

Lecture 18 : Robust Optimization

December 1, 2025

Quick Announcements

- Will standardize midterm scores
- Preferences for midterm weight - due on Wednesday
- Homework 5 due on Friday (Dec 5)
- My office hours this week - extended schedule (check Google calendar link)
- Any questions?

Outline for Today and Wednesday

1. Introduction

- Some Motivating Examples
- A History Detour
- Pros and Cons of Probabilistic Models

2. Robust Optimization

- Basic Premises
- Modeling with Basic Uncertainty Sets
- Reformulating and Solving Robust Models
- Extensions
- Some Applications
- Distributionally Robust Optimization
- Calibrating Uncertainty Sets
- Connections with Other Areas

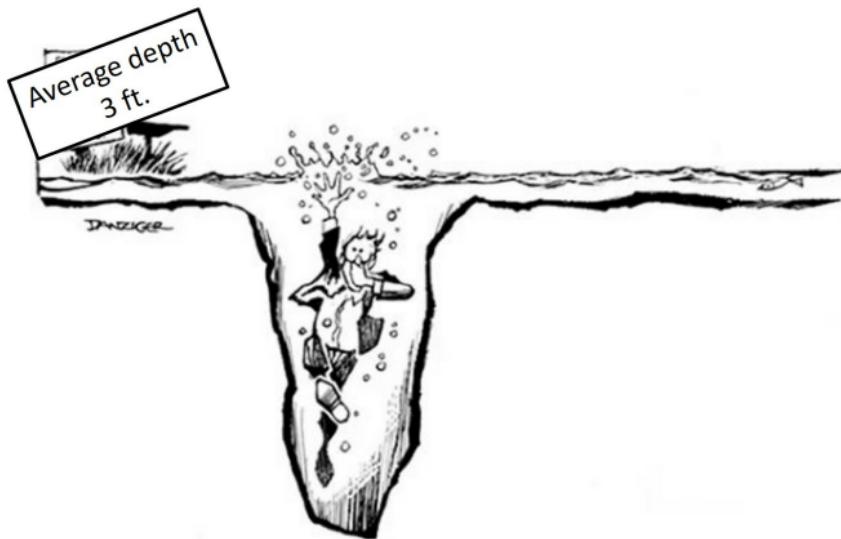
3. Dynamic Robust Optimization

- Properly Writing a Robust DP
- An Inventory Example
- Tractable Approximations with Decision Rules
- Some Practical Issues on Bellman Optimality
- An Application in Monitoring

Introduction

The Flaw of Averages

*Optimization based on **nominal** values can lead to **severe** pitfalls...*



Taken from “*Flaw of averages*” Sam Savage (2009, 2012)

How Robust Are Optimal Solutions?

How Robust Are Optimal Solutions?

- Aharon Ben-Tal and Arkadi Nemirovski: Consider a **real-world scheduling problem** (PILOT4) in NETLIB Library

- One of the constraints is the following linear constraint $\bar{a}^T x \geq b$:

$$\begin{aligned} & -15.79081 \cdot x_{826} - 8.598819 \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} \\ & - 1.526049 \cdot x_{830} - 0.031883 \cdot x_{849} - 28.725555 \cdot x_{850} - 10.792065 \cdot x_{851} \\ & - 0.19004 \cdot x_{852} - 2.757176 \cdot x_{853} - 12.290832 \cdot x_{854} + 717.562256 \cdot x_{855} \\ & - 0.057865x \cdot x_{856} - 3.785417 \cdot x_{857} - 78.30661 \cdot x_{858} - 122.163055 \cdot x_{859} \\ & - 6.46609 \cdot x_{860} - 0.48371 \cdot x_{861} - 0.615264 \cdot x_{862} - 1.353783 \cdot x_{863} \\ & - 84.644257 \cdot x_{864} - 122.459045 \cdot x_{865} - 43.15593 \cdot x_{866} - 1.712592 \cdot x_{870} \\ & - 0.401597 \cdot x_{871} + x_{880} - 0.946049 \cdot x_{898} - 0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Coefficients like **8.598819** are estimated and potentially inaccurate

How Robust Are Optimal Solutions?

- Aharon Ben-Tal and Arkadi Nemirovski: Consider a **real-world scheduling problem** (PILOT4) in NETLIB Library

- One of the constraints is the following linear constraint $\bar{a}^T x \geq b$:

$$\begin{aligned} & -15.79081 \cdot x_{826} - 8.598819 \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} \\ & - 1.526049 \cdot x_{830} - 0.031883 \cdot x_{849} - 28.725555 \cdot x_{850} - 10.792065 \cdot x_{851} \\ & - 0.19004 \cdot x_{852} - 2.757176 \cdot x_{853} - 12.290832 \cdot x_{854} + 717.562256 \cdot x_{855} \\ & - 0.057865 \cdot x_{856} - 3.785417 \cdot x_{857} - 78.30661 \cdot x_{858} - 122.163055 \cdot x_{859} \\ & - 6.46609 \cdot x_{860} - 0.48371 \cdot x_{861} - 0.615264 \cdot x_{862} - 1.353783 \cdot x_{863} \\ & - 84.644257 \cdot x_{864} - 122.459045 \cdot x_{865} - 43.15593 \cdot x_{866} - 1.712592 \cdot x_{870} \\ & - 0.401597 \cdot x_{871} + x_{880} - 0.946049 \cdot x_{898} - 0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Coefficients like 8.598819 are estimated and potentially inaccurate
- What if these coefficients are just 0.1% inaccurate?
 - i.e., suppose the true a is not \bar{a} , but $|a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|$?
- Will the optimal solution to the problem still be feasible?
- How can we test?

How Robust Are Optimal Solutions?

- Original constraint: $\bar{a}^T x \geq b$, optimal solution x^*
- Suppose true $a \in \mathbb{R}^n$ satisfies $|a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|, \forall i$
- How to determine if $a^T x^* \geq b$ holds for true a ?

How Robust Are Optimal Solutions?

- Original constraint: $\bar{a}^T x \geq b$, optimal solution x^*
- Suppose true $a \in \mathbb{R}^n$ satisfies $|a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|, \forall i$
- How to determine if $a^T x^* \geq b$ holds for true a ?

$$\begin{aligned} & \min_a a^T x^* - b \\ & \text{s.t. } |a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|, \forall i \end{aligned}$$

- For PILOT4, this comes to $-128.8 \approx -4.5b$, so 450% violation!

How Robust Are Optimal Solutions?

- Original constraint: $\bar{a}^T x \geq b$, optimal solution x^*
- Suppose true $a \in \mathbb{R}^n$ satisfies $|a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|, \forall i$
- How to determine if $a^T x^* \geq b$ holds for true a ?

$$\begin{aligned} & \min_a a^T x^* - b \\ & \text{s.t. } |a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|, \forall i \end{aligned}$$

- For PILOT4, this comes to $-128.8 \approx -4.5b$, so 450% violation!
- OK, but perhaps we're too conservative?
 - Suppose $a_i = \bar{a}_i + \epsilon_i |\bar{a}_i|$, where $\epsilon_i \sim \text{Uniform}[-0.001, 0.001]$
 - Using Monte-Carlo simulation with 1,000 samples:
 - $\mathbb{P}(\text{infeasible}) = 50\%$, $\mathbb{P}(\text{violation} > 150\%) = 18\%$, $\mathbb{E}[\text{violation}] = 125\%$

How Robust Are Optimal Solutions?

- Original constraint: $\bar{a}^T x \geq b$, optimal solution x^*
- Suppose true $a \in \mathbb{R}^n$ satisfies $|a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|, \forall i$

- How to determine if $a^T x^* \geq b$ holds for true a ?

$$\begin{aligned} & \min_a a^T x^* - b \\ & \text{s.t. } |a_i - \bar{a}_i| \leq 0.001|\bar{a}_i|, \forall i \end{aligned}$$

- For PILOT4, this comes to $-128.8 \approx -4.5b$, so 450% violation!
- OK, but perhaps we're too conservative?
 - Suppose $a_i = \bar{a}_i + \epsilon_i |\bar{a}_i|$, where $\epsilon_i \sim \text{Uniform}[-0.001, 0.001]$
 - Using Monte-Carlo simulation with 1,000 samples:
 - $\mathbb{P}(\text{infeasible}) = 50\%$, $\mathbb{P}(\text{violation} > 150\%) = 18\%$, $\mathbb{E}[\text{violation}] = 125\%$
- Disturbing that nominal solutions are likely highly infeasible
- Turns out to be the case for many **NETLIB** problems
- We should **capture uncertainty more explicitly** apriori!

Decisions Under Uncertainty

- Decision Maker (DM) must choose x , without knowing z
- DM incurs a **cost** $C(x, z)$

Decisions Under Uncertainty

- Decision Maker (DM) must choose x , without knowing z
- DM incurs a **cost** $C(x, z)$
- How to model z ? How to properly formalize the decision problem?

Decisions Under Uncertainty

- Decision Maker (DM) must choose x , without knowing z
- DM incurs a **cost** $C(x, z)$
- How to model z ? How to properly formalize the decision problem?
- “Standard” probabilistic model:
 - There is a unique probability distribution \mathbb{P} for z
 - DM considers an objective: $\min_x \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$

Classical Probabilistic Model: DM knows \mathbb{P} , solves $\min_x \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$

- What if there are constraints?

$$f_i(x, z) \geq 0, \forall i \in I$$

Classical Probabilistic Model: DM knows \mathbb{P} , solves $\min_x \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$

- What if there are constraints?

$$f_i(x, z) \geq 0, \forall i \in I$$

- Need to be a bit more precise in which **sense** we want to satisfy them!
 - expectation constraint: $\mathbb{E}_{\mathbb{P}}[f_i(x, z)] \geq 0, \forall i$
 - chance constraint:
 - individual: $\mathbb{P}[f_i(x, z) \geq 0] \geq 1 - \epsilon, \forall i$
 - joint: $\mathbb{P}[f_i(x, z) \geq 0, \forall i] \geq 1 - \epsilon$
 - robust (a.s.) constraint: $F(x, z) \geq 0, \forall z$
- Which of these are “easy” to check / enforce?

Classical Probabilistic Model: DM knows \mathbb{P} , solves $\min_x \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$

- What if there are constraints?

$$f_i(x, z) \geq 0, \forall i \in I$$

- Need to be a bit more precise in which **sense** we want to satisfy them!
 - expectation constraint: $\mathbb{E}_{\mathbb{P}}[f_i(x, z)] \geq 0, \forall i$
 - chance constraint:
 - individual: $\mathbb{P}[f_i(x, z) \geq 0] \geq 1 - \epsilon, \forall i$
 - joint: $\mathbb{P}[f_i(x, z) \geq 0, \forall i] \geq 1 - \epsilon$
 - robust (a.s.) constraint: $F(x, z) \geq 0, \forall z$
- Which of these are “easy” to check / enforce?
- Even if f is “well-behaved,” may need more assumptions on \mathbb{P}
 - e.g., f convex in x , concave in z
 - log-concave density for chance constraints
 - convex support

Classical Probabilistic Model: DM knows \mathbb{P} , solves $\min_x \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$

- Where is \mathbb{P} coming from?
- When is it reasonable to assume \mathbb{P} known?
- What if \mathbb{P} is **not** the actual distribution?
- What if \mathbb{P} is not exogenous?

Classical Probabilistic Model: DM knows \mathbb{P} , solves $\min_x \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$

- Where is \mathbb{P} coming from?
- When is it reasonable to assume \mathbb{P} known?
- What if \mathbb{P} is not the actual distribution?
- What if \mathbb{P} is not exogenous?

- Perhaps we have historical samples z_1, \dots, z_N
- Use empirical distribution $\mathbb{P} = \sum_{i=1}^N \frac{1}{N} \delta(z_i)$?
- Future like the past...
- ...

Classical Probabilistic Model: DM knows \mathbb{P} , solves $\min_x \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$

- What if there are constraints?
 $f_i(x, z) \geq 0, \forall i \in I$
- Where is \mathbb{P} coming from?
- When is this reasonable?
- What if \mathbb{P} is **not** the actual distribution?
- What if \mathbb{P} is not exogenous?

- **Very** popular modeling framework, but...

- What if there are constraints?
 $f_i(x, z) \geq 0, \forall i \in I$
- Where is \mathbb{P} coming from?
- When is this reasonable?
- What if \mathbb{P} is not the actual distribution?
- What if \mathbb{P} is not exogenous?

- **Very** popular modeling framework, but...
- Theory challenging when analyzing **complex, real-world** phenomena
 - poor data, changing environments (future \neq past), many agents, ...
- Framework not geared towards **computing decisions**
 - Limited computational tractability, particularly in higher dimensions
- With $C = -u(\cdot)$ (u utility function), unclear if this is a good behavioral model

An Alternative Model of Uncertainty

An Alternative Model of Uncertainty

- Let's admit **explicitly** that our model of reality is **incorrect**
- From **classical view**: “we know distribution \mathbb{P} for z , and solve: $\min_x \mathbb{E}_{\mathbb{P}}[C(x, z)]$ ”
to **robust view**: “we only know that $\mathbb{P} \in \mathcal{P}$, and solve: $\min_x \max_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[C(x, z)]$ ”

An Alternative Model of Uncertainty

- Let's admit **explicitly** that our model of reality is **incorrect**
- From **classical view**: "we know distribution \mathbb{P} for z , and solve: $\min_x \mathbb{E}_{\mathbb{P}}[C(x, z)]$ "
to **robust view**: "we only know that $\mathbb{P} \in \mathcal{P}$, and solve: $\min_x \max_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[C(x, z)]$ "

Long history of **robust decision-making** and **model misspecification**:

- **Economics:**
 - Knight (1921) - risk vs. Knightian uncertainty, Wald (1939), von Neumann (1944)
 - Savage (1951): minimax regret, Scarf (1958): robust Newsvendor model
 - Schmeidler, Gilboa (1980s): axiomatic frameworks; Ben-Haim (1980s)
 - Hansen & Sargent (2008): "*Robustness*" - robust control in macroeconomics
 - Bergemann & Morris (2012): "*Robust mechanism design*" book, Carroll (2015), ...
- **Engineering and robust control:** Bertsekas (1970s), Doyle (1980s), etc.
- **Computer science:** complexity analysis
- **Statistics:** M-estimators Huber (1981)
- **Operations Research:**
 - Early work by Soyster (1973), Libura (1980), Bard (1984), Kouvelis (1997)
 - **Robust Optimization:** Ben-Tal, Nemirovski, El-Ghaoui ('90s), Bertsimas, Sim ('00s)
 - Two books: Ben-Tal, El-Ghaoui, Nemirovski (2009), Bertsimas, den Hertog (2020)
 - Many tutorials!

An Alternative Model of Uncertainty

- Let's admit **explicitly** that our model of reality is **incorrect**
- From **classical view**: “we know distribution \mathbb{P} for z , and solve: $\min_x \mathbb{E}_{\mathbb{P}}[C(x, z)]$ ”
to **robust view**: “we only know that $\mathbb{P} \in \mathcal{P}$, and solve: $\min_x \max_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[C(x, z)]$ ”

Why robust optimization? (in my view)

1. Very sensible
2. Modest modeling requirements
3. Modest in its premise: “*always under-promises, and over-delivers*”
4. Tractable: quickly becoming “technology”
5. Very sensible results: can rationalize simple rules in complex problems

“Classical” Robust Optimization

“Classical” Robust Optimization (RO)

- Only information about z : values belong to an **uncertainty set** \mathcal{U}
- DM reformulates the original optimization problem as:

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ & \text{s.t. } f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

“Classical” Robust Optimization (RO)

- Only information about z : values belong to an **uncertainty set** \mathcal{U}
- DM reformulates the original optimization problem as:

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ & \text{s.t. } f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
 - Other options possible, based on notions of **regret**
- Conservative?

“Classical” Robust Optimization (RO)

- Only information about z : values belong to an **uncertainty set** \mathcal{U}
- DM reformulates the original optimization problem as:

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
 - Other options possible, based on notions of **regret**
- Conservative?
 - **Not necessarily!**
 - \mathcal{U} directly trades off robustness and conservatism, and is a **modeling choice**

“Classical” Robust Optimization (RO)

- Only information about z : values belong to an **uncertainty set** \mathcal{U}
- DM reformulates the original optimization problem as:

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
 - Other options possible, based on notions of **regret**
- Conservative?
 - **Not necessarily!**
 - \mathcal{U} directly trades off robustness and conservatism, and is a **modeling choice**
- Is there a probabilistic interpretation?

“Classical” Robust Optimization (RO)

- Only information about z : values belong to an **uncertainty set** \mathcal{U}
- DM reformulates the original optimization problem as:

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
 - Other options possible, based on notions of **regret**
- Conservative?
 - **Not necessarily!**
 - \mathcal{U} directly trades off robustness and conservatism, and is a **modeling choice**
- Is there a probabilistic interpretation?
 - Objective = $\sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{z \sim \mathbb{P}}[C(x, z)]$ where \mathcal{P} is the set of all measures with support \mathcal{U}
 - So we are assuming that the only information about \mathbb{P} is the support \mathcal{U}

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z

What is the optimal value of the following robust LP?

$$\min_x \max_{a \in \mathcal{U}} - (x_1 + x_2)$$

$$\text{such that } x_1 \leq a_1, \quad \forall a \in \mathcal{U}$$

$$x_2 \leq a_2, \quad \forall a \in \mathcal{U} \quad \text{where } \mathcal{U} = \{(a_1, a_2) \in [0, 1]^2 : a_1 + a_2 \leq 1\}$$

$$x_1 + x_2 \leq 1, \quad \forall a \in \mathcal{U}.$$

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z

What is the optimal value of the following robust LP?

$$\min_x \max_{a \in \mathcal{U}} - (x_1 + x_2)$$

$$\text{such that } x_1 \leq a_1, \quad \forall a \in \mathcal{U}$$

$$x_2 \leq a_2, \quad \forall a \in \mathcal{U} \quad \text{where } \mathcal{U} = \{(a_1, a_2) \in [0, 1]^2 : a_1 + a_2 \leq 1\}$$

$$x_1 + x_2 \leq 1, \quad \forall a \in \mathcal{U}.$$

Optimal value 0. In RO, each constraint must be satisfied separately, robustly.

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z
3. Each constraint can be re-written as an optimization problem

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z
3. Each constraint can be re-written as an optimization problem

$$f_i(x, z) \leq 0, \forall z \in \mathcal{U} \quad \Leftrightarrow \quad \sup_{z \in \mathcal{U}} f_i(x, z) \leq 0$$

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z
3. Each constraint can be re-written as an optimization problem
4. Without loss, we can consider a problem where z only appears in constraints

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ & \text{s.t. } f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z
3. Each constraint can be re-written as an optimization problem
4. Without loss, we can consider a problem where z only appears in constraints

(P) is equivalent to the following problem:

$$\begin{aligned} & \inf_{x, t} t \\ & \text{s.t. } t \geq C(x, z), \forall z \in \mathcal{U} \\ & \quad f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ & \text{s.t. } f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z
3. Each constraint can be re-written as an optimization problem
4. Without loss, we can consider a problem where z only appears in constraints

(P) is equivalent to the following problem:

$$\begin{aligned} & \inf_{x, t} t \\ & \text{s.t. } t \geq C(x, z), \forall z \in \mathcal{U} \\ & \quad f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Many RO models are in this *epigraph reformulation*, and focus on constraints

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ & \text{s.t. } f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z
3. Each constraint can be re-written as an optimization problem
4. Without loss, we can consider a problem where z only appears in constraints
5. DM only responsible for objective and constraints when $z \in \mathcal{U}$
 - If $z \notin \mathcal{U}$ actually occurs, all bets are off
 - Can extend framework to ensure **gradual** degradation of performance:
Globalized robust counterparts (Ben-Tal & Nemirovski)

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ & \text{s.t. } f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

Remarks.

1. Objective: worst-case performance $\sup_{z \in \mathcal{U}} C(x, z)$
2. Each constraint is “hard”: must be satisfied *robustly*, for any realization of z
3. Each constraint can be re-written as an optimization problem
4. Without loss, we can consider a problem where z only appears in constraints
5. DM only responsible for objective and constraints when $z \in \mathcal{U}$
6. Robust model seems to lead to a **difficult** optimization problem
 - For any given x , checking constraints/solving the “adversary” problem may be tough
 - We must also solve our original problem of finding x !

“Classical” Robust Optimization (RO)

$$(P) \quad \begin{aligned} & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ & \text{s.t. } f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

1. How to model \mathcal{U}
2. How to formulate and solve the **robust counterpart**
3. Why is this useful, in theory and in practice

Intuition for Some Basic Uncertainty Sets

- Recall PILOT4; how to build some “safety buffers” for constraint like #372:

$$\begin{aligned} -15.79081 \cdot x_{826} - \textcolor{blue}{8.598819} \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} - \dots \\ -0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

Intuition for Some Basic Uncertainty Sets

- Recall PILOT4; how to build some “safety buffers” for constraint like #372:

$$\begin{aligned} -15.79081 \cdot x_{826} - \textcolor{blue}{8.598819} \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} - \dots \\ -0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- P is a known matrix; z is primitive uncertainty

- **Q:** Why this more general form?

A: For modeling flexibility:

- Suppose the same physical quantity (i.e., coefficient) appears in multiple constraints
- Can capture “correlations”, e.g., with a factor model

Intuition for Some Basic Uncertainty Sets

- Recall PILOT4; how to build some “safety buffers” for constraint like #372:

$$\begin{aligned} -15.79081 \cdot x_{826} - \textcolor{blue}{8.598819} \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} - \dots \\ -0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- How about a **box** uncertainty set? For some confidence level ρ :

$$\mathcal{U}_{\text{box}} := \{z : -\rho \leq z_i \leq \rho\} = \{z : \|z\|_{\infty} \leq \rho\}$$

“Too conservative?”

- In PILOT4, **robust** solution has objective value within 1% of that of x^*
- Recall that x^* would violate this constraint by 450%
- Sometimes we don’t sacrifice too much for robustness!

Intuition for Some Basic Uncertainty Sets

- Recall PILOT4; how to build some “safety buffers” for constraint like #372:

$$\begin{aligned} -15.79081 \cdot x_{826} - \textcolor{blue}{8.598819} \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} - \dots \\ -0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- How about a **box** uncertainty set? For some confidence level ρ :

$$\mathcal{U}_{\text{box}} := \{z : -\rho \leq z_i \leq \rho\} = \{z : \|z\|_{\infty} \leq \rho\}$$

- Or maybe an **ellipsoid** would be less conservative:

$$\mathcal{U}_{\text{ellipsoid}} := \{z : \|z\|_2 \leq \rho\}$$

Intuition for Some Basic Uncertainty Sets

- Recall PILOT4; how to build some “safety buffers” for constraint like #372:

$$\begin{aligned} -15.79081 \cdot x_{826} - \textcolor{blue}{8.598819} \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} - \dots \\ -0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- How about a **box** uncertainty set? For some confidence level ρ :

$$\mathcal{U}_{\text{box}} := \{z : -\rho \leq z_i \leq \rho\} = \{z : \|z\|_{\infty} \leq \rho\}$$

- Or maybe an **ellipsoid** would be less conservative:

$$\mathcal{U}_{\text{ellipsoid}} := \{z : \|z\|_2 \leq \rho\}$$

- Or what if we gave “nature” a **budget** on how many coefficients it could change:

$$\mathcal{U}_{\text{budget}} := \{z : \|z\|_{\infty} \leq \rho, \|z\|_1 \leq \Gamma \rho\}$$

Intuition for Some Basic Uncertainty Sets

- Recall PILOT4; how to build some “safety buffers” for constraint like #372:

$$\begin{aligned} -15.79081 \cdot x_{826} - \textcolor{blue}{8.598819} \cdot x_{827} - 1.88789 \cdot x_{828} - 1.362417 \cdot x_{829} - \dots \\ -0.946049 \cdot x_{916} \geq 23.387405 \end{aligned}$$

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- How about a **box** uncertainty set? For some confidence level ρ :

$$\mathcal{U}_{\text{box}} := \{z : -\rho \leq z_i \leq \rho\} = \{z : \|z\|_{\infty} \leq \rho\}$$

- Or maybe an **ellipsoid** would be less conservative:

$$\mathcal{U}_{\text{ellipsoid}} := \{z : \|z\|_2 \leq \rho\}$$

- Or what if we gave “nature” a **budget** on how many coefficients it could change:

$$\mathcal{U}_{\text{budget}} := \{z : \|z\|_{\infty} \leq \rho, \|z\|_1 \leq \Gamma \rho\}$$

- How to formulate the robust counterpart? How to set ρ, Γ ? How to use in practice?

Robust Counterpart (RC) for Box Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{box}} = \{z : \|z\|_\infty \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\max_{z: \|z\|_\infty \leq \rho} (\bar{a} + Pz)^T x \leq b,$$

Robust Counterpart (RC) for Box Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{box}} = \{z : \|z\|_{\infty} \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\max_{z: \|z\|_{\infty} \leq \rho} (\bar{a} + Pz)^T x \leq b,$$

or

$$\bar{a}^T x + \max_{z: \|z\|_{\infty} \leq \rho} (P^T x)^T z \leq b,$$

Robust Counterpart (RC) for Box Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{box}} = \{z : \|z\|_{\infty} \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\max_{z: \|z\|_{\infty} \leq \rho} (\bar{a} + Pz)^T x \leq b,$$

or

$$\bar{a}^T x + \max_{z: \|z\|_{\infty} \leq \rho} (P^T x)^T z \leq b,$$

or

$$\bar{a}^T x + \max_{z: |z_i| \leq \rho} \sum_i (P^T x)_i z_i \leq b,$$

Robust Counterpart (RC) for Box Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on \mathbf{z}

$$(\bar{a} + P\mathbf{z})^T x \leq b, \forall \mathbf{z} \in \mathcal{U}$$

- For $\mathcal{U}_{\text{box}} = \{\mathbf{z} : \|\mathbf{z}\|_{\infty} \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\max_{\mathbf{z} : \|\mathbf{z}\|_{\infty} \leq \rho} (\bar{a} + P\mathbf{z})^T x \leq b,$$

or

$$\bar{a}^T x + \max_{\mathbf{z} : \|\mathbf{z}\|_{\infty} \leq \rho} (P^T x)^T \mathbf{z} \leq b,$$

or

$$\bar{a}^T x + \max_{\mathbf{z} : |\mathbf{z}_i| \leq \rho} \sum_i (P^T x)_i \mathbf{z}_i \leq b,$$

or

$$\bar{a}^T x + \rho \sum_i |(P^T x)_i| \leq b,$$

Robust Counterpart (RC) for Box Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on \mathbf{z}

$$(\bar{a} + P\mathbf{z})^T x \leq b, \forall \mathbf{z} \in \mathcal{U}$$

- For $\mathcal{U}_{\text{box}} = \{\mathbf{z} : \|\mathbf{z}\|_{\infty} \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\max_{\mathbf{z} : \|\mathbf{z}\|_{\infty} \leq \rho} (\bar{a} + P\mathbf{z})^T x \leq b,$$

or

$$\bar{a}^T x + \max_{\mathbf{z} : \|\mathbf{z}\|_{\infty} \leq \rho} (P^T x)^T \mathbf{z} \leq b,$$

or

$$\bar{a}^T x + \max_{\mathbf{z} : |\mathbf{z}_i| \leq \rho} \sum_i (P^T x)_i \mathbf{z}_i \leq b,$$

or

$$\bar{a}^T x + \rho \sum_i |(P^T x)_i| \leq b,$$

or

$$\bar{a}^T x + \rho \|P^T x\|_1 \leq b.$$

Robust Counterpart (RC) for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

Robust Counterpart (RC) for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: Dz \leq d} (P^T x)^T z \leq b. \quad (1)$$

Robust Counterpart (RC) for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: Dz \leq d} (P^T x)^T z \leq b. \quad (1)$$

- Uncertainty set \mathcal{U} is presumably non-empty, so LHS is not $-\infty$

Robust Counterpart (RC) for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: Dz \leq d} (P^T x)^T z \leq b. \quad (1)$$

- Uncertainty set \mathcal{U} is presumably non-empty, so LHS is not $-\infty$
- By strong LP duality, when the left-hand-side in (1) is finite, we must have:

$$\max\{(P^T x)^T z : Dz \leq d\} = \min\{d^T y : D^T y = P^T x, y \geq 0\}.$$

Robust Counterpart (RC) for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: Dz \leq d} (P^T x)^T z \leq b. \quad (1)$$

- Uncertainty set \mathcal{U} is presumably non-empty, so LHS is not $-\infty$
- By strong LP duality, when the left-hand-side in (1) is finite, we must have:

$$\max\{(P^T x)^T z : Dz \leq d\} = \min\{d^T y : D^T y = P^T x, y \geq 0\}.$$

- Hence (1) is equivalent to

$$\bar{a}^T x + \min_y \{d^T y : D^T y = P^T x, y \geq 0\} \leq b,$$

Robust Counterpart (RC) for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: Dz \leq d} (P^T x)^T z \leq b. \quad (1)$$

- Uncertainty set \mathcal{U} is presumably non-empty, so LHS is not $-\infty$
- By strong LP duality, when the left-hand-side in (1) is finite, we must have:

$$\max\{(P^T x)^T z : Dz \leq d\} = \min\{d^T y : D^T y = P^T x, y \geq 0\}.$$

- Hence (1) is equivalent to

$$\bar{a}^T x + \min_y \{d^T y : D^T y = P^T x, y \geq 0\} \leq b,$$

or

$$\exists y : \bar{a}^T x + d^T y \leq b, \quad D^T y = P^T x, \quad y \geq 0.$$

Robust Counterpart for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad (2)$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\exists y : \bar{a}^T x + d^T y \leq b, \quad D^T y = P^T x, \quad y \geq 0.$$

Remarks.

- To formulate the RC for (2), we must introduce a set of **auxiliary decision variables** y
 - these are **decision variables**, chosen together with x
- How many auxiliary variables are needed to derive the RC for (2)?*
- How many constraints are needed to derive the RC for (2)?*
- Suppose we were solving $\min_x \{c^T x : Ax \leq b\}$, with $A \in \mathcal{U}_{\text{polyhedral}} \subset \mathbb{R}^{m \times n}$ and $D \in \mathbb{R}^{p \times n}$.

Robust Counterpart for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad (2)$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\exists y : \bar{a}^T x + d^T y \leq b, \quad D^T y = P^T x, \quad y \geq 0.$$

Remarks.

- To formulate the RC for (2), we must introduce a set of **auxiliary decision variables** y
 - these are **decision variables**, chosen together with x
- How many auxiliary variables are needed to derive the RC for (2)?*
 - # rows of D , i.e., as many as the constraints defining $\mathcal{U}_{\text{polyhedral}}$
- How many constraints are needed to derive the RC for (2)?*
 - $1 + (\# \text{columns of } D) + (\# \text{rows of } D)$
- Suppose we were solving $\min_x \{c^T x : Ax \leq b\}$, with $A \in \mathcal{U}_{\text{polyhedral}} \subset \mathbb{R}^{m \times n}$ and $D \in \mathbb{R}^{p \times q}$.

Robust Counterpart for Polyhedral Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad (2)$$

- For $\mathcal{U}_{\text{polyhedral}} = \{z : Dz \leq d\}$, satisfying the constraint robustly is equivalent to:

$$\exists y : \bar{a}^T x + d^T y \leq b, \quad D^T y = P^T x, \quad y \geq 0.$$

Remarks.

- To formulate the RC for (2), we must introduce a set of **auxiliary decision variables** y
 - these are **decision variables**, chosen together with x
- How many auxiliary variables are needed to derive the RC for (2)?*
 - # rows of D , i.e., as many as the constraints defining $\mathcal{U}_{\text{polyhedral}}$
- How many constraints are needed to derive the RC for (2)?*
 - $1 + (\# \text{columns of } D) + (\# \text{rows of } D)$
- Suppose we were solving $\min_x \{c^T x : Ax \leq b\}$, with $A \in \mathcal{U}_{\text{polyhedral}} \subset \mathbb{R}^{m \times n}$ and $D \in \mathbb{R}^{p \times q}$.
 - the RC is still an LP, with $n + m \cdot p$ variables, $m \cdot (1 + p + q)$ constraints

Robust Counterpart (RC) for Ellipsoidal Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{ellipsoid}} = \{z : \|z\|_2 \leq \rho\}$, satisfying the constraint robustly is equivalent to:

Robust Counterpart (RC) for Ellipsoidal Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{ellipsoid}} = \{z : \|z\|_2 \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: \|z\|_2 \leq \rho} (P^T x)^T z \leq b.$$

Robust Counterpart (RC) for Ellipsoidal Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{ellipsoid}} = \{z : \|z\|_2 \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: \|z\|_2 \leq \rho} (P^T x)^T z \leq b.$$

Intermezzo: $\max \{q^T z : \|z\|_2 \leq \rho\}$ or $\max \{q^T z : z^T z \leq \rho^2\}$

Lagrange: $z = q/\lambda$, and $\lambda = \|q\|_2/\rho$.

Optimal objective value: $\frac{q^T q}{\lambda} = \rho \|q\|_2$.

Robust Counterpart (RC) for Ellipsoidal Uncertainty Set

- Consider a **linear constraint** in x with coefficients that depend **linearly** on z

$$(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$$

- For $\mathcal{U}_{\text{ellipsoid}} = \{z : \|z\|_2 \leq \rho\}$, satisfying the constraint robustly is equivalent to:

$$\bar{a}^T x + \max_{z: \|z\|_2 \leq \rho} (P^T x)^T z \leq b.$$

Intermezzo: $\max \{q^T z : \|z\|_2 \leq \rho\}$ or $\max \{q^T z : z^T z \leq \rho^2\}$

Lagrange: $z = q/\lambda$, and $\lambda = \|q\|_2/\rho$.

Optimal objective value: $\frac{q^T q}{\lambda} = \rho \|q\|_2$.

Hence robust counterpart (RC) is:

$$\bar{a}^T x + \rho \|P^T x\|_2 \leq b.$$

RC for Linear Optimization Problems with Classical Sets

The robust counterpart for $(\bar{a} + P\mathbf{z})^T x \leq b, \forall \mathbf{z} \in \mathcal{U}$ is:

U-set	\mathcal{U}	Robust Counterpart	Tractability
Box	$\ \mathbf{z}\ _\infty \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _1 \leq b$	LO
Ellipsoidal	$\ \mathbf{z}\ _2 \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _2 \leq b$	CQO
Polyhedral	$D\mathbf{z} \leq d$	$\exists y : \begin{cases} \bar{a}^T x + d^T y \leq b \\ D^T y = P^T x \\ y \geq 0 \end{cases}$	LO
Budget	$\begin{cases} \ \mathbf{z}\ _\infty \leq \rho \\ \ \mathbf{z}\ _1 \leq \Gamma \end{cases}$	$\exists y : \bar{a}^T x + \rho \ y\ _1 + \Gamma \ P^T x - y\ _\infty \leq b$	LO

RC for Linear Optimization Problems with Classical Sets

The robust counterpart for $(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$ is:

U-set	\mathcal{U}	Robust Counterpart	Tractability
Box	$\ z\ _\infty \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _1 \leq b$	LO
Ellipsoidal	$\ z\ _2 \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _2 \leq b$	CQO
Polyhedral	$Dz \leq d$	$\exists y : \begin{cases} \bar{a}^T x + d^T y \leq b \\ D^T y = P^T x \\ y \geq 0 \end{cases}$	LO
Budget	$\begin{cases} \ z\ _\infty \leq \rho \\ \ z\ _1 \leq \Gamma \end{cases}$	$\exists y : \bar{a}^T x + \rho \ y\ _1 + \Gamma \ P^T x - y\ _\infty \leq b$	LO

- Problems above can be handled by large-scale modern solvers, e.g., Gurobi
- Some software now also handle automatic problem re-formulation
- If some of the decisions x are integer, problems above become MI-LPs/CQPs
- Several important extensions

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + P\mathbf{z})^T x \leq b + p^T \mathbf{z}, \forall \mathbf{z} \in \mathcal{U}$

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?
 $\Leftrightarrow \exists \{w_k, u_k\}_{k \in K} : \bar{a}^T x + \sum_k u_k h_k^*(w_k/u_k) \leq b, \sum_k w^k = P^T x, u \geq 0$.
 h_k^* is **Fenchel conjugate** of h_k . Works if we have a tractable representation of h_k^* .

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?
 $\Leftrightarrow \exists \{w_k, u_k\}_{k \in K} : \bar{a}^T x + \sum_k u_k h_k^*(w_k/u_k) \leq b, \sum_k w^k = P^T x, u \geq 0$.
 h_k^* is **Fenchel conjugate** of h_k . Works if we have a tractable representation of h_k^* .
3. **LHS general in x , linear in z :** $(Pz)^T g(x) \leq b, \forall z \in \mathcal{U}$

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?
 $\Leftrightarrow \exists \{w_k, u_k\}_{k \in K} : \bar{a}^T x + \sum_k u_k h_k^*(w_k/u_k) \leq b, \sum_k w^k = P^T x, u \geq 0$.
 h_k^* is **Fenchel conjugate** of h_k . Works if we have a tractable representation of h_k^* .
3. **LHS general in x , linear in z :** $(Pz)^T g(x) \leq b, \forall z \in \mathcal{U}$

To calculate RC, take $\bar{a} = 0$ and replace x with $g(x)$ in our base-case model

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?
 $\Leftrightarrow \exists \{w_k, u_k\}_{k \in K} : \bar{a}^T x + \sum_k u_k h_k^*(w_k/u_k) \leq b, \sum_k w^k = P^T x, u \geq 0$.
 h_k^* is **Fenchel conjugate** of h_k . Works if we have a tractable representation of h_k^* .
3. **LHS general in x , linear in z :** $(Pz)^T g(x) \leq b, \forall z \in \mathcal{U}$
To calculate RC, take $\bar{a} = 0$ and replace x with $g(x)$ in our base-case model
4. **$x \geq 0$ and LHS linear in x , concave in z :** $x^T g(\bar{a} + Pz) \leq b, \forall z \in \mathcal{U}, g$ concave

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?
 $\Leftrightarrow \exists \{w_k, u_k\}_{k \in K} : \bar{a}^T x + \sum_k u_k h_k^*(w_k/u_k) \leq b, \sum_k w^k = P^T x, u \geq 0$.
 h_k^* is **Fenchel conjugate** of h_k . Works if we have a tractable representation of h_k^* .
3. **LHS general in x , linear in z :** $(Pz)^T g(x) \leq b, \forall z \in \mathcal{U}$
To calculate RC, take $\bar{a} = 0$ and replace x with $g(x)$ in our base-case model
4. **$x \geq 0$ and LHS linear in x , concave in z :** $x^T g(\bar{a} + Pz) \leq b, \forall z \in \mathcal{U}, g$ concave
 $\Leftrightarrow d^T x \leq b, \forall (z, d) \in \mathcal{U}^+ := \{(z, d) \mid d \leq g(\bar{a} + Pz), z \in \mathcal{U}\}$
Constraint is now **linear** in (z, d) and \mathcal{U}^+ is a convex uncertainty set - apply #2.

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?
 $\Leftrightarrow \exists \{w_k, u_k\}_{k \in K} : \bar{a}^T x + \sum_k u_k h_k^*(w_k/u_k) \leq b, \sum_k w^k = P^T x, u \geq 0$.
 h_k^* is **Fenchel conjugate** of h_k . Works if we have a tractable representation of h_k^* .
3. **LHS general in x , linear in z :** $(Pz)^T g(x) \leq b, \forall z \in \mathcal{U}$
To calculate RC, take $\bar{a} = 0$ and replace x with $g(x)$ in our base-case model
4. **$x \geq 0$ and LHS linear in x , concave in z :** $x^T g(\bar{a} + Pz) \leq b, \forall z \in \mathcal{U}, g$ concave
 $\Leftrightarrow d^T x \leq b, \forall (z, d) \in \mathcal{U}^+ := \{(z, d) \mid d \leq g(\bar{a} + Pz), z \in \mathcal{U}\}$
Constraint is now **linear** in (z, d) and \mathcal{U}^+ is a convex uncertainty set - apply #2.
5. **LHS convex in x and convex in z :** $f(x, z) \leq b, f$ jointly convex

Extensions

1. **Uncertainty in the right-hand side:** $(\bar{a} + Pz)^T x \leq b + p^T z, \forall z \in \mathcal{U}$
 $\Leftrightarrow \bar{a}^T x + (P^T x - p)^T z \leq b, \forall z \in \mathcal{U}$, so can use base model
2. **General convex uncertainty set:** $\mathcal{U} = \{z : h_k(z) \leq 0, \forall k \in K\}$, $h_k(\cdot)$ convex?
 $\Leftrightarrow \exists \{w_k, u_k\}_{k \in K} : \bar{a}^T x + \sum_k u_k h_k^*(w_k/u_k) \leq b, \sum_k w^k = P^T x, u \geq 0$.
 h_k^* is **Fenchel conjugate** of h_k . Works if we have a tractable representation of h_k^* .
3. **LHS general in x , linear in z :** $(Pz)^T g(x) \leq b, \forall z \in \mathcal{U}$
To calculate RC, take $\bar{a} = 0$ and replace x with $g(x)$ in our base-case model
4. **$x \geq 0$ and LHS linear in x , concave in z :** $x^T g(\bar{a} + Pz) \leq b, \forall z \in \mathcal{U}, g$ concave
 $\Leftrightarrow d^T x \leq b, \forall (z, d) \in \mathcal{U}^+ := \{(z, d) \mid d \leq g(\bar{a} + Pz), z \in \mathcal{U}\}$
Constraint is now **linear** in (z, d) and \mathcal{U}^+ is a convex uncertainty set - apply #2.
5. **LHS convex in x and convex in z :** $f(x, z) \leq b, f$ jointly convex
Tractable if f has “easy” piece-wise description: $f(x, z) = \max_{k \in K} f_k(x)^T z$, where f_k corresponds to one of cases above (e.g., $f_k(x)$ linear in x)

Used in many applications

- supply chain management [Ben-Tal et al., 2005, Bertsimas and Thiele, 2006, ...]
- logistics and transportation [Baron et al., 2011, ...]
- scheduling [Lin et al., 2004, Yamashita et al., 2007, Mittal et al., 2014, ...]
- revenue management [Perakis and Roels, 2010, Adida and Perakis, 2006, ...]
- project management [Wiesemann et al., 2012, Ben-Tal et al., 2009, ...]
- energy generation and distribution [Zhao et al., 2013, Lorca and Sun, 2015, ...]
- portfolio optimization [Goldfarb and Iyengar, 2003, Tütüncü and Koenig, 2004, Ceria and Stubbs, 2006, Pinar and Tütüncü, 2005, Bertsimas and Pachamanova, 2008, ...]
- healthcare [Borfeld et al., 2008, Hanne et al., 2009, Chen et al., 2011, I., Trichakis, Yoon (2018), ...]
- humanitarian [Uichano 2017, den Hertog et al., 2019, ...]

Two Important Caveats for Robust Models

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq D_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Parameters

\mathcal{T} : discrete planning horizon, indexed by τ

\mathcal{F} : potential facility locations, indexed by i

\mathcal{N} : demand node locations, indexed by j

p : unit price of goods

c_i : cost per unit of production at facility i

C_i : cost per unit of capacity for facility i

K_i : cost of opening a facility at location i

c_{ij}^s : cost of shipping units from i to j

$D_{j\tau}$: demand in period τ at location j

Decision variables

$X_{ij\tau}$: quantity of demand j in period τ satisfied by i

$P_{i\tau}$: quantity produced at facility i in period τ

I_i : whether facility i is open (0/1)

Z_i : capacity of facility i if open

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \mathbf{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Step 2. Identify all uncertain parameters and **model** the uncertainty set \mathcal{U} .

Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

$$\mathcal{U} = \left\{ \mathbf{D} \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} \mid \sum_{j \in \mathcal{N}} \sum_{t \in \mathcal{T}} \left(\frac{\mathbf{D}_{jt} - \bar{D}_{jt}}{\epsilon_t \bar{D}_{jt}} \right)^2 \leq \rho^2 \right\},$$

$\{\bar{D}_{jt}\}_{j \in \mathcal{N}; t \in \mathcal{T}}$ are “nominal” demands, ϵ_t is allowed deviation (%), ρ is the size of the ellipsoid

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \mathbf{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Step 2. Identify all uncertain parameters and **model** the uncertainty set \mathcal{U} .

Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

$$\mathcal{U} = \left\{ \mathbf{D} \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} \mid \sum_{j \in \mathcal{N}} \sum_{t \in \mathcal{T}} \left(\frac{\mathbf{D}_{jt} - \bar{D}_{jt}}{\epsilon_t \bar{D}_{jt}} \right)^2 \leq \rho^2 \right\},$$

Equivalently, can write $D_{jt} = \bar{D}_{jt}(1 + \epsilon_t \cdot \mathbf{z}_{jt})$, where $\mathbf{z} \in \mathcal{U} = \{z \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} : \|z\|_2 \leq \rho\}$

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \mathbf{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Step 2. Identify all uncertain parameters and **model** the uncertainty set \mathcal{U} .

Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

$$\mathcal{U} = \left\{ \mathbf{D} \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} \mid \sum_{j \in \mathcal{N}} \sum_{t \in \mathcal{T}} \left(\frac{\mathbf{D}_{jt} - \bar{D}_{jt}}{\epsilon_t \bar{D}_{jt}} \right)^2 \leq \rho^2 \right\},$$

Step 3. Derive robust counterpart for the problem. Here, a Conic Quadratic program.

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned} & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq D_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \textcolor{red}{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned} \max_{Y, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D}_{j\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} \textcolor{blue}{Y}_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D}_{j\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\ & \textcolor{blue}{Y} \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned} \tag{3}$$

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned}
 & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \textcolor{red}{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\
 & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned}
 & \max_{Y, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D}_{j\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} \textcolor{blue}{Y}_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D}_{j\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\
 & && \textcolor{blue}{Y} \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned} \tag{3}$$

- For fixed D , are these **deterministic/nominal** models **equivalent**?

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned}
 & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq D_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\
 & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned}
 & \max_{Y, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) Y_{ij\tau} D_{j\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} Y_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} Y_{ij\tau} D_{j\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\
 & && Y \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned} \tag{3}$$

- For fixed D , are these **deterministic/nominal** models **equivalent?** Yes!

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned}
 & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq D_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\
 & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned}
 & \max_{Y, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) Y_{ij\tau} D_{j\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} Y_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} Y_{ij\tau} D_{j\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\
 & && Y \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned} \tag{3}$$

- For fixed D , are these **deterministic/nominal** models **equivalent**? **Yes!**
- Are their **robust counterparts** **equivalent**?

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned}
 & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq D_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\
 & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned}
 & \max_{Y, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) Y_{ij\tau} D_{j\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} Y_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} Y_{ij\tau} D_{j\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\
 & && Y \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned} \tag{3}$$

- For fixed D , are these **deterministic/nominal** models **equivalent**? **Yes!**
- Are their **robust counterparts** **equivalent**? **No!**
 - The feasible set in the second formulation is **larger**
 - Second formulation implements ordering quantities that **depend on demand!**

The **robust counterparts of equivalent deterministic**
models **may be different!**

You should always try to allow your formulation
to be as flexible as possible!

References I

E. Adida and G. Perakis. A robust optimization approach to dynamic pricing and inventory control with no backorders. *Mathematical Programming*, 107:97–129, 2006.

O. Baron, J. Milner, and H. Naseraldin. Facility location: A robust optimization approach. *Production and Operations Management*, 20(5):772–785, 2011.

A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear programs. *Mathematical Programming*, 99(2):351–376, 2004.

A. Ben-Tal, B. Golany, A. Nemirovski, and J.-P. Vial. Retailer-supplier flexible commitments contracts: A robust optimization approach. *Manufacturing & Service Operations Management*, 7(3):248–271, 2005.

A. Ben-Tal, L. El-Ghaoui, and A. Nemirovski. *Robust Optimization*. Princeton Series in Applied Mathematics. Princeton University Press, 2009.

D. Bertsimas and D. Pachamanova. Robust multiperiod portfolio management in the presence of transaction costs. *Computers and Operations Research*, 35(1):3–17, 2008.

D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. *Operations Research*, 54(1):150–168, 2006.

S. Ceria and R. Stubbs. Incorporating estimation errors into portfolio selection: Robust portfolio construction. *Journal of Asset Management*, 7(2):109–127, July 2006.

F. de Ruiter, A. Ben-Tal, R. Brekelmans, and D. den Hertog. Adjustable robust optimization with decision rules based on inexact revealed data. Center discussion paper series no. 2014-003, CentER, 2014.

D. Goldfarb and G. Iyengar. Robust Portfolio Selection Problems. *Mathematics of Operations Research*, 28(1):1–38, 2003.

X. Lin, S. Janak, and C. Floudas. A new robust optimization approach for scheduling under uncertainty: I. bounded uncertainty. *Computers and Chemical Engineering*, 28:1069–1085, 2004.

A. Lorca and A. Sun. Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. *IEEE Transactions on Power Systems*, 30(4):1702–1713, 2015.

S. Mittal, A. Schulz, and S. Stiller. Robust appointment scheduling. In *APPROX*, 2014.

G. Perakis and G. Roels. Robust controls for network revenue management. *Manufacturing & Service Operations Management*, 12(1):56–76, 2010.

M. Pinar and R. Tütüncü. Robust profit opportunities in risky financial portfolios. *Operations Research Letters*, 33(4):331 – 340, 2005.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. *Lectures on Stochastic Programming*. MPS / SIAM Series on Optimization. SIAM, 2009.

R. Tütüncü and M. Koenig. Robust asset allocation. *Annals of Operations Research*, 132(1-4):157–187, November 2004.

W. Wiesemann, D. Kuhn, and B. Rustem. Robust resource allocations in temporal networks. *Mathematical Programming*, 135:437–471, 2012. ISSN 0025-5610.

D. Yamashita, V. Armentano, and M. Laguna. Robust optimization models for project scheduling with resource availability cost. *Journal of Scheduling*, 10(1):67–76, 2007.

C. Zhao, J. Wang, J. Watson, and Y. Guan. Multi-stage robust unit commitment considering wind and demand response uncertainties. *IEEE Transactions on Power Systems*, 28(3):2708–2717, 2013.