Lecture 17

November 19, 2024

1/30

Recall from Monday: Strength of IP Formulation

v

\

N

® Consider an IP with bounded feasible set
- T : all feasible points to the IP
— P : feasible set for LP relaxation to IP
- conv(T) : the convex hull of T (a polyhedral set)
- Always have: T C conv(T) C P.

2/30

Recall from Monday: Strength of IP Formulation

'

\

N

7

® Consider an IP with bounded feasible set
- T : all feasible points to the IP
— P : feasible set for LP relaxation to IP
- conv(T) : the convex hull of T (a polyhedral set)
- Always have: T C conv(T) C P.

¢ |deal IP formulation: P = conv(T)

2/30

Recall from Monday: Strength of IP Formulation

conv T)

,

® Consider an IP with bounded feasible set
- T : all feasible points to the IP
— P : feasible set for LP relaxation to IP
- conv(T) : the convex hull of T (a polyhedral set)
- Always have: T C conv(T) C P.

¢ |deal IP formulation: P = conv(T)

1. Discuss a few ideal formulations : P = conv(T)
2. Discuss how to improve formulations by adding cuts

3. Discuss algorithms/solution approaches

2/30

(Total) Unimodularity : Ideal Formulations

Definition
1. A € Z™*" of full row rank is unimodular if det(Ag) € {1, —1} for every basis B.

2. Ae {—1,0,1}"*" is totally unimodular if the determinant of each square
submatrix of Ais 0, 1, or -1.

3/30

(Total) Unimodularity : Ideal Formulations

Definition
1. A € Z™*" of full row rank is unimodular if det(Ag) € {1, —1} for every basis B.

2. Ae {—1,0,1}"*" is totally unimodular if the determinant of each square

submatrix of Ais 0, 1, or -1.

Theorem
1. A€ Z™ " unimodular if and only if P(b) = {x € R} | Ax = b} is integral for

all b € Z™ with P(b) # 0.

2. Ais totally unimodular if and only if P(b) = {x € R | Ax < b} is integral
for all b € Z™ with P(b) # 0.

3/30

Checking for Total Unimodularity

Proposition (Refreshed; sufficient, but not necessary.)
A matrix A € {0,1, —1}"*" is totally unimodular if any of the following holds:

Checking for Total Unimodularity

Proposition (Refreshed; sufficient, but not necessary.)

A matrix A € {0,1, —1}"*" is totally unimodular if any of the following holds:
1. AT is totally unimodular.
2. —A is totally unimodular.

3. [A —A | —I] is totally unimodular.

Checking for Total Unimodularity

Proposition (Refreshed; sufficient, but not necessary.)

A matrix A € {0,1, —1}"*" is totally unimodular if any of the following holds:
. AU is totally unimodular.

. —A is totally unimodular.

1
2
S
4

[A —A | —I] is totally unimodular.

. Every subset R of rows of A can be partitioned into Ry and R» so that

Dicr @ — Xicr, @ € {0,+1,—1}. (By 1, a similar result holds for columns of A.)

Checking for Total Unimodularity

Proposition (Refreshed; sufficient, but not necessary.)
A matrix A € {0,1, —1}"*" is totally unimodular if any of the following holds:
1. AT is totally unimodular.
2. —A is totally unimodular.
3. [A —A I —I] is totally unimodular.
4

. Every subset R of rows of A can be partitioned into Ry and R» so that
Dicr @ — Xicr, @ € {0,+1,—1}. (By 1, a similar result holds for columns of A.)

5. Each column of A contains at most two nonzero elements and the rows of A can be
partitioned into Ry and R, so that the two nonzero entries in a column are in the same
R; if they have different signs and are in different R; if they have the same sign.

Checking for Total Unimodularity

Proposition (Refreshed; sufficient, but not necessary.)
A matrix A € {0,1, —1}"*" is totally unimodular if any of the following holds:
1. AT is totally unimodular.
2. —A is totally unimodular.
3. [A —A I —I] is totally unimodular.
4

. Every subset R of rows of A can be partitioned into Ry and R» so that
Dicr @ — Xicr, @ € {0,+1,—1}. (By 1, a similar result holds for columns of A.)

5. Each column of A contains at most two nonzero elements and the rows of A can be
partitioned into Ry and R, so that the two nonzero entries in a column are in the same
R; if they have different signs and are in different R; if they have the same sign.

6. A contains no more than one +1 and one -1 in each column.

Checking for Total Unimodularity

Proposition (Refreshed; sufficient, but not necessary.)
A matrix A € {0,1, —1}"*" is totally unimodular if any of the following holds:
. AU is totally unimodular.

. —A is totally unimodular.

1
2
S
4

[A —A | —I] is totally unimodular.

. Every subset R of rows of A can be partitioned into Ry and R» so that

Dicr @ — Xicr, @ € {0,+1,—1}. (By 1, a similar result holds for columns of A.)

Each column of A contains at most two nonzero elements and the rows of A can be
partitioned into Ry and R, so that the two nonzero entries in a column are in the same
R; if they have different signs and are in different R; if they have the same sign.

A contains no more than one +1 and one -1 in each column.

A has the consecutive ones property: for every column j, asj = a; = 1 implies aj = 1
fors <i<t.

4/30

Examples of TU Matrices #1

® G = (N,€&) undirected graph

e Ac {0,1}NI*I€l is the node-edge incidence matrix of G
Aie=1ifand only ifi € e

oNgFe

o/

<
Vas

{15} {2,3} {2,6} {4,3} {45} {4,6}

S ULl W N

1

O = O OO

0

SO O ==

0

_—o oo

0

OO R = O

0

O~ = OO

0

— O = OO

5/30

Examples of TU Matrices #1

® G = (N,€&) undirected graph

e Ac {0,1}NI*I€l is the node-edge incidence matrix of G

Aie=1ifand only ifi € e

{1,5} {2,3} {2,6} {4,3} {4,5} {4,6}

21 0
OV ONEIx
G 3

e Ais TU if and only if G is bipartite

Can partition N into S and T so that every e € E ise = (s,t) withse S;te T

0

SO O ==

0

_—o oo

0

OO R = O

® Bipartite matching problems have integral LP relaxations...

0

O~ = OO

0

— O = OO

5/30

Prove #1: G bipartite implies A is TU
{1,5} {2,3} {2,6} {4,3} {4,5} {4,6}
(DO _AD T

</ G
DG

Proposition (Necessary conditions for A € {—1,0,1} to be TU)

S U W N
O = OO O
[=NeNel
-0 OO -
OO == O
O == OO
= o = OO

1. AT is totally unimodular.
2. —A is totally unimodular.
3. [A —A I -] is totally unimodular.

4. Every subset R of rows of A can be partitioned into R1 and R» so that
D ier, @ — 2icr, @ € {0,+1,—1}. (By 1, a similar result holds for columns of A.)

5. Each column of A contains at most two nonzero elements and the rows of A can be
partitioned into Ry and R, so that the two nonzero entries in a column are in the same
R; if they have different signs and are in different R; if they have the same sign.

6. A contains no more than one +1 and one -1 in each column.

7. A has the consecutive ones property: for every column j, a;; = a; = 1 implies aj = 1
fors <i<t.

J
6/30

Examples of TU Matrices #2
e D=(V,A)is a directed graph

® M is the V x A incidence matrix of D

1 if and only if a= (-, v) (arc a enters node v)
M, .= <¢ -1 ifand onlyif a=(v,-) (arc a leaves node v)
0 otherwise.
a o (1,2) (1,3) (24 43) (3,5 (54 (46) (506)
1| -1 -1 0 0 0 0 0 0
2 1 0 -1 0 0 0 0 0
a e 3/ 0 1 0 1 -1 0 0 0
4 0 0 1 -1 0 1 -1 0
5 0 0 0 0 1 -1 0 -1
(3) (s) 6/ o o o o o o0 1 1

® Then Mis TU

® Network flow problems (e.g., Prosche Motors) with integral arc capacities and
integral supply/demand have integral LP relaxations

7/30

Prove #2 : Incidence Matrix of Directed Graph is TU

1 if and only if a= (-, v) (arc a enters node v)
M, 2= 4 —1 if and only if a= (v,-) (arc a leaves node v)
0 otherwise.
© O (L) (1L3) (24 (43) (3,5 (:4) 46) (5,6)
i-1 -1 0 0 0 0 0 0
201 0o -1 0 0 0 0 0
(1) (6) 3| 0 1 0 R 0 0
40 0 1 -1 0 1 -1 0
s o 0o o o 1 -1 0 -1
©), (s) 6/ o o o o o 0o 1 1

Proposition (Necessary conditions for A € {—1,0,1} to be TU)

1. AT s totally unimodular.

2. —A is totally unimodular.

3. [A —A | —lI] is totally unimodular.

4. Every subset R of rows of A can be partitioned into Ry and R, so that Zr‘eRl aj — ZfeRz a; € {0,+1, —1}.
(By 1, a similar result holds for columns of A.)

5. Each column of A contains at most two nonzero elements and the rows of A can be partitioned into Ry and
Ry so that the two nonzero entries in a column are in the same R; if they have different signs and are in
different R; if they have the same sign.

6. A contains no more than one +1 and one -1 in each column.

7. A has the consecutive ones property: for every column j, as; = ayj = 1 implies aj = 1 fors < i < t.

8/30

Examples of TU Matrices #3

® D= (V,A)is a directed graph For Ay CA T= (V Ao) is a directed tree on V.
(N, A) = (N, Ap)

’G 0 (&)

9/30

Examples of TU Matrices #3

® D= (V,A)is a directed graph. For Ao C A, T = (V, Ao) is a directed tree on V.

D= (N, A) T = (N, Ao)
O O—0

0 'e 0 ©
o oG

® M is the Ay X A matrix defined as follows: for a= (v,w) € A and a’ € Ao,

+1 if the unique v — w path in T passes through a’ forwardly
M. 5= ¢ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.

(1,2) (1,3) (2,4) (4,3) (3,5) (5,4) (4,6) (5,6)
(1,3) | 1 1 1 0 0 0 0 0
(24| -1 0 0 0 0 0 0 0
(43| -1 0 0 1 0 ~1 1 0
(3,5)| 0 0 0 0 1 -1 1 0
(56) | 0 0 0 0 0 0 1 1

9/30

Examples of TU Matrices #3

® D= (V,A)is a directed graph, T = (V, Ap) is a directed tree on V
D =(N,4) T = (N, Aj)

DIV

M is the Ag x A matrix defined as follows: for a = (v, w) € A and &’ € Ao,

+1 if the unique v — w path in T passes through a’ forwardly
M, , = 4§ —1 if the unique v — w path in T passes through a’ backwardly
0 if the unique v — w path in T does not pass through a’.

Then M is TU

All previous examples were special cases of this

Paul Seymour: all TU matrices generated from network matrices and two other matrices

10/30

Dual Integrality and Submodular Functions
® Alternative conditions based on LP duality

® Simple observation: to show that LP relaxation is integral, it suffices to check that
the optimal value of any LP with integer cost vector ¢ is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if
the optimal value Z;p := min{c'x | x € P} is an integer for all c € Z.".

Why?

11/30

Dual Integrality and Submodular Functions
® Alternative conditions based on LP duality

® Simple observation: to show that LP relaxation is integral, it suffices to check that
the optimal value of any LP with integer cost vector ¢ is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if
the optimal value Z;p := min{c'x | x € P} is an integer for all c € Z.".

Why?
® To show integrality of P, we construct an integral dual-optimal solution
(for any c € Z")

® Qur discussion here is quite specific

— broader concepts possible related to Total Dual Integrality
- if interested, see notes for references

11/30

Submodular Functions

Definition
A function 7(S) defined on subsets S of a finite set N = {1,..., n} is submodular if
f(S)+f(T)>f(SNT)+f(SUT), VS, TCN. (1)

f is supermodular if the reverse inequality holds.

12/30

Submodular Functions

Definition
A function 7(S) defined on subsets S of a finite set N = {1,..., n} is submodular if
f(S)+f(T)>f(SNT)+f(SUT), VS, TCN. (1)

f is supermodular if the reverse inequality holds.

® More intuition: note that (1) is equivalent to
(1) ©f(S)—f(SNT)>fSUT)—1(T)

What is the set difference between arguments on the left? And on the right?

12/30

Submodular Functions

Definition
A function 7(S) defined on subsets S of a finite set N = {1,..., n} is submodular if
f(S)+f(T)>f(SNT)+f(SUT), VS, TCN. (1)

f is supermodular if the reverse inequality holds.

® More intuition: note that (1) is equivalent to
(1) &f(S)—f(SNT)>f(SUT)—1f(T)
What is the set difference between arguments on the left? And on the right?

o left: S\(SNT)=S\T. Right: (SUT)\T=S\T.

12/30

Submodular Functions

Definition
A function 7(S) defined on subsets S of a finite set N = {1,..., n} is submodular if
f(S)+f(T)>f(SNT)+f(SUT), VS, TCN. (1)

f is supermodular if the reverse inequality holds.

® More intuition: note that (1) is equivalent to
(1) &f(S)—f(SNT)>f(SUT)—1f(T)
What is the set difference between arguments on the left? And on the right?
o left: S\(SNT)=S\T. Right: (SUT)\T=S\T.

® Submodularity: gains when adding something to a smaller set (SN T) are
larger than when adding it to a larger set (T)

12/30

Submodular Functions - Equivalent Definitions

Proposition
A set function f : 2N — R is submodular if and only if:

® Submodular: “diminishing returns” or “decreasing differences”
- cost: economies of scale/scope
- profit: substitutability
Resembles concavity in economic intuition, but not computationally!
(submodular functions are more like convex functions!)

® Supermodular is the opposite
® Subsequently, interested in non-negative and increasing submodular functions

£(S) < f(T), VSc TCN.

Submodular Functions - Equivalent Definitions

Proposition
A set function f : 2N — R is submodular if and only if:

(a) Forany S, T C N such that SC T and k ¢ T:
fF(SU{k}) —f(S) > f(TU{k})—f(T).

® Submodular: “diminishing returns” or “decreasing differences”
- cost: economies of scale/scope
- profit: substitutability
Resembles concavity in economic intuition, but not computationally!
(submodular functions are more like convex functions!)

® Supermodular is the opposite

® Subsequently, interested in non-negative and increasing submodular functions

£(S) < f(T), VSc TCN.

Submodular Functions - Equivalent Definitions

Proposition
A set function f : 2N — R is submodular if and only if:

(a) Forany S, T C N such that SC T and k ¢ T:
fF(SU{k}) —f(S) > f(TU{k})—f(T).

(b) Forany S C N and any j, k with j,k ¢ S and j # k:
F(SU{j}) —£(S) =2 F(SU{), k}) = F(SU{k}).

13/30

Submodular Functions - Equivalent Definitions

Proposition
A set function f : 2N — R is submodular if and only if:

(a) Forany S, T C N such that SC T and k ¢ T:
fF(SU{k}) —f(S) > f(TU{k})—f(T).

(b) Forany S C N and any j, k with j,k ¢ S and j # k:
F(SU{j}) —£(S) =2 F(SU{), k}) = F(SU{k}).

® Submodular: “diminishing returns” or “decreasing differences”
- cost: economies of scale/scope
- profit: substitutability
Resembles concavity in economic intuition, but not computationally!
(submodular functions are more like convex functions!)

® Supermodular is the opposite

13/30

Submodular Functions - Equivalent Definitions

Proposition
A set function f : 2N — R is submodular if and only if:

(a) Forany S, T C N such that SC T and k ¢ T:
fF(SU{k}) —f(S) > f(TU{k})—f(T).

(b) Forany S C N and any j, k with j,k ¢ S and j # k:
F(SU{j}) —£(S) =2 F(SU{), k}) = F(SU{k}).

® Submodular: “diminishing returns” or “decreasing differences”
- cost: economies of scale/scope
- profit: substitutability
Resembles concavity in economic intuition, but not computationally!
(submodular functions are more like convex functions!)

® Supermodular is the opposite

® Subsequently, interested in non-negative and increasing submodular functions

£(S) < f(T), VSc TCN.

13/30

Submodular Functions - Examples
Subsequently, consider a ground set N = {1,2,...,n} and f : 2NV = R.

14 /30

Submodular Functions - Examples
Subsequently, consider a ground set N = {1,2,...,n} and f : 2NV = R.

® Linear functions. For w € R", f(S) =Y . s w; is both sub- and super-modular.

i€S
® Composition 2. If w > 0 and g concave, then f(S) = g(Z,-Es W,') is submodular.

e Optimal TSP cost on tree graphs. Consider undirected tree graph
G = (N, E) with a positive cost for traversing the edges (c. > 0 for every edge
e € E). For every S C N, define 7(S) as the optimal (i.e., smallest) cost for a TSP
that goes through all the nodes in S. Then, f(S) is submodular.

® Network optimization: consider directed graph with capacities on edges that
constrain how much flow can be transported; if f(S) is the maximum flow that can
be received at a set of sink nodes S, f(S) is submodular.

® Operations management and economics: perishable inventory systems, dual
sourcing, inventory control problems with trans-shipment, ...

® Machine learning and computer vision: data summarization, distillation, data
partitioning / clustering, ...

14/30

Main Result

® For a submodular function f, consider the problem:

n
maximize Z rj - X;
Jj=1
D X <F(S), VSCN
JES
n
x LY.
® T: set of feasible integer solutions

® P(f) the feasible set of the LP relaxation:

P(f)={x€R} | > x5 <f(S),VSCN
JES

15/30

Main Result

® For a submodular function f, consider the problem:

n
maximize Z rj - X;
Jj=1
D X <F(S), VSCN
JES
n
x € 7.
® T: set of feasible integer solutions

® P(f) the feasible set of the LP relaxation:

P(f)={x€R} | > x5 <f(S),VSCN
JES

Theorem
If f is submodular, increasing, integer valued, and f(()) = 0, then

P(f) = conv(T).

15/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof sketch. Consider the linear relaxation and its dual:
n
maximize Z riX;j
j=1
Sy <A(S), S,
jes
x>0, j€N

16/30

Main Result - Proof

To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof sketch. Consider the linear relaxation and its dual:

n

maximize Z rjXxj minimize Z f(S)ys
Jj=1 SCN
S x < f(S), ScN, > ys>n, jeN,
jes Sjes

x>0, j€EN ys >0, SCN.

16/30

Main Result - Proof

To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof sketch. Consider the linear relaxation and its dual:

n

maximize Z rjXxj minimize Z f(S)ys
Jj=1 SCN
S x < f(S), ScN, > ys>n, jeN,
jes Sjes

® Key idea: construct feasible solutions for both, with equal value

® Key intuition: a greedy solution is optimal in the primal!

16/30

Main Result - Proof

To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof sketch. Consider the linear relaxation and its dual:

n

maximize Z rjXxj minimize Z f(S)ys
j=1 SCN
S x < f(S), ScN, > ys>n, jeN,
jes Sjes

® Key idea: construct feasible solutions for both, with equal value
® Key intuition: a greedy solution is optimal in the primal!

® Suppose n>rn>...>2n>0>rng1 > ... > 1

Let S°=0 and S/ = {1,...,j} for j € N.

16/30

Main Result - Proof
To show: f is submodular, increasing, integer-valued, f(()) = 0, then P(f) = conv(T).

Proof sketch. Consider the linear relaxation and its dual:

n

maximize Z rjXxj minimize Z f(S)ys
j=1 SCN
S x < f(S), ScN, > ys>n, jeN,
jes Sjes

® Key idea: construct feasible solutions for both, with equal value
® Key intuition: a greedy solution is optimal in the primal!

® Suppose n>rn>...>2n>0>rng1 > ... > 1

o letS°=0and & ={1,...,j} forjEN.

® Prove that the following x and y are optimal for the primal and dual, respectively.

rj — rj+1, SZSJ> 1§J<k7

(S —F(§Y), 1<j<k,
xj-{() o ys =4 rio 5 =5,

0, Jj> k. .
0, otherwise.

16/30

From Discrete to Continuous: The Lovasz Extension

® Submodular functions are inherently discrete: f : 2V — R.

® To connect with convex optimization, we extend f to the hypercube [0, 1]".

17/30

From Discrete to Continuous: The Lovasz Extension

Submodular functions are inherently discrete: f : 2V — R.

® To connect with convex optimization, we extend f to the hypercube [0, 1]".

Given x € [0,1]" and a permutation 7 that sorts coordinates
Xn(1) 2= Xp(2) = *** = Xn(n), define:

Zxﬂ(k (Sk) — f(Sk-1)), Sk ={n(1),...,m(k)}.

f is the Lovasz extension of f — a piecewise linear interpolation of f's values
over the vertices of [0, 1]".

17/30

Geometry of the Lovasz Extension on [0, 1]?
For N = {1,2} with

0, S=0,
f(S) = 3 S={1}orS=1{2},
3 5={1,2}

Lovasz extension of a submodular function on [0, 1]

X1 >= X2
. x1 < x2
@ Discrete Values

T
SN

\

A
N

AN

0.8

18/30

Submodularity & Convexity: The Bridge

Theorem
Key Equivalence (Lovdsz 1983) A set function f : 2V — R is submodular

< its Lovdsz extension f(x) is convex on [0,1]".

19/30

Submodularity & Convexity: The Bridge

Theorem
Key Equivalence (Lovdsz 1983) A set function f : 2V — R is submodular

< its Lovdsz extension f(x) is convex on [0,1]".

Submodularity < discrete convexity.
® Supermodularity < discrete concavity.

e f is piecewise linear with gradients corresponding to vertices of the base
polyhedron

B(f) = {y € R": y(5) < £(S) VS C N, y(N) = f(N)}.

* Minimizing f over 2V is equivalent to minimizing f over [0,1]"; the minimum is
always achieved at a binary vector.

19/30

Optimization via the Lovasz Extension

Submodular Minimization Submodular Maximization

® minscy f(S) = min,gpo 1y (). ® NP-hard in general (non-convex

® f convex = solvable by convex counterpart).

optimization. e Continuous relaxations (multilinear
extension) enable approximations.

® Algorithms:
- Iwata—Fleischer—Fujishige (IFF) ® Greedy algorithms achieve:
- Schrijver's combinatorial method
- Subgradient or cutting-plane over 1_1 (monotone), 1 (non-monotone).
B(f) e 2

Takeaway: The Lovész extension unifies discrete and convex worlds—enabling exact
minimization and principled relaxations for maximization.

20/30

Improving LP Relaxations With Cuts

N conv(T)

N

® Recall: T are feasible points to an IP, conv(T) is their convex hull
® P is the feasible region of an LP relaxation to the IP
® Typically, the formulation is not ideal:

conv(T)C P

21/30

Improving LP Relaxations With Cuts

\ conv(T)

N

Typically, the formulation is not ideal:

Recall: T are feasible points to an IP, conv(T) is their convex hull

P is the feasible region of an LP relaxation to the IP

conv(T)C P

How to improve it by generating valid cuts?
- Linear inequalities satisfied by T and conv(T), but not by P?

21/30

Improving LP Relaxations With Cuts

® Setup: A, b, c with rational entries and the IP:

minimize{cTX s Ax=b, x>0, x€ Z"}

o If x* = [x5: x3] be a b.f.s. for the LP relaxation. Then we have:
Apxp+Awxy =b & xg+ Ag'Awxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

22/30

Improving LP Relaxations With Cuts
® Setup: A, b, ¢ with rational entries and the IP:

minimize{cTX c Ax=b, x>0, xe Z"}

o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxi +Anxy =b & xh+Ag'Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

* = * _ 1
x; + E a;jz; =b

JEN

* = * L
x,-—i—ga,-jxj—b
JEN

22/30

Improving LP Relaxations With Cuts
® Setup: A, b, ¢ with rational entries and the IP:

minimize{cTX c Ax=b, x>0, xe Z"}
o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxi +Anxy =b & xh+Ag'Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

x’{—i—Zdija:;:l;
x,-*-i—Zé,-jxf:t_) . o\ —— &N
jen o o o o
Vx & T:x20:>x,-+ZLa',-ijj§5 . .T. .)
JEN |\
P~ "/

22/30

Improving LP Relaxations With Cuts
® Setup: A, b, ¢ with rational entries and the IP:

minimize{cTX c Ax=b, x>0, xe Z"}
o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxi +Anxy =b & xh+Ag'Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

v+ Y agw) =b
X +Z§Uxfk =b ! o N —— &N
JEN o0 o ©
VXeT:x20=>Xi+ZL5ijJXJ§B ° OT' °
VXGT:>X€Z"2>XI'+ZL§UJXJSLEJ i ——

JEN

22/30

Improving LP Relaxations With Cuts

® Setup: A, b, ¢ with rational entries and the IP:

minimize{cTX : Ax=b, x>0, x€ Z”}

o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxg +Anxy =b & xh+ Azt Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

* - * 7
x; + E a;jr; =b
JEN

* = * I
x,-+§a,-jxj—b
JEN

Vx e T:>x20:>x,-+ZL5;ijj§E | $i+ZLdijJ1’j:m
JEN

VXGT:>X€ZHZ>X,'+ZL5;J’JXJ'§|_EJ P
JEN

22/30

Improving LP Relaxations With Cuts

® Setup: A, b, ¢ with rational entries and the IP:
minimize{cTX : Ax=b, x>0, x€ Z”}
o If x* = [x5; x3] be a b.f.s. for the LP relaxation. Then we have:
Apxg +Anxy =b & xh+ Azt Anxy = Ag'b

® Consider an equality in which the right-hand-side is fractional

_ (E:+Zd”$;=l—)
X/ +Z§,~jxj* =b JEN
jeN |
Vx e T:>x20:>x,-+ZL5;ijj§E | $i+ZLdijJ1’j:m
JEN
VXGT:>X€ZHZ>X,'+ZL5;J’JXJ'§|_EJ P
JEN

® This inequality is satisfied by all integer solutions x € T
® It is not satisfied by x* because x* = b is fractional

® Gomory cut

22/30

Improving LP Relaxations With Cuts

:I):-F E (_lijl‘; =b

X+ Y |3 < |b], VxeT
JjeN zi+ Y |ayle; = [b]

JEN

e Gomory cut

® Systematically adding all the Gomory cuts lead to first cutting algorithm for IP
1. Solve the linear relaxation and get an optimal solution x*
2. If x* is integer stop
3. If not, add a cut (i.e., linear inequality that all integer solutions satisfy but that x*
does not satisfy) and go to step 1 again.

® (Can show that this is guaranteed to terminate

® |f you're wondering how this works for Ax < b or why it terminates, see notes!

23/30

Lift-and-Project

® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P :={x € R" : Ax > b, x > 0}

® Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

24/30

Lift-and-Project

® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P :={x € R" : Ax > b, x > 0}

® Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

24/30

Lift-and-Project

® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P :={x € R" : Ax > b, x > 0}

® Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back
1. Select j € {1,...,n}.

2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:

xj(Ax —b) >0, (1—x;)(Ax—b)>0.

24/30

Lift-and-Project

® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P :={x € R" : Ax > b, x > 0}

® Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back
1. Select j € {1,...,n}.
2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:

xj(Ax —b) >0, (1—x;)(Ax—b)>0.

3. Linearize system by substituting y; for xix; (for i # j), and x; for x7.
Call resulting polyhedron in variables (x,y) as M; (dimension R*").

24/30

Lift-and-Project

® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P :={x € R" : Ax > b, x > 0}

® Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back

1. Select j € {1,...,n}.

2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:

xj(Ax —b) >0, (1—x;)(Ax—b)>0.

3. Linearize system by substituting y; for xix; (for i # j), and x; for x7.
Call resulting polyhedron in variables (x,y) as M; (dimension R*").

4. Project M; onto the x-variables. Let P; be the resulting polyhedron.

24/30

Lift-and-Project

® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P :={x € R" : Ax > b, x > 0}

® Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back
1. Select j € {1,...,n}.
2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:

xj(Ax —b) >0, (1—x;)(Ax—b)>0.

3. Linearize system by substituting y; for xix; (for i # j), and x; for x7.
Call resulting polyhedron in variables (x,y) as M; (dimension R*").

4. Project M; onto the x-variables. Let P; be the resulting polyhedron.

¢ Claims. (i) Every binary x € P satisfies x € P;. (ii) P; C P.

24/30

Lift-and-Project

® Balas, Céria and Cornuéjols introduced a new approach
® Binary IP, feasible set x € PN {0,1}"” where P :={x € R" : Ax > b, x > 0}

® Key idea: lift linear relaxation polyhedron P to higher dimension where IP
formulation is strengthened, and project back
1. Select j € {1,...,n}.
2. Multiply each inequality with x; and then 1 — x; to generate nonlinear inequalities:
xj(Ax —b) >0, (1—x;)(Ax—b)>0.
3. Linearize system by substituting y;; for xix; (for i # j), and x; for xj2.
Call resulting polyhedron in variables (x,y) as M; (dimension R*").

4. Project M; onto the x-variables. Let P; be the resulting polyhedron.
¢ Claims. (i) Every binary x € P satisfies x € P;. (ii) P; C P.
. ﬂ};l Pj is called the lift-and-project closure. Clearly, ﬂ;’zl P, CP

® Bonami and Minoux : 35 Mixed 0-1 IPs from MIPLIB library, lift-and-project
closure reduces integrality gap by 37% on average

24/30

Other Cuts

¢ Mixed-Integer Rounding (MIR) Cuts: designed for general integer variables
e Knapsack Cover Cuts: applied for knapsack constraint

WZO,WTXSK =

25/30

Other Cuts

Mixed-Integer Rounding (MIR) Cuts: designed for general integer variables
Knapsack Cover Cuts: applied for knapsack constraint

w>0,wx <K = Zx,-g\C\—lforanyC : ZW,'>K (Cover)
i ieC

Clique Cuts: used to strengthen Y7 | x; < 1 when some of the x; form a clique
Flow Cover and Flow Path Cuts: specialized cuts for network flow problems
Lattice-Free Cuts, Multi-Branch Split Cuts

Comb Inequalities for TSP

Solvers like Gurobi have many of these built-in and allow adding custom cuts

Adding “good” cuts is problem-dependent; requires good understanding of
combinatorial structure

25/30

Solving IPs

IPs “hard,” but many methods devised

® Exact algorithms: guaranteed to find optimal solution, but may take exponential
number of iterations
- cutting planes
= branch and bound
= branch and cut
- lift-and-project methods
= dynamic programming methods

® Approximation algorithms: suboptimal solution with a bound on the degree of its
suboptimality, in polynomial time

® Heuristic algorithms: suboptimal solution, typically no guarantees on its quality;
typically run fast
= local search methods
- simulated annealing

26/30

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* Ifx,y, z binary, done! @

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

« Ifx y, z binary, done! * At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1

* Ifx,y, z binary, done!
e L:=OPT(F)is a lower bound on optimal cost

Branch based on
fractional variable y

y=0 y=1

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1

* Ifx,y, z binary, done!
e L:=OPT(F)is a lower bound on optimal cost

Branch based on
fractional variable y

) y=0 y=1
F,: Solve withy=0,0<x,z<1
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1

* Ifx,y, z binary, done! . .
e L:=OPT(F)is a lower bound on optimal cost

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1
* Optimal value OPT(F;)

Branch on x if
OPT(F,) < U

x=0 x=1

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

Branch on x if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1

e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)
¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

Branch on x if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

Branch on x if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F,), OPT(F,))

Branch on x if x=1 is better lower bound!

OPT(F;) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F,), OPT(F,))

Branch on x if x=1 is better lower bound!

OPT(F;) < U

x=0

In fact, could do even better!
Replace OPT(F;) with

F;: Solve with x=y=0,0<z< 1 F,: Infeasible! min(OPT(F;), OPT(F,)) = OPT(F;)

e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F,), OPT(F,))

Branch on x if x=1 is better lower bound!

OPT(F;) < U

x=0

In fact, could do even better!

Replace OPT(F,) with
F: Solve with x=y=0,0<z< 1 F,: Infeasible! min(OPT(F;), OPT(F,)) = OPT(F;)
e At optimality: get z;5=1
« A feasible solution! Trade-off between exploring depth-first vs.
* Update upper bound U := OPT(F;) breadth-first
¢ IfU-L < tolerance, stop e depth-first gets to a binary solution “faster”

* breadth-first allow improving lower bounds

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F;), OPT(F,))
is better lower bound!

Branch on x if
OPT(F,) < U

Branch on z if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible!
e At optimality: get z;5=1

* Afeasible solution!

¢ Update upper bound U := OPT(F;)

¢ If U-L < tolerance, stop

Branch and Bound

Suppose we have binary variables x, y, z and minimize an objective
Maintain upper bound U and lower bound L on optimal value

Root node: solve LP relaxation
0<xvyz<1

* At optimality, get: x;=0, y;=0.3, z;=1
e L:=OPT(F)is a lower bound on optimal cost

* Ifx,y, z binary, done!

Branch based on
fractional variable y

=1
F,: Solve withy=0,0<x,z<1 y
* Optimal: x=0.5, y¢1=0, zp;=1

* Optimal value OPT(F;)

F,: Solve with y=1, 0 <= x,z <=1
* Optimal: X;,=0, y¢,=1, z;,=0.2
* Optimal value OPT(F,)

L:= min(OPT(F;), OPT(F,))
is better lower bound!

Branch on x if
OPT(F,) < U

Branch on z if
OPT(F,) < U

x=0

F3: Solve with x=y=0,0<z<1 F,: Infeasible! Keep bran.chmg &'boundmg until
< At optimality: get z,=1 you achieve desired tolerance
* Afeasible solution! (or get proof of optimality)

¢ Update upper bound U := OPT(F;)
¢ If U-L < tolerance, stop

Branch and Bound

® More general formulation: let F be set of feasible solutions to an IP
1. Maintain upper bound U, lower bound L on problem’s objective

2. Partition F into finite collection of subsets F;
3. Choose an unsolved subproblem and solve it; only need a lower bound /(F;) on cost:

¢(F;) < minc'x.
x€EF;

If £(F;) > U, no need to explore subproblem F; further!

Otherwise, partition F; further and update collection of subproblems/nodes to explore
If we get a feasible solution, update the upper bound U

If U— L <e, stop

When solving all children of a given node, can update lower bound at the node

© N R

27/30

Branch and Bound

® More general formulation: let F be set of feasible solutions to an IP

1.
2.
3.

© N R

Maintain upper bound U, lower bound L on problem’s objective
Partition F into finite collection of subsets F;
Choose an unsolved subproblem and solve it; only need a lower bound ¢(F;) on cost:

¢(F;) < minc'x.
x€EF;

If £(F;) > U, no need to explore subproblem F; further!

Otherwise, partition F; further and update collection of subproblems/nodes to explore
If we get a feasible solution, update the upper bound U

If U— L <e, stop

When solving all children of a given node, can update lower bound at the node

® Many choices:

1.

How to explore subproblems: “breadth-first search” vs “depth-first search” vs...

2. How to derive lower bound ¢(F;): LP relaxation vs. Lagrangean duality
3.
4. How to partition a problem into subproblems? We used x; < |x;"| and x; > [x;"]

Improve LP relaxations by adding cuts: branch-and-cut approaches

27/30

G u I‘Obi Output Available computational resources

Parameter OutputFlag unchanged
Value: 1 Min: @ Max: 1 Default: 1
Gurobi Optimizer version 9.1.2 build v9.1.2rc@ (linux64)
Thread count: 1 physical cores, 2 logical processors, using up to 2 threads Summary of model
Optimize a model with 55 rows, 105 columns and 310 nonzeros . . .
constraints, # variables, sparsity,

Model fingerprint: @x@e3b21e3
coefficient values

Variable types: 5 continuous, 100 integer (100 binary)
Coefficient statistics:

Matrix range [Se-02, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 4e+00] . . .
Found heuristic solution: objective -0.0860000 Can we get close with a heuristic?

Presolve removed 18 rows and 33 columns

Presolve time: 0.00s

Presolved: 37 rows, 72 columns, 192 nonzeros

Found heuristic solution: objective 1.0190799
Variable types: @ continuous, 72 integer (68 binary)

Can we simplify the problem
(presolve)

Root relaxation: objective 3.139194e+00, 54 iterations, .00 seconds

Nodes | Current Node | Objective Bounds |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

Branch & Bound

2] 2] 3.13919 2] 7 1.01908 3.13919 208% - 0s r
H 2] 2] 2.8417259 3.13919 10.5% - os .
H oo o 3losas352 313019 2.03% - o (current node, bound on objective, gap)
H 2] 2] 3.0879121 3.13919 1.66% - 0s

]] 3.10586 [8 3.08791 3.10586 0.58% - s

]] cutoff] 3.08791 3.08791 0.00% - os .

Cutting planes:
Gomory: 1
MIR: 1
GUB cover: 1
RLT: 1

utting planes applied

Explored 1 nodes (57 simplex iterations) in .84 seconds
Thread count was 2 (of 2 available processors)

Solution count 5: 3.08791 3.06484 2.84173 ... -0

Optimal solution found (tolerance 1.00e-04)
Best objective 3.087912087912e+00, best bound 3.087912087912e+00, gap 0.0000%

Optimal solution found

Solved the optimization problem. ..

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

® Suppose the “ugly/hard” constraints are Ax > b ...

.. and we are able to minimize efficiently c'x over X' := {x € Z" | Dx > d}

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

® Suppose the “ugly/hard” constraints are Ax > b ...

.. and we are able to minimize efficiently c'x over X' := {x € Z" | Dx > d}

® Let p > 0 be dual variables (Lagrange multipliers) for Ax > b; form Lagrangean:
L(x,p) :=c'x+p"(b— Ax)

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

Suppose the “ugly/hard” constraints are Ax > b ...

.. and we are able to minimize efficiently c'x over X' := {x € Z" | Dx > d}

Let p > 0 be dual variables (Lagrange multipliers) for Ax > b; form Lagrangean:
L(x,p) :=c'x+p"(b— Ax)

Then we can get the following lower bound on Zp:

Vp>0, g(p) = ng; [c"x+p'(b—Ax)] = g(p) < Zp

28/30

Lagrangian Duality in IP
® Good lower bounds critical for MILPs!
Zip = min {CTX c Ax>b, Dx>d, x € Z”}

® We get a lower bound from LP relaxation:

Zip:=min {c'x : Ax>b, Dx>d} = Zp<Zp

® Suppose the “ugly/hard” constraints are Ax > b ...

. and we are able to minimize efficiently c'x over X := {x € Z" | Dx > d}

L(x,p) :=c'x+p"(b— Ax)

® Then we can get the following lower bound on Zp:

Vp>0, g(p) = ng; [c"x+p'(b—Ax)] = g(p) < Zp

® Important! We are not dualizing all the constraints!
— We keep the constraints x € X’ because these are “easy”
- Similar to LP developments: recall how we kept the constraints x; > 0 or x; <0
- What matters is that we can easily compute g(p) for any p > 0

Let p > 0 be dual variables (Lagrange multipliers) for Ax > b; form Lagrangean:

28/30

Lagrangian Duality in IP
® Because g(p) < Zip,Vp > 0, we can look for the best lower bound:
Zp = maxg(p) (2)
® This is the Lagrangean dual of our problem.
- g(p) piece-wise linear, concave; supergradient available
- Can compute Zp using first-order-methods

- Weak duality holds: Zp < Zp
Unlike LP, we do not have a strong duality result!

29/30

Lagrangian Duality in IP
® Because g(p) < Zip,Vp > 0, we can look for the best lower bound:
Zp = maxg(p) (2)
® This is the Lagrangean dual of our problem.
- g(p) piece-wise linear, concave; supergradient available
- Can compute Zp using first-order-methods

- Weak duality holds: Zp < Zp
Unlike LP, we do not have a strong duality result!

® Most important result here (recall that X := {x € Z" | Dx > d})

Zp=min{c'x : Ax>b, x € conv(X)}.

® Immediate consequence: we get stronger bounds than from LP relaxation,
Zip < Zp < Zp.

® Details, proofs: see notes
29/30

Other Methods

® Dynamic Programming very powerful
® Can solve in pseudo-polynomial time IPs in fixed dimension
® Heuristics can also be powerful

- Local search

- Simmulated annealing
- Genetic algorithms, “ant colony optimization”, etc.

30/30

