

$$(\mathcal{P}) \quad \min_{x \geq 0} x$$

$$2x = 1$$

$$(\mathcal{D}) \quad \max_p p$$

$$2p \leq 1$$

- $x, p \in \mathbb{R} \Rightarrow$ this is a primal-dual pair; optimal value $\frac{1}{2}$ by strong duality
- $x, p \in \mathbb{Z} \Rightarrow (\mathcal{P})$ infeasible, (\mathcal{D}) has optimal value 0.

Strong duality does not hold in IPs

Bad News First

Unfortunately, (M)IPs are **significantly harder** than LPs

Theorem

*Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, the problem: “does $Ax \leq b$ have an integral solution x ” is **NP-complete**.*

- IP “feasibility problem” is already in the hardest class of problems in NP

Bad News First

Unfortunately, (M)IPs are **significantly harder** than LPs

Theorem

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, the problem: “does $Ax \leq b$ have an integral solution x ” is **NP-complete**.

- IP “feasibility problem” is already in the hardest class of problems in NP
- Despite this, substantial theory and scalable algorithms exist for IPs
- We will focus on optimization problems with **rational entries**:
 $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ (in fact, often **integer**)
- We assume that the **feasible set is bounded**

Lower Bounds Again

Same question as in LP: *how can we find a good lower bound?*

If we relaxed integrality requirements, we would get at LP!

Lower Bounds Again

Same question as in LP: *how can we find a good lower bound?*

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The **linear programming relaxation** for the integer program

$$\begin{aligned} & \min c^T x + d^T y \\ & Ax + By = b \\ & x, y \geq 0 \\ & x \in \{0, 1\}^{n_1}, y \in \mathbb{Z}^{n_2}, \end{aligned}$$

is obtained by replacing $x \in \{0, 1\}^{n_1}$ with $x \in [0, 1]^{n_1}$ and $y \in \mathbb{Z}^{n_2}$ with $y \in \mathbb{R}^{n_2}$.

Lower Bounds Again

Same question as in LP: *how can we find a good lower bound?*

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The **linear programming relaxation** for the integer program

$$\begin{aligned} \min \quad & c^T x + d^T y \\ \text{subject to} \quad & Ax + By = b \\ & x, y \geq 0 \\ & x \in \{0, 1\}^{n_1}, y \in \mathbb{Z}^{n_2}, \end{aligned}$$

is obtained by replacing $x \in \{0, 1\}^{n_1}$ with $x \in [0, 1]^{n_1}$ and $y \in \mathbb{Z}^{n_2}$ with $y \in \mathbb{R}^{n_2}$.

Observation

- 1) $OPT(LP \text{ relaxation}) \leq OPT(IP \text{ optimal value}).$
- 2) If LP relaxation's optimal solution is feasible for the IP, it is optimal for the IP.

Key Q: How good is this bound?

LP Relaxation for Facility Location IP

Recall the **two** formulations of the Facility Location Problem

(FL)

$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \dots, m$$

$$x_{ij} \leq y_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$
$$x_{ij}, y_j \in \{0, 1\}$$

(AFL)

$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \dots, m$$

$$\sum_{i=1}^m x_{ij} \leq my_j, \quad j = 1, \dots, n$$

$$x_{ij}, y_j \in \{0, 1\}.$$

LP Relaxation for Facility Location IP

Recall the **two** formulations of the Facility Location Problem

(FL)

$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \dots, m$$

$$x_{ij} \leq y_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$
$$x_{ij}, y_j \in \{0, 1\}$$

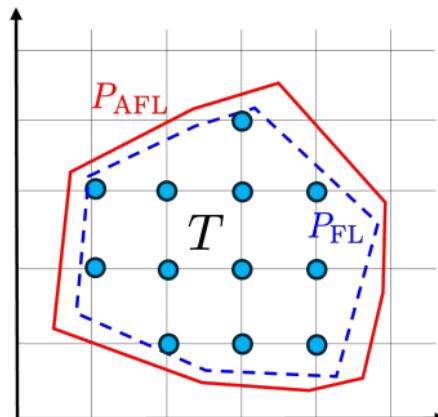
(AFL)

$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \dots, m$$

$$\sum_{i=1}^m x_{ij} \leq my_j, \quad j = 1, \dots, n$$

$$x_{ij}, y_j \in \{0, 1\}.$$

- $P_{\text{FL}}, P_{\text{AFL}}$: feasible sets for LP relaxations
- $P_{\text{FL}} \subseteq P_{\text{AFL}}$ and can have **strict** inclusion



LP Relaxation for Facility Location IP

Recall the **two** formulations of the Facility Location Problem

(FL)

$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \dots, m$$

$$x_{ij} \leq y_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$
$$x_{ij}, y_j \in \{0, 1\}$$

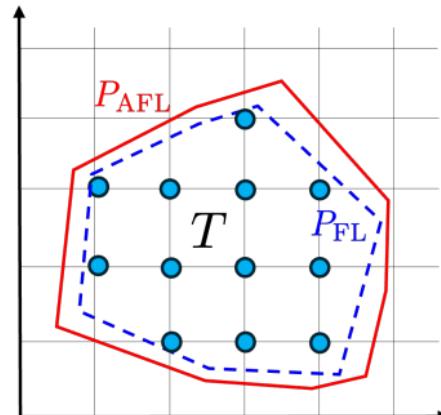
(AFL)

$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \dots, m$$

$$\sum_{i=1}^m x_{ij} \leq my_j, \quad j = 1, \dots, n$$

$$x_{ij}, y_j \in \{0, 1\}.$$

- $P_{\text{FL}}, P_{\text{AFL}}$: feasible sets for LP relaxations
- $P_{\text{FL}} \subseteq P_{\text{AFL}}$ and can have **strict** inclusion
- **(FL)** provides **better lower bound** than **(AFL)**
- **Same** IP feasible set, **smaller** LP feasible set!



LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

$$\sum_{e \in \mathcal{E}} x_e = n - 1,$$

$$\sum_{e \in \delta(S)} x_e \geq 1, \quad S \subset \mathcal{N}, S \neq \emptyset$$

$$x_e \in \{0, 1\}$$

(Subtour-elimination MST)

$$\sum_{e \in \mathcal{E}} x_e = n - 1,$$

$$\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \quad S \subset \mathcal{N}, S \neq \emptyset,$$

$$x_e \in \{0, 1\}.$$

- $P_{\text{cut}}, P_{\text{sub}}$: feasible sets for LP relaxations

LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

$$\sum_{e \in \mathcal{E}} x_e = n - 1,$$

$$\sum_{e \in \delta(S)} x_e \geq 1, \quad S \subset \mathcal{N}, S \neq \emptyset$$

$$x_e \in \{0, 1\}$$

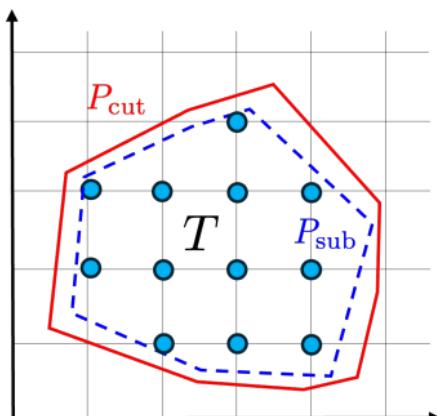
(Subtour-elimination MST)

$$\sum_{e \in \mathcal{E}} x_e = n - 1,$$

$$\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \quad S \subset \mathcal{N}, S \neq \emptyset,$$

$$x_e \in \{0, 1\}.$$

- $P_{\text{cut}}, P_{\text{sub}}$: feasible sets for LP relaxations
- $P_{\text{sub}} \subseteq P_{\text{cut}}$ and can have **strict** inclusion
(*Proof in the notes*)
- (SUB) provides **better lower bound** than (CUT)
- **Same** IP feasible set, **smaller** LP feasible set!



LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP)

$$\begin{aligned} \sum_{e \in \delta(\{i\})} x_e &= 2, \forall i \in N \\ \sum_{e \in \delta(S)} x_e &\geq 2, \forall S \subset N, S \neq \emptyset \end{aligned}$$

(Subtour-elimination TSP)

$$\begin{aligned} \sum_{e \in \delta(\{i\})} x_e &= 2, \forall i \in N \\ \sum_{e \in \mathcal{E}(S)} x_e &\leq |S| - 1, \forall S \subset N, S \neq \emptyset. \end{aligned}$$

- $P_{\text{cut}}, P_{\text{sub}}$: feasible sets for LP relaxations

LP Relaxation for Traveling Salesperson Problem (TSP)

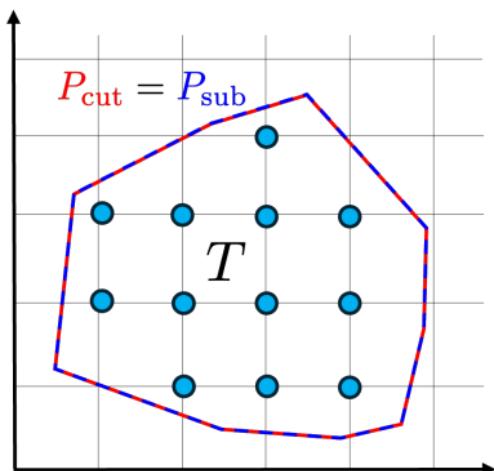
(Cutset TSP)

$$\begin{aligned} \sum_{e \in \delta(\{i\})} x_e &= 2, \forall i \in N \\ \sum_{e \in \delta(S)} x_e &\geq 2, \forall S \subset N, S \neq \emptyset \end{aligned}$$

(Subtour-elimination TSP)

$$\begin{aligned} \sum_{e \in \delta(\{i\})} x_e &= 2, \forall i \in N \\ \sum_{e \in \mathcal{E}(S)} x_e &\leq |S| - 1, \forall S \subset N, S \neq \emptyset. \end{aligned}$$

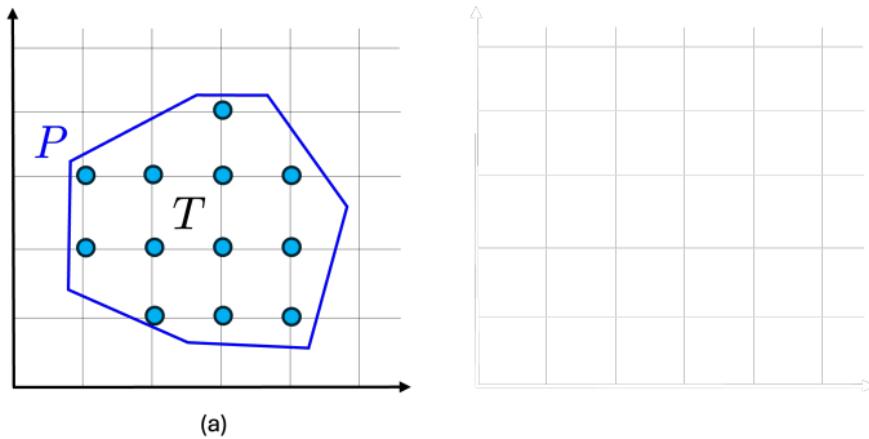
- $P_{\text{cut}}, P_{\text{sub}}$: feasible sets for LP relaxations
- $P_{\text{sub}} = P_{\text{cut}}$



Strength of IP Formulation

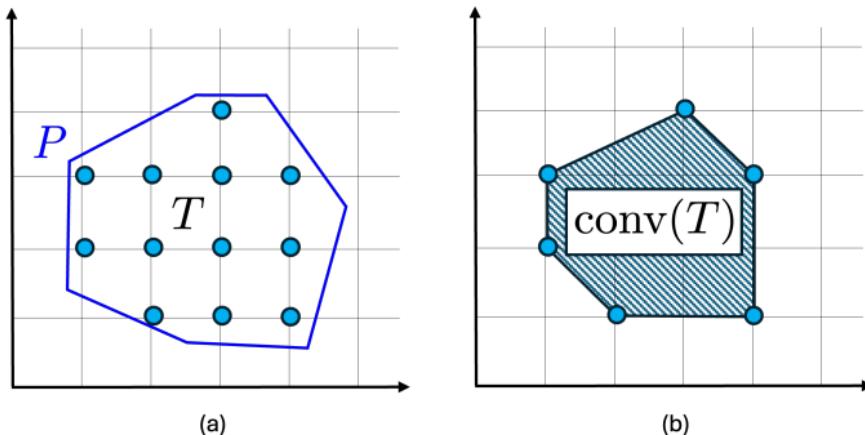
- Different formulations of the same IP can result in **different LP relaxations**
- *What is an “ideal” formulation?*

Strength of IP Formulation



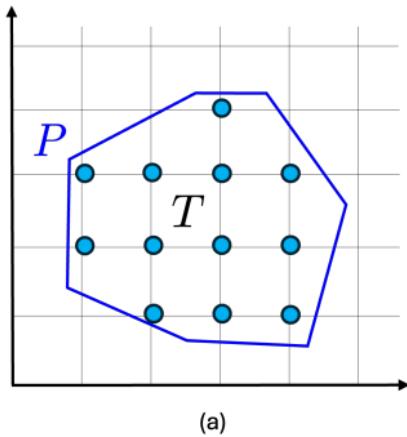
- Consider an IP with bounded feasible set
- T : all feasible points to the IP
- P : feasible set for LP relaxation to IP

Strength of IP Formulation

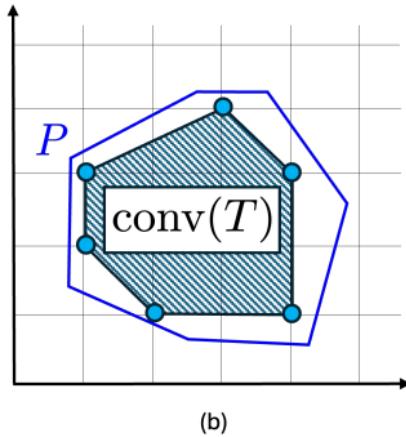


- Consider an IP with bounded feasible set
- T : all feasible points to the IP
- P : feasible set for LP relaxation to IP
- $\text{conv}(T)$: the convex hull of T
 - a polyhedron because we assumed bounded feasible set

Strength of IP Formulation



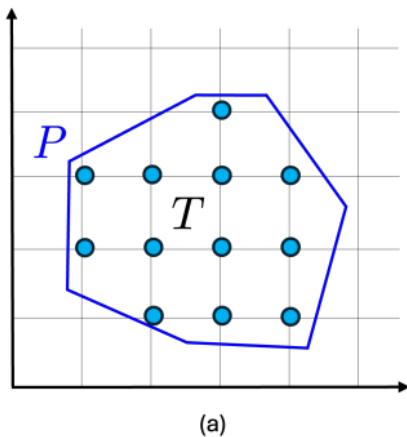
(a)



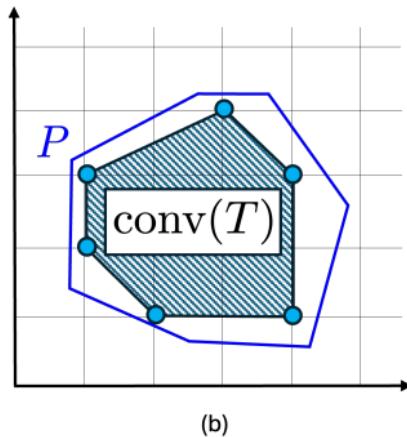
(b)

- Consider an IP with bounded feasible set
- T : all feasible points to the IP
- P : feasible set for LP relaxation to IP
- $\text{conv}(T)$: the convex hull of T
 - a polyhedron because we assumed bounded feasible set
- We always have: $T \subseteq \text{conv}(T) \subseteq P$.

Strength of IP Formulation



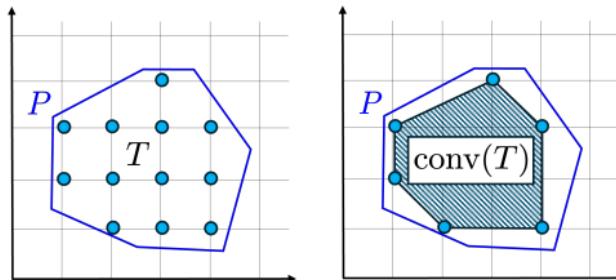
(a)



(b)

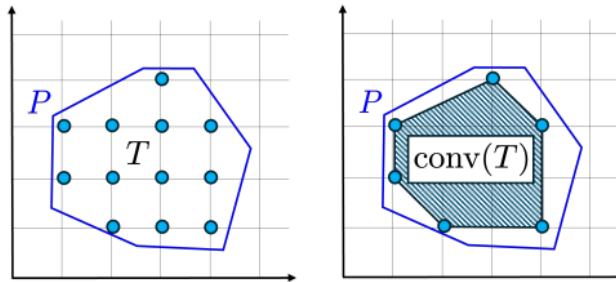
- Consider an IP with bounded feasible set
- T : all feasible points to the IP
- P : feasible set for LP relaxation to IP
- $\text{conv}(T)$: the convex hull of T
 - a polyhedron because we assumed bounded feasible set
- We always have: $T \subseteq \text{conv}(T) \subseteq P$.
- **Ideal LP relaxation** would have $P = \text{conv}(T)$

Strength of IP Formulation



- **Quality of IP formulation** : how closely its LP relaxation approximates $\text{conv}(T)$
- For an IP and two equivalent formulations A, B: **A is stronger than B** if $P_A \subset P_B$
- **Constraints** play a more subtle role in IPs than in LPs
 - Adding valid constraints for T that cut off fractional points from P is very useful!
 - More constraints not necessarily worse in IP!

Strength of IP Formulation



- **Quality of IP formulation** : how closely its LP relaxation approximates $\text{conv}(T)$
- For an IP and two equivalent formulations A, B: **A is stronger than B** if $P_A \subset P_B$
- **Constraints** play a more subtle role in IPs than in LPs
 - Adding valid constraints for T that cut off fractional points from P is very useful!
 - More constraints not necessarily worse in IP!

1. Discuss a few **ideal formulations** : $P = \text{conv}(T)$
2. Discuss how to **improve** formulations by adding **cuts**
3. Discuss **algorithms/solution approaches**

Ideal Formulations

Setup:

- $P = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ polyhedral set, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$
- **Goal:** conditions on A so that P is **integral**, i.e., $P = \text{conv } x \in P : x \in \mathbb{Z}^n$

Can anyone recall Cramer's rule?

Ideal Formulations

Setup:

- $P = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ polyhedral set, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$
- **Goal:** conditions on A so that P is **integral**, i.e., $P = \text{conv } x \in P : x \in \mathbb{Z}^n$

Can anyone recall Cramer's rule?

Proposition (Cramer's Rule)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. For $b \in \mathbb{R}^n$,

$$Ax = b \implies x = A^{-1}b \implies x_i = \frac{\det(A^i)}{\det(A)}, \forall i,$$

where A^i is the matrix with columns $A_j^i = A_j$ for all $j \in \{1, \dots, n\} \setminus \{i\}$ and $A_i^i = b$.

Ideal Formulations

Setup:

- $P = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ polyhedral set, with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$
- **Goal:** conditions on A so that P is **integral**, i.e., $P = \text{conv } x \in P : x \in \mathbb{Z}^n$

Can anyone recall Cramer's rule?

Proposition (Cramer's Rule)

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. For $b \in \mathbb{R}^n$,

$$Ax = b \implies x = A^{-1}b \implies x_i = \frac{\det(A^i)}{\det(A)}, \quad \forall i,$$

where A^i is the matrix with columns $A_j^i = A_j$ for all $j \in \{1, \dots, n\} \setminus \{i\}$ and $A_i^i = b$.

If $\det(A) \in \{1, -1\}$, that would be nice!

(Total) Unimodularity

Definition

1. $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $\det(A_B) \in \{1, -1\}$ for every basis B .
2. $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is 0, 1, or -1.

- **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
- **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$

(Total) Unimodularity

Definition

1. $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $\det(A_B) \in \{1, -1\}$ for every basis B .
2. $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is 0, 1, or -1.

- **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
- **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$
- **Note:** a TU matrix must belong to $\{0, 1, -1\}^{m \times n}$, but not a unimodular matrix:

e.g. $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$

(Total) Unimodularity

Definition

1. $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $\det(A_B) \in \{1, -1\}$ for every basis B .
2. $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is 0, 1, or -1.

- **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
- **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$
- **Note:** a TU matrix must belong to $\{0, 1, -1\}^{m \times n}$, but not a unimodular matrix:

e.g. $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$

- Will provide easier ways to test for U and TU, but first let's see why we care...

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax = b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
2. The matrix A is **totally unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax = b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
2. The matrix A is **totally unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax = b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
2. The matrix A is **totally unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) “ \Rightarrow ” Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

“ \Leftarrow ” We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A .

- Sufficient to prove that A_B^{-1} is integral; (A_B integral and $\det(A_B) \cdot \det(A_B^{-1}) = 1$ would imply that $\det(A_B) \in \{1, -1\}$ and thus A is unimodular)

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax = b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
2. The matrix A is **totally unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) “ \Rightarrow ” Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

“ \Leftarrow ” We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A .

- Sufficient to prove that A_B^{-1} is integral; (A_B integral and $\det(A_B) \cdot \det(A_B^{-1}) = 1$ would imply that $\det(A_B) \in \{1, -1\}$ and thus A is unimodular)
- To prove A_B^{-1} integral, consider $b = A_B \cdot z + e_i$ where z is an integral vector
- Then $A_B^{-1} \cdot b = z + A_B^{-1}e_i$

(Total) Unimodularity Yields Integral LP Relaxations

Theorem

1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax = b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
2. The matrix A is **totally unimodular** if and only if the polyhedron $P(b) = \{x \in \mathbb{R}_+^n \mid Ax \leq b\}$ is **integral** for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) “ \Rightarrow ” Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

“ \Leftarrow ” We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A .

- Sufficient to prove that A_B^{-1} is integral; (A_B integral and $\det(A_B) \cdot \det(A_B^{-1}) = 1$ would imply that $\det(A_B) \in \{1, -1\}$ and thus A is unimodular)
- To prove A_B^{-1} integral, consider $b = A_B \cdot z + e_i$ where z is an integral vector
- Then $A_B^{-1} \cdot b = z + A_B^{-1}e_i$
- By choosing z large so $z + A_B^{-1}e_i \geq 0$, we obtain a b.f.s. for $P(b)$
- Because $P(b)$ integral, $A_B^{-1}e_i$ must be integral
- Repeat argument for all e_i to proves that A_B^{-1} is integral.

(b) Similar logic, omitted (see notes)

Checking for Total Unimodularity

Proposition

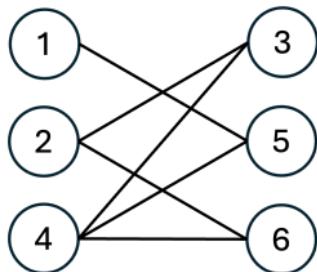
Consider a matrix $A \in \{0, 1, -1\}^{m \times n}$. The following are equivalent:

1. A is totally unimodular.
2. AT is totally unimodular.
3. $[AT - AT I - I]$ is totally unimodular.
4. $\{x \in \mathbb{R}_+^n \mid Ax = b, 0 \leq x \leq u\}$ is integral for all integral b, u .
5. $\{x \mid a \leq Ax \leq b, \ell \leq x \leq u\}$ is integral for all integral a, b, ℓ, u .
6. Each collection of columns of A can be partitioned into two parts so that the sum of the columns in one part minus the sum of the columns in the other part is a vector with entries 0, +1, and -1. (By part 2, a similar result also holds for the rows of A .)
7. Each nonsingular submatrix of A has a row with an odd number of non-zero components.
8. The sum of entries in any square submatrix with even row and column sums is divisible by four.
9. No square submatrix of A has determinant +2 or -2.

#6 perhaps most useful in practice...

Examples of TU Matrices #1

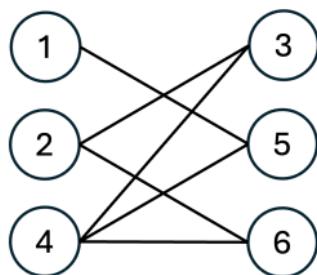
- $G = (\mathcal{N}, \mathcal{E})$ **undirected graph**
- $A \in \{0, 1\}^{|\mathcal{N}| \times |\mathcal{E}|}$ is the node-edge incidence matrix of G
 $A_{i,e} = 1$ if and only if $i \in e$



	$\{1, 5\}$	$\{2, 3\}$	$\{2, 6\}$	$\{4, 3\}$	$\{4, 5\}$	$\{4, 6\}$
1	1	0	0	0	0	0
2	0	1	1	0	0	0
3	0	1	0	1	0	0
4	0	0	0	1	1	1
5	1	0	0	0	1	0
6	0	0	1	0	0	1

Examples of TU Matrices #1

- $G = (\mathcal{N}, \mathcal{E})$ **undirected graph**
- $A \in \{0, 1\}^{|\mathcal{N}| \times |\mathcal{E}|}$ is the node-edge incidence matrix of G
 $A_{i,e} = 1$ if and only if $i \in e$



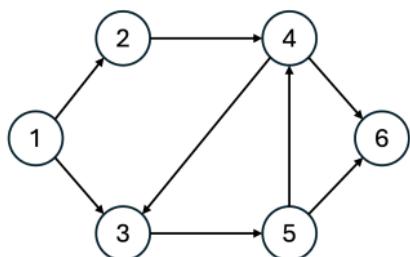
	$\{1, 5\}$	$\{2, 3\}$	$\{2, 6\}$	$\{4, 3\}$	$\{4, 5\}$	$\{4, 6\}$
1	1	0	0	0	0	0
2	0	1	1	0	0	0
3	0	1	0	1	0	0
4	0	0	0	1	1	1
5	1	0	0	0	1	0
6	0	0	1	0	0	1

- A is **TU** if and only if G is **bipartite**
- Bipartite matching problems have integral LP relaxations...

Examples of TU Matrices #2

- $D = (V, A)$ is a **directed graph**
- M is the $V \times A$ incidence matrix of D

$$M_{v,a} = \begin{cases} 1 & \text{if and only if } a = (\cdot, v) \text{ (arc } a \text{ enters node } v) \\ -1 & \text{if and only if } a = (v, \cdot) \text{ (arc } a \text{ leaves node } v) \\ 0 & \text{otherwise.} \end{cases}$$

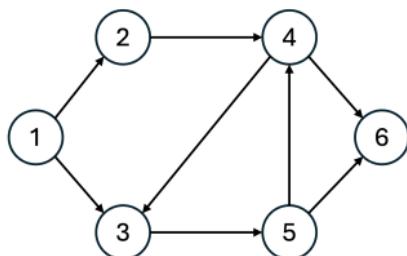


	(1, 2)	(1, 3)	(2, 4)	(4, 3)	(3, 5)	(5, 4)	(4, 6)	(5, 6)
1	-1	-1	0	0	0	0	0	0
2	1	0	-1	0	0	0	0	0
3	0	1	0	1	-1	0	0	0
4	0	0	1	-1	0	1	-1	0
5	0	0	0	0	1	-1	0	-1
6	0	0	0	0	0	0	1	1

Examples of TU Matrices #2

- $D = (V, A)$ is a **directed graph**
- M is the $V \times A$ incidence matrix of D

$$M_{v,a} = \begin{cases} 1 & \text{if and only if } a = (\cdot, v) \text{ (arc } a \text{ enters node } v) \\ -1 & \text{if and only if } a = (v, \cdot) \text{ (arc } a \text{ leaves node } v) \\ 0 & \text{otherwise.} \end{cases}$$

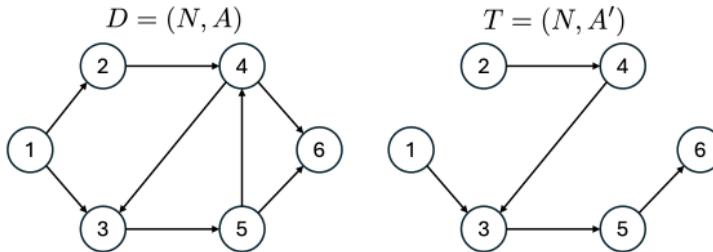


	(1, 2)	(1, 3)	(2, 4)	(4, 3)	(3, 5)	(5, 4)	(4, 6)	(5, 6)
1	-1	-1	0	0	0	0	0	0
2	1	0	-1	0	0	0	0	0
3	0	1	0	1	-1	0	0	0
4	0	0	1	-1	0	1	-1	0
5	0	0	0	0	1	-1	0	-1
6	0	0	0	0	0	0	1	1

- Then M is **TU**
- **Network flow problems** (e.g., **Proscche Motors**) with integral arc capacities and integral supply/demand have integral LP relaxations

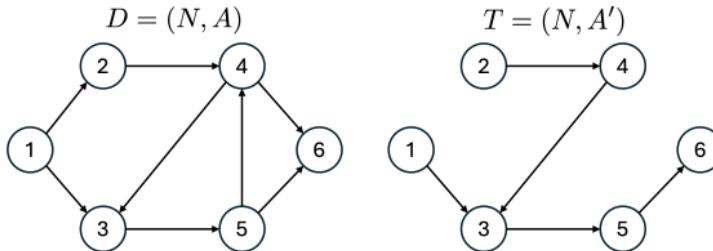
Examples of TU Matrices #3

- $D = (V, A)$ is a **directed graph**, $T = (V, A_0)$ is a directed tree on V



Examples of TU Matrices #3

- $D = (V, A)$ is a **directed graph**, $T = (V, A_0)$ is a directed tree on V

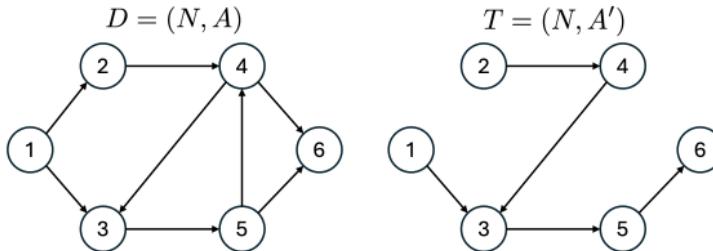


- M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v - w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

Examples of TU Matrices #3

- $D = (V, A)$ is a **directed graph**, $T = (V, A_0)$ is a directed tree on V



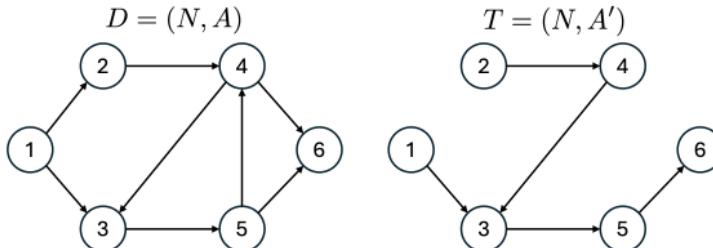
- M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v - w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

	(1, 2)	(1, 3)	(2, 4)	(4, 3)	(3, 5)	(5, 4)	(4, 6)	(5, 6)
(1, 3)	1	1	1	0	0	0	0	0
(2, 4)	-1	0	0	0	0	0	0	0
(4, 3)	-1	0	0	1	0	-1	1	0
(3, 5)	0	0	0	0	1	-1	1	0
(5, 6)	0	0	0	0	0	0	1	1

Examples of TU Matrices #3

- $D = (V, A)$ is a **directed graph**, $T = (V, A_0)$ is a directed tree on V



- M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v - w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

- Then M is **TU**
- All previous examples were **special cases** of this
- Paul Seymour: **all TU matrices** generated from network matrices and **two** other matrices