
Lecture 16

November 17, 2025

1 / 28



Discrete Optimization

Today, we consider optimization problems with discrete variables:

min cT x + dT y

Ax + By = b

x , y ≥ 0

x integer

This is called a mixed integer programming (MIP) problem

Without continuous variables y , it is called an integer program (IP)

If instead of x ∈ Zn we have x ∈ {0, 1}n : binary optimization problem

Very powerful modeling paradigm
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Example: Knapsack

• n items

• Item j has weight wj and reward rj

• Have a bound K on the weight that can be carried in the knapsack

• Want to select items to maximize the total value

maximize
n∑

j=1

rjxj

subject to
n∑

j=1

wjxj ≤ K

xj ∈ {0, 1}, j = 1, . . . , n.
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Example: Facility Location
• n potential locations to open facilities

• Cost cj for opening a facility at location j

• m clients who need service

• Cost dij for serving client i from facility j

• Smallest cost for opening facilities while serving all clients
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Example: Piecewise Linear Cost

Nowadays, easy to model. In Gurobipy:

• y = 1 implies ℓ(x) ≥ 0 :

addConstr((y==1) >> (ℓ(x)>=0))

• y = f (x):

addGenConstrPWL(x,y,xpnts,ypnts)

• Idea: x =
∑k

i=1 λiai

• Cost:
∑k

i=1 λi f (ai )

• How to impose adjacency?

x = λiai + λi+1ai+1

• New binary variables {yi}ki=1 to impose:

yj = 1 ⇒ λi = 0 for i /∈ {j , j + 1}

∑k
i=1 λi = 1,

λ1 ≤ y1,

λi ≤ yi−1 + yi , i = 2, . . . , k − 1,

λk ≤ yk−1,∑k−1
i=1 yi = 1,

λi ≥ 0,

yi ∈ {0, 1}, ∀i .
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Example: Matching Problems
• Set U of jobs/tasks to complete; set V of persons available to work

• Each task assigned to at most one person; a person can only complete some tasks

• Reward wij if task i ∈ U completed by person j ∈ V

• Graph representation G = (N , E)

• e ≡ {i , j} ∈ E indicates j ∈ V can complete task i ∈ U

xe ∈ {0, 1} : whether edge selected

maximize
∑
e∈E

wexe∑
e∈δ(i)

xe ≤ 1, ∀ i ∈ N,

xe ∈ {0, 1},

δ(i) := {e ∈ E : e = {i , j} for j ∈ N} : all

edges incident on i

Many variations: minimize cost, require jobs completed, perfect matching, ...
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Example: Minimum Spanning Tree

• Given an undirected graph G = (N , E); |N | = n, |E| = m

• Edge e ∈ E has associated cost ce

• Find minimum spanning tree (MST)

(subset of edges that connect all nodes in N at minimum cost)
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• Given an undirected graph G = (N , E); |N | = n, |E| = m

• Edge e ∈ E has associated cost ce

• Find minimum spanning tree (MST)

(subset of edges that connect all nodes in N at minimum cost)

min
∑
e∈E

cexe

xe ∈ {0, 1}

(Connectivity)
∑
e∈E

xe = n − 1

(Cutset)
∑

e∈δ(S)

xe ≥ 1, S ⊂ N ,S ̸= ∅

... or ...

(Subtour-elimination)
∑

e∈E(S)

xe ≤ |S | − 1, S ⊂ N , S ̸= ∅

Both exponentially-sized formulations! Any preference between them?
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Example: Traveling Salesperson Problem (TSP)

• Given an undirected graph G = (N , E); |N | = n, |E| = m

• Edge e ∈ E has associated cost ce

• Find a tour (cycle that visits each node exactly once) with minimum cost
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Bad News First

Example. The optimal solution in an IP might not exist:

sup
x,y

x +
√
2y

x +
√
2y ≤ 1

2

x , y ∈ Z.

Example. Consider the following pair of problems:

(P) min
x≥0

x

2x = 1

(D) max
p

p

2p ≤ 1

• x , p ∈ R ⇒ this is a primal-dual pair; optimal value 1
2 by strong duality

• x , p ∈ Z ⇒ (P) infeasible, (D) has optimal value 0.

Strong duality does not hold in IPs
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Bad News First

Unfortunately, (M)IPs are significantly harder than LPs

Theorem
Given a matrix A ∈ Qm×n and a vector b ∈ Qm, the problem: “does Ax ≤ b have an

integral solution x” is NP-complete.

• IP “feasibility problem” is already in the hardest class of problems in NP

• Despite this, substantial theory and scalable algorithms exist for IPs

• We will focus on optimization problems with rational entries:

A ∈ Qm×n, b ∈ Qm, c ∈ Qn (in fact, often integer)

• We assume that the feasible set is bounded
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Lower Bounds Again

Same question as in LP: how can we find a good lower bound?

If we relaxed integrality requirements, we would get at LP!

Definition (LP relaxation)

The linear programming relaxation for the integer program

min cTx + dTy

Ax + By = b

x , y ≥ 0

x ∈ {0, 1}n1 , y ∈ Zn2 ,

is obtained by replacing x ∈ {0, 1}n1 with x ∈ [0, 1]n1 and y ∈ Zn2 with y ∈ Rn2 .

Observation

1) OPT(LP relaxation) ≤ OPT(IP optimal value).

2) If LP relaxation’s optimal solution is feasible for the IP, it is optimal for the IP.

Key Q: How good is this bound?
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LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL)
n∑

j=1

xij = 1, i = 1, . . . ,m

xij ≤ yj , i = 1, . . . ,m, j = 1, . . . , n

xij , yj ∈ {0, 1}

(AFL)
n∑

j=1

xij = 1, i = 1, . . . ,m

m∑
i=1

xij ≤ myj , j = 1, . . . , n

xij , yj ∈ {0, 1}.

• PFL,PAFL : feasible sets for LP relaxations

• PFL ⊆ PAFL and can have strict inclusion

• (FL) provides better lower bound than (AFL)

• Same IP feasible set, smaller LP feasible set!
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LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

∑
e∈E

xe = n − 1,∑
e∈δ(S)

xe ≥ 1, S ⊂ N , S ̸= ∅

xe ∈ {0, 1}

(Subtour-elimination MST)

∑
e∈E

xe = n − 1,∑
e∈E(S)

xe ≤ |S | − 1, S ⊂ N ,S ̸= ∅,

xe ∈ {0, 1}.

• Pcut,Psub : feasible sets for LP relaxations

• Psub ⊆ Pcut and can have strict inclusion

(Proof in the notes)

• (SUB) provides better lower bound than (CUT)

• Same IP feasible set, smaller LP feasible set!
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• Pcut,Psub : feasible sets for LP relaxations

• Psub ⊆ Pcut and can have strict inclusion

(Proof in the notes)

• (SUB) provides better lower bound than (CUT)

• Same IP feasible set, smaller LP feasible set!
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LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP) (Subtour-elimination TSP)∑
e∈δ({i})

xe = 2,∀i ∈ N∑
e∈δ(S)

xe ≥ 2,∀S ⊂ N,S ̸= ∅

∑
e∈δ({i})

xe = 2,∀i ∈ N∑
e∈E(S)

xe ≤ |S | − 1, ∀S ⊂ N, S ̸= ∅.

• Pcut,Psub : feasible sets for LP relaxations

• Psub=Pcut
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Strength of IP Formulation

• Different formulations of the same IP can result in different LP relaxations

• What is an “ideal” formulation?
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Strength of IP Formulation

• Consider an IP with bounded feasible set

• T : all feasible points to the IP

• P : feasible set for LP relaxation to IP

• conv(T ) : the convex hull of T
– a polyhedron because we assumed bounded feasible set

• We always have: T ⊆ conv(T ) ⊆ P.

• Ideal LP relaxation would have P = conv(T )
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Strength of IP Formulation

• Quality of IP formulation : how closely its LP relaxation approximates conv(T )

• For an IP and two equivalent formulations A, B: A is stronger than B if PA ⊂ PB

• Constraints play a more subtle role in IPs than in LPs
– Adding valid constraints for T that cut off fractional points from P is very useful!
– More constraints not necessarily worse in IP!

1. Discuss a few ideal formulations : P = conv(T )

2. Discuss how to improve formulations by adding cuts

3. Discuss algorithms/solution approaches
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Ideal Formulations

Setup:

• P = {x ∈ Rn
+ | Ax ≤ b} polyhedral set, with A ∈ Zm×n and b ∈ Zm

• Goal: conditions on A so that P is integral, i.e., P = conv x ∈ P : x ∈ Zn

Can anyone recall Cramer’s rule?

Proposition (Cramer’s Rule)

Let A ∈ Rn×n be a nonsingular matrix. For b ∈ Rn,

Ax = b =⇒ x = A−1b =⇒ xi =
det(Ai )

det(A)
, ∀i ,

where Ai is the matrix with columns Ai
j = Aj for all j ∈ {1, . . . , n} \ {i} and Ai

i = b.

If det(A) ∈ {1,−1}, that would be nice!
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(Total) Unimodularity

Definition
1. A ∈ Zm×n of full row rank is unimodular if the det(AB) ∈ {1,−1} for every basis

B.

2. A ∈ Zm×n is totally unimodular if the determinant of each square submatrix of A

is 0, 1, or -1.

• Unimodularity allows handling standard form {x ∈ Zn
+ | Ax = b}

• Total Unimodularity (TU) allows handling inequality form {x ∈ Zn
+ | Ax ≤ b}

• Note: a TU matrix must belong to {0, 1,−1}m×n, but not a unimodular matrix:

e.g. A =

[
3 2

1 1

]

• Will provide easier ways to test for U and TU, but first let’s see why we care...
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(Total) Unimodularity Yields Integral LP Relaxations

Theorem
1. The matrix A ∈ Zm×n of full row rank is unimodular if and only if the

polyhedron P(b) = {x ∈ Rn
+ | Ax = b} is integral for all b ∈ Zm with P(b) ̸= ∅.

2. The matrix A is totally unimodular if and only if the polyhedron

P(b) = {x ∈ Rn
+ | Ax ≤ b} is integral for all b ∈ Zm with P(b) ̸= ∅.

Proof. (a) “⇒” Because A unimodular, for any b ∈ Zm with P(b) ̸= ∅, any basic feasible

solution x = (xB , xN) ∈ P(b) must satisfy xB = A−1
B b ∈ Z|B|.

“⇐” We have that P(b) ̸= ∅ is integral b ∈ Zm. Let B be any basis of A.

• Sufficient to prove that A−1
B is integral; (AB integral and det(AB) · det(A−1

B ) = 1 would

imply that det(AB) ∈ {1,−1} and thus A is unimodular)

• To prove A−1
B integral, consider b = AB · z + ei where z is an integral vector

• Then A−1
B · b = z + A−1

B ei

• By choosing z large so z + A−1
B ei ≥ 0, we obtain a b.f.s. for P(b)

• Because P(b) integral, A−1
B ei must be integral

• Repeat argument for all ei to proves that A−1
B is integral.

(b) Similar logic, omitted (see notes)
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Checking for Total Unimodularity

Proposition
Consider a matrix A ∈ {0, 1,−1}m×n. The following are equivalent:

1. A is totally unimodular.

2. AT is totally unimodular.

3. [AT − AT I − I ] is totally unimodular.

4. {x ∈ Rn
+ | Ax = b, 0 ≤ x ≤ u} is integral for all integral b, u.

5. {x | a ≤ Ax ≤ b, ℓ ≤ x ≤ u} is integral for all integral a, b, ℓ, u.

6. Each collection of columns of A can be partitioned into two parts so that the sum of the

columns in one part minus the sum of the columns in the other part is a vector with

entries 0,+1, and −1. (By part 2, a similar result also holds for the rows of A.)

7. Each nonsingular submatrix of A has a row with an odd number of non-zero components.

8. The sum of entries in any square submatrix with even row and column sums is divisible

by four.

9. No square submatrix of A has determinant +2 or -2.

#6 perhaps most useful in practice...
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Examples of TU Matrices #1

• G = (N , E) undirected graph

• A ∈ {0, 1}|N |×|E| is the node-edge incidence matrix of G

Ai,e = 1 if and only if i ∈ e

• A is TU if and only if G is bipartite

• Bipartite matching problems have integral LP relaxations...
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Examples of TU Matrices #2

• D = (V ,A) is a directed graph

• M is the V × A incidence matrix of D

Mv ,a =


1 if and only if a = (·, v) (arc a enters node v)

−1 if and only if a = (v , ·) (arc a leaves node v)

0 otherwise.

• Then M is TU

• Network flow problems (e.g., Prosche Motors) with integral arc capacities and

integral supply/demand have integral LP relaxations
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Examples of TU Matrices #3

• D = (V ,A) is a directed graph, T = (V ,A0) is a directed tree on V

• M is the A0 × A matrix defined as follows: for a = (v ,w) ∈ A and a′ ∈ A0,

Ma′,a =


+1 if the unique v − w path in T passes through a′ forwardly

−1 if the unique v − w path in T passes through a′ backwardly

0 if the unique v − w path in T does not pass through a′.

(1, 2) (1, 3) (2, 4) (4, 3) (3, 5) (5, 4) (4, 6) (5, 6)

(1, 3) 1 1 1 0 0 0 0 0

(2, 4) −1 0 0 0 0 0 0 0

(4, 3) −1 0 0 1 0 −1 1 0

(3, 5) 0 0 0 0 1 −1 1 0

(5, 6) 0 0 0 0 0 0 1 1
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Examples of TU Matrices #3

• D = (V ,A) is a directed graph, T = (V ,A0) is a directed tree on V

• M is the A0 × A matrix defined as follows: for a = (v ,w) ∈ A and a′ ∈ A0,

Ma′,a =


+1 if the unique v − w path in T passes through a′ forwardly

−1 if the unique v − w path in T passes through a′ backwardly

0 if the unique v − w path in T does not pass through a′.

• Then M is TU

• All previous examples were special cases of this

• Paul Seymour: all TU matrices generated from network matrices and two other matrices
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