
Lecture 18 : Robust Optimization

December 1, 2025
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Quick Announcements

• Will standardize midterm scores

• Preferences for midterm weight - due on Wednesday

• Homework 5 due on Friday (Dec 5)

• My office hours this week - extended schedule (check Google calendar link)

• Any questions?
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Outline for Today and Wednesday
1. Introduction

– Some Motivating Examples
– A History Detour
– Pros and Cons of Probabilistic Models

2. Robust Optimization

– Basic Premises
– Modeling with Basic Uncertainty Sets
– Reformulating and Solving Robust Models
– Extensions
– Some Applications
– Distributionally Robust Optimization
– Calibrating Uncertainty Sets
– Connections with Other Areas

3. Dynamic Robust Optimization

– Properly Writing a Robust DP
– An Inventory Example
– Tractable Approximations with Decision Rules
– Some Practical Issues on Bellman Optimality
– An Application in Monitoring
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Introduction
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The Flaw of Averages

Optimization based on nominal values can lead to severe
pitfalls...

Taken from “Flaw of averages” Sam Savage (2009, 2012)
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How Robust Are Optimal Solutions?

• Aharon Ben-Tal and Arkadi Nemirovski: Consider a real-world scheduling
problem problem (PILOT4) in NETLIB Library

– One of the constraints is the following linear constraint āTx ≥ b :

−15.79081 · x826 − 8.598819 · x827 − 1.88789 · x828 − 1.362417 · x829
−1.526049 · x830 − 0.031883 · x849 − 28.725555 · x850 − 10.792065 · x851
−0.19004 · x852 − 2.757176 · x853 − 12.290832 · x854 + 717.562256 · x855
−0.057865x · x856 − 3.785417 · x857 − 78.30661 · x858 − 122.163055 · x859
−6.46609 · x860 − 0.48371 · x861 − 0.615264 · x862 − 1.353783 · x863
−84.644257 · x864 − 122.459045 · x865 − 43.15593 · x866 − 1.712592 · x870
−0.401597 · x871 + x880 − 0.946049 · x898 − 0.946049 · x916 ≥ 23.387405

– Coefficients like 8.598819 are estimated and potentially inaccurate

• What if these coefficients are just 0.1% inaccurate?
– i.e., suppose the true a is not ā, but |ai − āi | ≤ 0.001|āi |?

• Will the optimal solution to the problem still be feasible?

• How can we test?
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How Robust Are Optimal Solutions?

• Original constraint: āTx ≥ b, optimal solution x⋆

• Suppose true a ∈ Rn satisfies |ai − āi | ≤ 0.001|āi |, ∀ i

• How to determine if aTx⋆ ≥ b holds for true a?

min
a

aTx⋆ − b

s.t. |ai − āi | ≤ 0.001|āi |, ∀ i

– For PILOT4, this comes to −128.8 ≈ −4.5b, so 450% violation!

• OK, but perhaps we’re too conservative?

– Suppose ai = āi + ϵi |āi |, where ϵi ∼ Uniform[−0.001, 0.001]

– Using Monte-Carlo simulation with 1,000 samples:

• P(infeasible) = 50%, P(violation > 150%) = 18%, E[violation] = 125%

• Disturbing that nominal solutions are likely highly infeasible

• Turns out to be the case for many NETLIB problems

• We should capture uncertainty more explicitly apriori!
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Decisions Under Uncertainty

• Decision Maker (DM) must chose x , without knowing z

• DM incurs a cost C (x , z)

• How to model z? How to properly formalize the decision problem?

• “Standard” probabilistic model:

– There is a unique probability distribution P for z

– DM considers an objective: minx Ez∼P
[
C(x , z)

]
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Classical Probabilistic Model: DM knows P, solves minx Ez∼P
[
C (x , z)

]
• What if there are constraints?

fi (x , z) ≥ 0, ∀ i ∈ I

• Need to be a bit more precise in which sense we want to satisfy them!
– expectation constraint: EP[ fi

(
x , z

)
] ≥ 0, ∀ i

– chance constraint:

individual: P[ fi
(
x , z

)
≥ 0 ] ≥ 1− ϵ, ∀ i

joint: P[ fi
(
x , z

)
≥ 0, ∀ i ] ≥ 1− ϵ

– robust (a.s.) constraint: F
(
x , z

)
≥ 0, ∀ z

• Which of these are “easy” to check / enforce?

• Even if f is “well-behaved,” may need more assumptions on P
– e.g., f convex in x , concave in z
– log-concave density for chance constraints
– convex support
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Classical Probabilistic Model: DM knows P, solves minx Ez∼P
[
C (x , z)

]

• Where is P coming from?

• When is it reasonable to assume P known?

• What if P is not the actual distribution?

• What if P is not exogenous?

• Perhaps we have historical samples z1, . . . , zN

• Use empirical distribution P =
∑N

i=1
1
N δ(z i )?

• Future like the past...

• ...
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Classical Probabilistic Model: DM knows P, solves minx Ez∼P
[
C (x , z)

]

• What if there are constraints?

fi (x , z) ≥ 0, ∀ i ∈ I

• Where is P coming from?

• When is this reasonable?

• What if P is not the actual distribution?

• What if P is not exogenous?

• Very popular modeling framework, but...

• Theory challenging when analyzing complex, real-world phenomena
– poor data, changing environments (future ̸= past), many agents, ...

• Framework not geared towards computing decisions
– Limited computational tractability, particularly in higher dimensions

• With C = −u(·) (u utility function), unclear if this is a good behavioral model
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An Alternative Model of Uncertainty

• Let’s admit explicitly that our model of reality is incorrect

• From classical view: “we know distribution P for z, and solve: min
x

EP
[
C (x , z)

]
”

to robust view: “we only know that P ∈ P, and solve: min
x

max
P∈P

EP
[
C (x , z)

]
”
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[
C (x , z)

]
”

to robust view: “we only know that P ∈ P, and solve: min
x

max
P∈P

EP
[
C (x , z)

]
”

Long history of robust decision-making and model misspecification:

• Economics:

– Knight (1921) - risk vs. Knightian uncertainty, Wald (1939), von Neumann (1944)
– Savage (1951): minimax regret, Scarf (1958): robust Newsvendor model
– Schmeidler, Gilboa (1980s): axiomatic frameworks; Ben-Haim (1980s)
– Hansen & Sargent (2008): “Robustness” - robust control in macroeconomics
– Bergemann & Morris (2012): “Robust mechanism design” book, Carroll (2015), ...

• Engineering and robust control: Bertsekas (1970s), Doyle (1980s), etc.

• Computer science: complexity analysis

• Statistics: M-estimators Huber (1981)

• Operations Research:

– Early work by Soyster (1973), Libura (1980), Bard (1984), Kouvelis (1997)
– Robust Optimization: Ben-Tal, Nemirovski, El-Ghaoui (’90s), Bertsimas, Sim (’00s)
– Two books: Ben-Tal, El-Ghaoui, Nemirovski (2009), Bertsimas, den Hertog (2020)
– Many tutorials!
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An Alternative Model of Uncertainty

• Let’s admit explicitly that our model of reality is incorrect

• From classical view: “we know distribution P for z, and solve: min
x

EP
[
C (x , z)

]
”

to robust view: “we only know that P ∈ P, and solve: min
x

max
P∈P

EP
[
C (x , z)

]
”

Why robust optimization? (in my view)

1. Very sensible

2. Modest modeling requirements

3. Modest in its premise: “always under-promises, and over-delivers”

4. Tractable: quickly becoming “technology”

5. Very sensible results: can rationalize simple rules in complex problems
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“Classical” Robust Optimization
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“Classical” Robust Optimization (RO)

• Only information about z : values belong to an uncertainty set U

• DM reformulates the original optimization problem as:

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)
– Other options possible, based on notions of regret

• Conservative?
– Not necessarily!

– U directly trades off robustness and conservatism, and is a modeling choice

• Is there a probabilistic interpretation?

– Objective = sup
P∈P

Ez∼P[C(x , z)] where P is the set of all measures with support U
– So we are assuming that the only information about P is the support U
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“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

What is the optimal value of the following robust LP?

min
x

max
a∈U

− (x1 + x2)

such that x1 ≤ a1, ∀a ∈ U
x2 ≤ a2, ∀a ∈ U where U =

{
(a1, a2) ∈ [0, 1]2 : a1 + a2 ≤ 1

}
x1 + x2 ≤ 1, ∀a ∈ U .

Optimal value 0. In RO, each constraint must be satisfied separately, robustly.

15 / 28



“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

What is the optimal value of the following robust LP?

min
x

max
a∈U

− (x1 + x2)

such that x1 ≤ a1, ∀a ∈ U
x2 ≤ a2, ∀a ∈ U where U =

{
(a1, a2) ∈ [0, 1]2 : a1 + a2 ≤ 1

}
x1 + x2 ≤ 1, ∀a ∈ U .

Optimal value 0. In RO, each constraint must be satisfied separately, robustly.

15 / 28



“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

3. Each constraint can be re-written as an optimization problem

fi (x , z) ≤ 0, ∀ z ∈ U ⇔ sup
z∈U

fi (x , z) ≤ 0

15 / 28



“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

3. Each constraint can be re-written as an optimization problem

fi (x , z) ≤ 0, ∀ z ∈ U ⇔ sup
z∈U

fi (x , z) ≤ 0

15 / 28



“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

3. Each constraint can be re-written as an optimization problem

4. Without loss, we can consider a problem where z only appears in constraints

(P) is equivalent to the following problem:

inf
x,t

t

s.t. t ≥ C(x , z), ∀z ∈ U
fi (x , z) ≤ 0,∀z ∈ U , ∀i ∈ I

Many RO models are in this epigraph reformulation, and focus on constraints

15 / 28



“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

3. Each constraint can be re-written as an optimization problem

4. Without loss, we can consider a problem where z only appears in constraints

(P) is equivalent to the following problem:

inf
x,t

t

s.t. t ≥ C(x , z), ∀z ∈ U
fi (x , z) ≤ 0,∀z ∈ U , ∀i ∈ I

Many RO models are in this epigraph reformulation, and focus on constraints

15 / 28



“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

3. Each constraint can be re-written as an optimization problem

4. Without loss, we can consider a problem where z only appears in constraints

(P) is equivalent to the following problem:

inf
x,t

t

s.t. t ≥ C(x , z), ∀z ∈ U
fi (x , z) ≤ 0,∀z ∈ U , ∀i ∈ I

Many RO models are in this epigraph reformulation, and focus on constraints
15 / 28



“Classical” Robust Optimization (RO)
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Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

3. Each constraint can be re-written as an optimization problem

4. Without loss, we can consider a problem where z only appears in constraints

5. DM only responsible for objective and constraints when z ∈ U

– If z /∈ U actually occurs, all bets are off

– Can extend framework to ensure gradual degradation of performance:

Globalized robust counterparts (Ben-Tal & Nemirovski)
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“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

Remarks.

1. Objective: worst-case performance supz∈U C (x , z)

2. Each constraint is “hard”: must be satisfied robustly, for any realization of z

3. Each constraint can be re-written as an optimization problem

4. Without loss, we can consider a problem where z only appears in constraints

5. DM only responsible for objective and constraints when z ∈ U

6. Robust model seems to lead to a difficult optimization problem

– For any given x , checking constraints/solving the “adversary” problem may be tough

– We must also solve our original problem of finding x!
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“Classical” Robust Optimization (RO)

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀z ∈ U , ∀i ∈ I

1. How to model U

2. How to formulate and solve the robust counterpart

3. Why is this useful, in theory and in practice
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Intuition for Some Basic Uncertainty Sets

• Recall PILOT4; how to build some “safety buffers” for constraint like #372:

−15.79081 · x826 − 8.598819 · x827 − 1.88789 · x828 − 1.362417 · x829 − . . .

−0.946049 · x916 ≥ 23.387405

• Consider a linear constraint in x with coefficients that depend linearly on z

(ā+ Pz)Tx ≤ b, ∀ z ∈ U
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• Consider a linear constraint in x with coefficients that depend linearly on z

(ā+ Pz)Tx ≤ b, ∀ z ∈ U

• P is a known matrix; z is primitive uncertainty

• Q: Why this more general form?

A: For modeling flexibility:
– Suppose the same physical quantity (i.e., coefficient) appears in multiple constraints

– Can capture “correlations”, e.g., with a factor model
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• How about a box uncertainty set? For some confidence level ρ:

Ubox := {z : −ρ ≤ zi ≤ ρ} = {z : ∥z∥∞ ≤ ρ}

“Too conservative?”

• In PILOT4, robust solution has objective value within 1% of that of x⋆

• Recall that x⋆ would violate this constraint by 450%

• Sometimes we don’t sacrifice too much for robustness!
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• Or what if we gave “nature” a budget on how many coefficients it could change:

Ubudget := {z : ∥z∥∞ ≤ ρ, ∥z∥1 ≤ Γρ}

• How to formulate the robust counterpart? How to set ρ, Γ? How to use in practice?
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Robust Counterpart (RC) for Box Uncertainty Set

• Consider a linear constraint in x with coefficients that depend linearly on z

(ā+ Pz)Tx ≤ b, ∀ z ∈ U

• For Ubox = {z : ∥z∥∞ ≤ ρ}, satisfying the constraint robustly is equivalent to:

max
z:∥z∥∞≤ρ

(ā+ Pz)Tx ≤ b,

or
āTx + max

z:∥z∥∞≤ρ
(PTx)Tz ≤ b,

or
āTx + max

z:|zi |≤ρ

∑
i

(PTx)i zi ≤ b,

or
āTx + ρ

∑
i

|(PTx)i | ≤ b,

or
āTx + ρ∥PTx∥1 ≤ b.
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Robust Counterpart (RC) for Polyhedral Uncertainty Set

• Consider a linear constraint in x with coefficients that depend linearly on z

(ā+ Pz)Tx ≤ b, ∀ z ∈ U

• For Upolyhedral = {z : Dz ≤ d}, satisfying the constraint robustly is equivalent to:

āTx + max
z :Dz≤d

(PTx)Tz ≤ b. (1)

– Uncertainty set U is presumably non-empty, so LHS is not −∞

– By strong LP duality, when the left-hand-side in (1) is finite, we must have:

max{(PTx)Tz : Dz ≤ d} = min{dTy : DTy = PTx , y ≥ 0}.

– Hence (1) is equivalent to

āTx +min
y
{dTy : DTy = PTx , y ≥ 0} ≤ b,

or

∃ y : āTx + dTy ≤ b, DTy = PTx , y ≥ 0.
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āTx + max
z :Dz≤d

(PTx)Tz ≤ b. (1)

– Uncertainty set U is presumably non-empty, so LHS is not −∞

– By strong LP duality, when the left-hand-side in (1) is finite, we must have:

max{(PTx)Tz : Dz ≤ d} = min{dTy : DTy = PTx , y ≥ 0}.

– Hence (1) is equivalent to
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Robust Counterpart for Polyhedral Uncertainty Set

• Consider a linear constraint in x with coefficients that depend linearly on z

(ā+ Pz)Tx ≤ b, ∀ z ∈ U (2)

• For Upolyhedral = {z : Dz ≤ d}, satisfying the constraint robustly is equivalent to:

∃ y : āTx + dTy ≤ b, DTy = PTx , y ≥ 0.

Remarks.

• To formulate the RC for (2), we must introduce a set of auxiliary decision variables y
– these are decision variables, chosen together with x

• How many auxiliary variables are needed to derive the RC for (2)?

– # rows of D, i.e., as many as the constraints defining Upolyhedral

• How many constraints are needed to derive the RC for (2)?

– 1 + (#columns of D) + (#rows of D)

• Suppose we were solving minx{cTx : Ax ≤ b}, with A ∈ Upolyhedral ⊂ Rm×n and D ∈ Rp×q.

– the RC is still an LP, with n +m · p variables, m · (1 + p + q) constraints
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Robust Counterpart (RC) for Ellipsoidal Uncertainty Set

• Consider a linear constraint in x with coefficients that depend linearly on z

(ā+ Pz)Tx ≤ b, ∀ z ∈ U

• For Uellipsoid = {z : ∥z∥2 ≤ ρ}, satisfying the constraint robustly is equivalent to:

āTx + max
z:∥z∥2≤ρ

(PTx)Tz ≤ b.

Intermezzo: max {qTz : ∥z∥2 ≤ ρ} or max {qTz : zTz ≤ ρ2}

Lagrange: z = q/λ, and λ = ∥q∥2/ρ.

Optimal objective value: qTq
λ = ρ∥q∥2.

Hence robust counterpart (RC) is:

āTx + ρ∥PTx∥2 ≤ b.
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RC for Linear Optimization Problems with Classical Sets

The robust counterpart for (ā+ Pz)Tx ≤ b, ∀ z ∈ U is:

U-set U Robust Counterpart Tractability

Box ∥z∥∞ ≤ ρ āTx + ρ∥PTx∥1 ≤ b LO

Ellipsoidal ∥z∥2 ≤ ρ āTx + ρ∥PTx∥2 ≤ b CQO

Polyhedral Dz ≤ d ∃y :


āTx + dTy ≤ b

DTy = PTx

y ≥ 0

LO

Budget

{
∥z∥∞ ≤ ρ

∥z∥1 ≤ Γ
∃y : āTx + ρ∥y∥1 + Γ∥PTx − y∥∞ ≤ b LO
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• Problems above can be handled by large-scale modern solvers, e.g., Gurobi

• Some software now also handling automatic problem re-formulation

• If some of the decisions x are integer, problems above become MI-LPs/CQPs

• Several important extensions
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Extensions

1. Uncertainty in the right-hand side: (ā+ Pz)Tx ≤ b + pTz , ∀ z ∈ U

⇔ āTx + (PTx − p)Tz ≤ b, ∀ z ∈ U , so can use base model

2. General convex uncertainty set: U = {z : hk(z) ≤ 0, ∀k ∈ K}, hk(·) convex?

⇔ ∃{wk , uk}k∈K : āTx +
∑

k ukh
∗
k(wk/uk) ≤ b,

∑
k w

k = PTx , u ≥ 0.

h∗k is Fenchel conjugate of hk . Works if we have a tractable representation of h∗k .

3. LHS general in x , linear in z : (Pz)Tg(x) ≤ b, ∀z ∈ U

To calculate RC, take ā = 0 and replace x with g(x) in our base-case model

4. x ≥ 0 and LHS linear in x , concave in z: xTg(ā+ Pz) ≤ b, ∀z ∈ U , g concave

⇔ dTx ≤ b, ∀(z , d) ∈ U+ :=
{
(z , d) | d ≤ g

(
ā+ Pz

)
, z ∈ U

}
Constraint is now linear in (z , d) and U+ is a convex uncertainty set - apply #2.

5. LHS convex in x and convex in z: f (x , z) ≤ b, f jointly convex

Tractable if f has “easy” piece-wise description: f (x , z) = maxk∈K fk(x)
Tz , where

fk corresponds to one of cases above (e.g., fk(x) linear in x)
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Tractable if f has “easy” piece-wise description: f (x , z) = maxk∈K fk(x)
Tz , where

fk corresponds to one of cases above (e.g., fk(x) linear in x)
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Extensions

1. Uncertainty in the right-hand side: (ā+ Pz)Tx ≤ b + pTz , ∀ z ∈ U

⇔ āTx + (PTx − p)Tz ≤ b, ∀ z ∈ U , so can use base model

2. General convex uncertainty set: U = {z : hk(z) ≤ 0, ∀k ∈ K}, hk(·) convex?

⇔ ∃{wk , uk}k∈K : āTx +
∑

k ukh
∗
k(wk/uk) ≤ b,

∑
k w

k = PTx , u ≥ 0.

h∗k is Fenchel conjugate of hk . Works if we have a tractable representation of h∗k .

3. LHS general in x , linear in z : (Pz)Tg(x) ≤ b, ∀z ∈ U

To calculate RC, take ā = 0 and replace x with g(x) in our base-case model

4. x ≥ 0 and LHS linear in x , concave in z: xTg(ā+ Pz) ≤ b, ∀z ∈ U , g concave
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Used in many applications

• supply chain management [Ben-Tal et al., 2005, Bertsimas and Thiele, 2006, ...]

• logistics and transportation [Baron et al., 2011, ...]

• scheduling [Lin et al., 2004, Yamashita et al., 2007, Mittal et al., 2014, ...]

• revenue management [Perakis and Roels, 2010, Adida and Perakis, 2006, ...]

• project management [Wiesemann et al., 2012, Ben-Tal et al., 2009, ...]

• energy generation and distribution [Zhao et al., 2013, Lorca and Sun, 2015, ...]

• portfolio optimization [Goldfarb and Iyengar, 2003, Tütüncü and Koenig, 2004, Ceria and Stubbs, 2006,

Pinar and Tütüncü, 2005, Bertsimas and Pachamanova, 2008, ...]

• healthcare [Borfeld et al., 2008, Hanne et al., 2009, Chen et al., 2011, I., Trichakis, Yoon (2018), ...]

• humanitarian [Uichano 2017, den Hertog et al., 2019, ...]
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Two Important Caveats for Robust Models
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Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign

customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

max
X ,I ,Z ,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − c sij)Xijτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi + Ki Ii )

subject to
∑
i∈F

Xijτ ≤ Djτ , j ∈ N , τ ∈ T ,

∑
j∈N

Xijτ ≤ Piτ , i ∈ F , τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F , τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|
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j∈N

Xijτ ≤ Piτ , i ∈ F , τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F , τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|

Parameters

T : discrete planning horizon, indexed by τ

F : potential facility locations, indexed by i
N : demand node locations, indexed by j
p: unit price of goods
ci : cost per unit of production at facility i
Ci : cost per unit of capacity for facility i
Ki : cost of opening a facility at location i
csij : cost of shipping units from i to j
Djτ : demand in period τ at location j

Decision variables

Xijτ : quantity of demand j in period τ satisfied by i
Piτ : quantity produced at facility i in period τ

Ii : whether facility i is open (0/1)
Zi : capacity of facility i if open
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Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F , τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|

Step 2. Identify all uncertain parameters and model the uncertainty set U .
Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

U =

{
D ∈ R|N|·|T |

∣∣∣∣∣ ∑
j∈N

∑
t∈T

(
Djt − D̄jt

ϵtD̄jt

)2

≤ ρ2
}
,

{D̄jt}j∈N ;t∈T are “nominal” demands, ϵt is allowed deviation (%), ρ is the size of the ellipsoid

25 / 28



Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign

customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

max
X ,I ,Z ,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − c sij)Xijτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi + Ki Ii )

subject to
∑
i∈F

Xijτ ≤ Djτ , j ∈ N , τ ∈ T ,

∑
j∈N

Xijτ ≤ Piτ , i ∈ F , τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F , τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|

Step 2. Identify all uncertain parameters and model the uncertainty set U .
Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

U =

{
D ∈ R|N|·|T |

∣∣∣∣∣ ∑
j∈N

∑
t∈T

(
Djt − D̄jt

ϵtD̄jt

)2

≤ ρ2
}
,

Equivalently, can write Djt = D̄jt(1 + ϵt · z jt), where z ∈ U = {z ∈ R|N|·|T | : ∥z∥2 ≤ ρ}
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j∈N

∑
t∈T

(
Djt − D̄jt

ϵtD̄jt

)2

≤ ρ2
}
,

Step 3. Derive robust counterpart for the problem. Here, a Conic Quadratic program.
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Compare Two Models
Our initial model, with decisions for quantities X :

max
X,I,Z,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − csij )Xijτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi + Ki Ii )

subject to
∑
i∈F

Xijτ ≤ Djτ , j ∈ N , τ ∈ T ,

∑
j∈N

Xijτ ≤ Piτ , i ∈ F, τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F, τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|

Another model, with decisions for fractions of demands Y :

max
Y ,I,Z,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − csij )YijτDjτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi − Ki Ii )

subject to
∑
i∈F

Yijτ ≤ 1, j ∈ N , τ ∈ T ,

∑
j∈N

YijτDjτ ≤ Piτ , i ∈ F, τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F, τ ∈ T
Y ≥ 0, I ∈ {0, 1}|F| (3)

• For fixed D, are these deterministic/nominal models equivalent? Yes!
• Are their robust counterparts equivalent? No!

– The feasible set in the second formulation is larger
– Second formulation implements ordering quantities that depend on demand!
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Another model, with decisions for fractions of demands Y :

max
Y ,I,Z,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − csij )YijτDjτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi − Ki Ii )

subject to
∑
i∈F

Yijτ ≤ 1, j ∈ N , τ ∈ T ,

∑
j∈N

YijτDjτ ≤ Piτ , i ∈ F, τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F, τ ∈ T
Y ≥ 0, I ∈ {0, 1}|F| (3)

• For fixed D, are these deterministic/nominal models equivalent? Yes!
• Are their robust counterparts equivalent?

No!
– The feasible set in the second formulation is larger
– Second formulation implements ordering quantities that depend on demand!
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Compare Two Models
Our initial model, with decisions for quantities X :

max
X,I,Z,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − csij )Xijτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi + Ki Ii )

subject to
∑
i∈F

Xijτ ≤ Djτ , j ∈ N , τ ∈ T ,

∑
j∈N

Xijτ ≤ Piτ , i ∈ F, τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F, τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|

Another model, with decisions for fractions of demands Y :

max
Y ,I,Z,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − csij )YijτDjτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi − Ki Ii )

subject to
∑
i∈F

Yijτ ≤ 1, j ∈ N , τ ∈ T ,

∑
j∈N

YijτDjτ ≤ Piτ , i ∈ F, τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F, τ ∈ T
Y ≥ 0, I ∈ {0, 1}|F| (3)

• For fixed D, are these deterministic/nominal models equivalent? Yes!
• Are their robust counterparts equivalent? No!

– The feasible set in the second formulation is larger
– Second formulation implements ordering quantities that depend on demand!
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The robust counterparts of equivalent deterministic

models may be different!

You should always try to allow your formulation
to be as flexible as possible!
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A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming. MPS / SIAM Series on Optimization. SIAM, 2009.
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