

Lecture 19 : Dynamic Robust Optimization

+

Distributionall Robust Optimization

December 3, 2025

Recall “Classical” Robust Optimization (RO)

- Only information about unknowns z : they belong to an **uncertainty set** \mathcal{U}
- Solve the following optimization problem:

$$\begin{aligned} (P) \quad & \inf_x \sup_{z \in \mathcal{U}} C(x, z) \\ \text{s.t. } & f_i(x, z) \leq 0, \forall z \in \mathcal{U}, \forall i \in I \end{aligned}$$

- This model has **infinitely many** constraints
- W.l.o.g., we can consider uncertainty only in the constraints
- Each and every constraint must be satisfied: $f_i(x, z) \leq 0, \forall z \in \mathcal{U}$
- How to reformulate this as a **finite-dimensional, tractable** optimization problem, a.k.a. the **robust counterpart**?

“Classical” Uncertainty Sets

The robust counterpart for $(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$ is:

“Classical” Uncertainty Sets

The robust counterpart for $(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$ is:

U-set	\mathcal{U}	Robust Counterpart	Tractability
Box	$\ z\ _\infty \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _1 \leq b$	LO
Ellipsoidal	$\ z\ _2 \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _2 \leq b$	CQO
Polyhedral	$Dz \leq d$	$\exists y : \begin{cases} \bar{a}^T x + d^T y \leq b \\ D^T y = P^T x \\ y \geq 0 \end{cases}$	LO
Budget	$\begin{cases} \ z\ _\infty \leq \rho \\ \ z\ _1 \leq \Gamma \end{cases}$	$\exists y : \bar{a}^T x + \rho \ y\ _1 + \Gamma \ P^T x - y\ _\infty \leq b$	LO
Convex	$h_k(z) \leq 0$	$\exists \{w_k, u_k\}_{k \in K} : \begin{cases} a^T x + \sum_k u_k h_k^* \left(\frac{w_k}{u_k} \right) \leq b \\ \sum_k w_k = P^T x \\ u \geq 0 \end{cases}$	Conv. Opt.

“Classical” Uncertainty Sets

The robust counterpart for $(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$ is:

U-set	\mathcal{U}	Robust Counterpart	Tractability
Box	$\ z\ _\infty \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _1 \leq b$	LO
Ellipsoidal	$\ z\ _2 \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _2 \leq b$	CQO
Polyhedral	$Dz \leq d$	$\exists y : \begin{cases} \bar{a}^T x + d^T y \leq b \\ D^T y = P^T x \\ y \geq 0 \end{cases}$	LO
Budget	$\begin{cases} \ z\ _\infty \leq \rho \\ \ z\ _1 \leq \Gamma \end{cases}$	$\exists y : \bar{a}^T x + \rho \ y\ _1 + \Gamma \ P^T x - y\ _\infty \leq b$	LO
Convex	$h_k(z) \leq 0$	$\exists \{w_k, u_k\}_{k \in K} : \begin{cases} a^T x + \sum_k u_k h_k^* \left(\frac{w_k}{u_k} \right) \leq b \\ \sum_k w_k = P^T x \\ u \geq 0 \end{cases}$	Conv. Opt.

- Several extensions
- Robust counterparts can be handled by large-scale modern solvers
- Enough for many practical problems

Two Important Caveats for Robust Models

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq D_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Parameters

\mathcal{T} : discrete planning horizon, indexed by τ

\mathcal{F} : potential facility locations, indexed by i

\mathcal{N} : demand node locations, indexed by j

p : unit price of goods

c_i : cost per unit of production at facility i

C_i : cost per unit of capacity for facility i

K_i : cost of opening a facility at location i

c_{ij}^s : cost of shipping units from i to j

$D_{j\tau}$: demand in period τ at location j

Decision variables

$X_{ij\tau}$: quantity of demand j in period τ satisfied by i

$P_{i\tau}$: quantity produced at facility i in period τ

I_i : whether facility i is open (0/1)

Z_i : capacity of facility i if open

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \mathbf{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Step 2. Identify all uncertain parameters and **model** the uncertainty set \mathcal{U} .

Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

$$\mathcal{U} = \left\{ \mathbf{D} \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} \mid \sum_{j \in \mathcal{N}} \sum_{t \in \mathcal{T}} \left(\frac{\mathbf{D}_{jt} - \bar{D}_{jt}}{\epsilon_t \bar{D}_{jt}} \right)^2 \leq \rho^2 \right\},$$

$\{\bar{D}_{jt}\}_{j \in \mathcal{N}; t \in \mathcal{T}}$ are “nominal” demands, ϵ_t is allowed deviation (%), ρ is the size of the ellipsoid

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \mathbf{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Step 2. Identify all uncertain parameters and **model** the uncertainty set \mathcal{U} .

Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

$$\mathcal{U} = \left\{ \mathbf{D} \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} \mid \sum_{j \in \mathcal{N}} \sum_{t \in \mathcal{T}} \left(\frac{\mathbf{D}_{jt} - \bar{D}_{jt}}{\epsilon_t \bar{D}_{jt}} \right)^2 \leq \rho^2 \right\},$$

Equivalently, can write $D_{jt} = \bar{D}_{jt}(1 + \epsilon_t \cdot \mathbf{z}_{jt})$, where $\mathbf{z} \in \mathcal{U} = \{z \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} : \|z\|_2 \leq \rho\}$

Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a **deterministic** model formulation:

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq D_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Step 2. Identify all uncertain parameters and **model** the uncertainty set \mathcal{U} .

Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

$$\mathcal{U} = \left\{ \mathbf{D} \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{T}|} \mid \sum_{j \in \mathcal{N}} \sum_{t \in \mathcal{T}} \left(\frac{D_{jt} - \bar{D}_{jt}}{\epsilon_t \bar{D}_{jt}} \right)^2 \leq \rho^2 \right\},$$

Step 3. Derive robust counterpart for the problem. Here, a Conic Quadratic program.

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \textcolor{red}{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned}
 & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \textcolor{red}{D_{j\tau}}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\
 & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned}
 & \max_{Y, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D_{j\tau}} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} \textcolor{blue}{Y}_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D_{j\tau}} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\
 & && \textcolor{blue}{Y} \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned} \tag{1}$$

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned} \max_{X, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \textcolor{red}{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\ & X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned} \max_{Y, I, Z, P} \quad & \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D}_{j\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\ \text{subject to} \quad & \sum_{i \in \mathcal{F}} \textcolor{blue}{Y}_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\ & \sum_{j \in \mathcal{N}} \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D}_{j\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\ & P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\ & \textcolor{blue}{Y} \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|} \end{aligned} \tag{1}$$

- For fixed D , these **deterministic/nominal** models **are equivalent**

Compare Two Models

Our initial model, with **decisions for quantities** X :

$$\begin{aligned}
 & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \mathbf{D}_{j\tau}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\
 & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned}$$

Another model, with **decisions for fractions of demands** Y :

$$\begin{aligned}
 & \max_{Y, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) \mathbf{Y}_{ij\tau} \mathbf{D}_{j\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} \mathbf{Y}_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} \mathbf{Y}_{ij\tau} \mathbf{D}_{j\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\
 & && \mathbf{Y} \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned} \tag{1}$$

- For fixed \mathbf{D} , these **deterministic/nominal** models **are equivalent**
- But their **robust counterparts** are **not equivalent!**
 - The feasible set in the second formulation is **larger**

Compare Two Models

Our initial model, with **decisions for quantities X** :

$$\begin{aligned}
 & \max_{X, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) X_{ij\tau} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i + K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} X_{ij\tau} \leq \textcolor{red}{D_{j\tau}}, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} X_{ij\tau} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \quad (M \text{ is a large constant}) \\
 & && X \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned}$$

Another model, with **decisions for fractions of demands Y** :

$$\begin{aligned}
 & \max_{Y, I, Z, P} && \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} \sum_{j \in \mathcal{N}} (p - c_{ij}^s) \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D_{j\tau}} - \sum_{\tau \in \mathcal{T}} \sum_{i \in \mathcal{F}} c_i P_{i\tau} - \sum_{i \in \mathcal{F}} (C_i Z_i - K_i I_i) \\
 \text{subject to} & && \sum_{i \in \mathcal{F}} \textcolor{blue}{Y}_{ij\tau} \leq 1, \quad j \in \mathcal{N}, \tau \in \mathcal{T}, \\
 & && \sum_{j \in \mathcal{N}} \textcolor{blue}{Y}_{ij\tau} \textcolor{red}{D_{j\tau}} \leq P_{i\tau}, \quad i \in \mathcal{F}, \tau \in \mathcal{T}, \\
 & && P_{i\tau} \leq Z_i, \quad Z_i \leq M \cdot I_i, \quad i \in \mathcal{F}, \tau \in \mathcal{T} \\
 & && \textcolor{blue}{Y} \geq 0, \quad I \in \{0, 1\}^{|\mathcal{F}|}
 \end{aligned} \tag{2}$$

- Reason: true formulation allows choosing X (and Z) after observing D :

$$\max_{I, Z} \min_{D_{j,1}} \max_{X_{i,j,1}, P_{i,1}} \min_{D_{j,2}} \max_{X_{i,j,2}, P_{i,2}} \dots$$

- Second formulation implements ordering quantities that **depend on demand!**

The **robust counterparts of equivalent deterministic**
models **may be different!**

You should always try to allow your formulation
to be as flexible as possible!

Dynamic Decisions and Robust Dynamic Optimization

Dynamic (Robust) Optimization

x chosen \mapsto z revealed \mapsto $y(x, z)$ chosen

Dynamic (Robust) Optimization

x chosen \mapsto z revealed \mapsto $y(x, z)$ chosen

Stochastic model:

$$\min_x \mathbb{E}_z \left[\min_{y(x,z)} f(x, y, z) \right]$$

Robust model:

$$\min_x \max_{z \in \mathcal{U}} \min_{y(x,z)} f(x, y, z)$$

Dynamic (Robust) Optimization

x chosen \mapsto z revealed \mapsto $y(x, z)$ chosen

Stochastic model:

$$\min_x \mathbb{E}_z \left[\min_{y(x,z)} f(x, y, z) \right]$$

Robust model:

$$\min_x \max_{z \in \mathcal{U}} \min_{y(x,z)} f(x, y, z)$$

- Solve problems via Dynamic Programming:

- Given $x, z \rightarrow$ find $y^*(x, z) \rightarrow$ find x^*
 - Bellman principle: y^* optimal for any given x, z

Dynamic (Robust) Optimization

x chosen \mapsto z revealed \mapsto $y(x, z)$ chosen

Stochastic model:

$$\min_x \mathbb{E}_z \left[\min_{y(x,z)} f(x, y, z) \right]$$

Robust model:

$$\min_x \max_{z \in \mathcal{U}} \min_{y(x,z)} f(x, y, z)$$

- Solve problems via Dynamic Programming:

- Given $x, z \rightarrow$ find $y^*(x, z) \rightarrow$ find x^*
 - Bellman principle: y^* optimal for any given x, z

1. Properly writing a **robust** DP
2. Tractable approximations with decision rules
3. A subtle point: is Bellman optimality really **necessary**?
 - If not, what to replace it with?
 - Why is this relevant?
4. Some applications

A simple motivating example

Consider the following *deterministic* inventory management problem:

$$\begin{aligned} \text{minimize}_{\{x_t\}_{t=1}^T} \quad & \sum_{t=1}^T \left(\underbrace{c_t x_t}_{\text{ordering cost}} + \underbrace{h_t(y_{t+1})^+}_{\text{holding cost}} + \underbrace{b_t(-y_{t+1})^+}_{\text{backlog cost}} \right) \\ \text{s.t.} \quad & y_{t+1} = y_t + x_t - d_t, \quad \forall t, \quad (\text{Stock balance}) \\ & L_t \leq x_t \leq H_t, \quad \forall t, \quad (\text{Min/max order size}) \\ & y_1 = a, \quad \quad \quad (\text{Initial stock level}) \end{aligned}$$

A simple motivating example

Consider the following *deterministic* inventory management problem:

$$\begin{aligned} \text{minimize}_{\{x_t\}_{t=1}^T} \quad & \sum_{t=1}^T \left(\underbrace{c_t x_t}_{\text{ordering cost}} + \underbrace{h_t(y_{t+1})^+}_{\text{holding cost}} + \underbrace{b_t(-y_{t+1})^+}_{\text{backlog cost}} \right) \\ \text{s.t.} \quad & y_{t+1} = y_t + x_t - d_t, \quad \forall t, \quad (\text{Stock balance}) \\ & L_t \leq x_t \leq H_t, \quad \forall t, \quad (\text{Min/max order size}) \\ & y_1 = a, \quad (\text{Initial stock level}) \end{aligned}$$

where

- x_t is number of goods ordered at time t and received at $t+1$
- y_t is number of goods in stock at beginning of time t
- d_t is demand during period t
- a is the initial inventory

A simple motivating example

Consider the following *deterministic* inventory management problem:

$$\begin{aligned} \text{minimize}_{\{x_t\}_{t=1}^T} \quad & \sum_{t=1}^T \left(\underbrace{c_t x_t}_{\text{ordering cost}} + \underbrace{h_t(y_{t+1})^+}_{\text{holding cost}} + \underbrace{b_t(-y_{t+1})^+}_{\text{backlog cost}} \right) \\ \text{s.t.} \quad & y_{t+1} = y_t + x_t - d_t, \quad \forall t, \quad (\text{Stock balance}) \\ & L_t \leq x_t \leq H_t, \quad \forall t, \quad (\text{Min/max order size}) \\ & y_1 = a, \quad (\text{Initial stock level}) \end{aligned}$$

What if future demands known to reside in an **uncertainty set \mathcal{U}** ?

$$d := (d_1, d_2, \dots, d_T) \in \mathcal{U} \subseteq \mathbb{R}^T$$

A simple motivating example

Consider the following *deterministic* inventory management problem:

$$\begin{aligned} \text{minimize}_{\{x_t\}_{t=1}^T} \quad & \sum_{t=1}^T \left(\overbrace{c_t x_t}^{\text{ordering cost}} + \overbrace{h_t(y_{t+1})^+}^{\text{holding cost}} + \overbrace{b_t(-y_{t+1})^+}^{\text{backlog cost}} \right) \\ \text{s.t.} \quad & y_{t+1} = y_t + x_t - d_t, \quad \forall t, \quad (\text{Stock balance}) \\ & L_t \leq x_t \leq H_t, \quad \forall t, \quad (\text{Min/max order size}) \\ & y_1 = a, \quad (\text{Initial stock level}) \end{aligned}$$

What if future demands known to reside in **uncertainty set \mathcal{U}** ?

$$d := (d_1, d_2, \dots, d_T) \in \mathcal{U} \subseteq \mathbb{R}^T$$

Ordering policies can depend on revealed demands:

$$x_t(d_{[t-1]}), \text{ where } d_{[t-1]} := (d_1, d_2, \dots, d_{t-1}) \in \mathbb{R}^{t-1}.$$

Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:

$$\begin{aligned} & \min_{L_1 \leq x_1 \leq H_1} \left[c_1 x_1 + \max_{d_1 \in \mathcal{U}_1(\emptyset)} \left[h_1(y_2)^+ + b_1(-y_2)^+ \right. \right. \\ & + \min_{L_2 \leq x_2 \leq H_2} \left[c_2 x_2 + \max_{d_2 \in \mathcal{U}_2(d_1)} \left[h_2(y_3)^+ + b_2(-y_3)^+ + \dots \right. \right. \\ & + \min_{L_T \leq x_T \leq H_T} \left[c_T x_T + \max_{d_T \in \mathcal{U}_T(d_{[T-1]})} [h_T(y_{T+1})^+ + b_T(-y_{T+1})^+] \right] \dots \left. \right] \end{aligned}$$

where:

$$y_{t+1} := y_t + x_t - d_t$$

$$\mathcal{U}_t(d_{[t-1]}) := \left\{ d \in \mathbb{R} : \exists z \in \mathbb{R}^{T-t} \text{ such that } [d_{[t-1]}; d ; z] \in \mathcal{U} \right\}$$

Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:

$$\begin{aligned} & \min_{L_1 \leq x_1 \leq H_1} \left[c_1 x_1 + \max_{d_1 \in \mathcal{U}_1(\emptyset)} \left[h_1(y_2)^+ + b_1(-y_2)^+ \right. \right. \\ & + \min_{L_2 \leq x_2 \leq H_2} \left[c_2 x_2 + \max_{d_2 \in \mathcal{U}_2(d_1)} \left[h_2(y_3)^+ + b_2(-y_3)^+ + \dots \right. \right. \\ & + \min_{L_T \leq x_T \leq H_T} \left[c_T x_T + \max_{d_T \in \mathcal{U}_T(d_{[T-1]})} [h_T(y_{T+1})^+ + b_T(-y_{T+1})^+] \right] \dots \left. \right] \end{aligned}$$

where:

$$y_{t+1} := y_t + x_t - d_t$$

$$\mathcal{U}_t(d_{[t-1]}) := \left\{ d \in \mathbb{R} : \exists z \in \mathbb{R}^{T-t} \text{ such that } [d_{[t-1]}; d ; z] \in \mathcal{U} \right\}$$

1. Nested min-max problems
2. Explicit rule for “conditioning”: *projection* of uncertainty set

Bellman Principle; Robust DP Recursions

- The **state** of the system at time t :

$$S_t := [y_t; \mathbf{d}_{[t-1]}] = [y_t; \mathbf{d}_1 \ \mathbf{d}_2; \dots; \mathbf{d}_{t-1}] \in \mathbb{R}^T$$

Bellman Principle; Robust DP Recursions

- The **state** of the system at time t :

$$S_t := [y_t; \mathbf{d}_{[t-1]}] = [y_t; \mathbf{d}_1 \ \mathbf{d}_2; \dots; \mathbf{d}_{t-1}] \in \mathbb{R}^T$$

- Value function $J_t^*(S_t)$ given by:

$$J_t^*(S_t) = \min_{L_t \leq x_t \leq H_t} \left[c_t x_t + \max_{d_t \in \mathcal{U}_t(\mathbf{d}_{[t-1]})} [h_t(y_{t+1})^+ + b_t(-y_{t+1})^+ + J_{t+1}^*(S_{t+1})] \right]$$

Bellman Principle; Robust DP Recursions

- The **state** of the system at time t :

$$S_t := [y_t; \mathbf{d}_{[t-1]}] = [y_t; \mathbf{d}_1 \ \mathbf{d}_2; \dots; \mathbf{d}_{t-1}] \in \mathbb{R}^T$$

- Value function $J_t^*(S_t)$ given by:

$$J_t^*(S_t) = \min_{L_t \leq x_t \leq H_t} \left[c_t x_t + \max_{d_t \in \mathcal{U}_t(\mathbf{d}_{[t-1]})} [h_t(y_{t+1})^+ + b_t(-y_{t+1})^+ + J_{t+1}^*(S_{t+1})] \right]$$

Observations:

1. General \mathcal{U} \rightarrow high-dimensional S_t \rightarrow **curse of dimensionality**

Bellman Principle; Robust DP Recursions

- The **state** of the system at time t :

$$S_t := [y_t; \mathbf{d}_{[t-1]}] = [y_t; \mathbf{d}_1 \ \mathbf{d}_2; \dots; \mathbf{d}_{t-1}] \in \mathbb{R}^T$$

- Value function $J_t^*(S_t)$ given by:

$$J_t^*(S_t) = \min_{L_t \leq x_t \leq H_t} \left[c_t x_t + \max_{d_t \in \mathcal{U}_t(\mathbf{d}_{[t-1]})} [h_t(y_{t+1})^+ + b_t(-y_{t+1})^+ + J_{t+1}^*(S_{t+1})] \right]$$

Observations:

1. General \mathcal{U} → high-dimensional S_t → **curse of dimensionality**
2. When \mathcal{U} has special structure, can reduce state space

Bellman Principle; Robust DP Recursions

- The **state** of the system at time t :

$$S_t := [y_t; \mathbf{d}_{[t-1]}] = [y_t; \mathbf{d}_1 \ \mathbf{d}_2; \dots; \mathbf{d}_{t-1}] \in \mathbb{R}^T$$

- Value function $J_t^*(S_t)$ given by:

$$J_t^*(S_t) = \min_{L_t \leq x_t \leq H_t} \left[c_t x_t + \max_{d_t \in \mathcal{U}_t(\mathbf{d}_{[t-1]})} [h_t(y_{t+1})^+ + b_t(-y_{t+1})^+ + J_{t+1}^*(S_{t+1})] \right]$$

Observations:

1. General \mathcal{U} \rightarrow high-dimensional S_t \rightarrow **curse of dimensionality**
2. When \mathcal{U} has special structure, can reduce state space

$$\mathcal{U}_{\text{box}} = \left\{ d : \underline{d}_t \leq d_t \leq \bar{d}_t \right\} \rightarrow S_t = y_t$$

$$\mathcal{U}_{\text{budget}} = \left\{ d : \exists z, \|z\|_\infty \leq 1, \|z\|_1 \leq \Gamma, d_t = \bar{d}_t + \hat{d}_t z_t \right\} \rightarrow S_t = \left[y_t, \sum_{\tau=1}^{t-1} |z_\tau| \right]^T$$

Bellman Principle; Robust DP Recursions

- The **state** of the system at time t :

$$S_t := [y_t; \mathbf{d}_{[t-1]}] = [y_t; \mathbf{d}_1 \ \mathbf{d}_2; \dots; \mathbf{d}_{t-1}] \in \mathbb{R}^T$$

- Value function $J_t^*(S_t)$ given by:

$$J_t^*(S_t) = \min_{L_t \leq x_t \leq H_t} \left[c_t x_t + \max_{d_t \in \mathcal{U}_t(\mathbf{d}_{[t-1]})} [h_t(y_{t+1})^+ + b_t(-y_{t+1})^+ + J_{t+1}^*(S_{t+1})] \right]$$

Observations:

1. General \mathcal{U} \rightarrow high-dimensional S_t \rightarrow **curse of dimensionality**
2. When \mathcal{U} has special structure, can reduce state space
 - Reduce computational burden
 - Prove structural results, comparative statics

$$x_t^*(y) = \min(H_t, \max(L_t, \theta_t - y)) \quad \text{(modified) } \textit{base-stock policy}$$

Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

$$\min_x \max_{z \in \mathcal{U}} \min_{y(z)} f(x, y, z)$$

- Finding Bellman-optimal rules $y^*(z)$ generally intractable

Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

$$\min_x \max_{z \in \mathcal{U}} \min_{y(z)} f(x, y, z)$$

- Finding Bellman-optimal rules $y^*(z)$ generally intractable
- Pragmatic idea: let's focus on some "simple" decision rules that we can compute
- For instance, with a **static** $y(z) = y$, could just apply all our previous machinery

Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

$$\min_x \max_{\mathbf{z} \in \mathcal{U}} \min_{y(\mathbf{z})} f(x, y, \mathbf{z})$$

- Finding Bellman-optimal rules $y^*(\mathbf{z})$ generally intractable
- Pragmatic idea: let's focus on some "simple" decision rules that we can compute
- For instance, with a **static** $y(\mathbf{z}) = y$, could just apply all our previous machinery
- Ben-Tal et. al: **Linear Decision Rules**

- Suppose we have a constraint

$$(\bar{a} + P\mathbf{z})^T x + d^T y(\mathbf{z}) \leq b, \quad \forall \mathbf{z} \in \mathcal{U}$$

where $y(\mathbf{z})$ is dynamically adjustable

- A linear (affine) form $y = u + V\mathbf{z}$ would lead to the problem:

$$\bar{a}^T x + d^T u + (P^T x + V^T d)^T \mathbf{z} \leq b, \quad \forall \mathbf{z} \in \mathcal{U}.$$

Constraint **linear** in decisions x, u, V and uncertainty \mathbf{z} , so all previous results apply!

Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

$$\min_x \max_{\mathbf{z} \in \mathcal{U}} \min_{y(\mathbf{z})} f(x, y, \mathbf{z})$$

- Finding Bellman-optimal rules $y^*(\mathbf{z})$ generally intractable
- Pragmatic idea: let's focus on some "simple" decision rules that we can compute
- For instance, with a **static** $y(\mathbf{z}) = y$, could just apply all our previous machinery
- Ben-Tal et. al: **Linear Decision Rules**

- Suppose we have a constraint

$$(\bar{a} + P\mathbf{z})^T x + d^T y(\mathbf{z}) \leq b, \quad \forall \mathbf{z} \in \mathcal{U}$$

where $y(\mathbf{z})$ is dynamically adjustable

- A linear (affine) form $y = u + V\mathbf{z}$ would lead to the problem:

$$\bar{a}^T x + d^T u + (P^T x + V^T d)^T \mathbf{z} \leq b, \quad \forall \mathbf{z} \in \mathcal{U}.$$

Constraint **linear** in decisions x, u, V and uncertainty \mathbf{z} , so all previous results apply!

- So how to apply these **static** or **linear** rules in a real problem?

Implementation and Potential Pitfalls

Recall our inventory problem. The **deterministic** version can be reformulated as an LP:

$$\begin{aligned} & \underset{x_t, y_t, s_t^+, s_t^-}{\text{minimize}} && \sum_{t=1}^T (c_t x_t + h_t s_t^+ + b_t s_t^-) \\ & \text{s.t.} && s_t^+ \geq 0, s_t^- \geq 0, \forall t, \\ & && s_t^+ \geq y_{t+1}, \forall t, \\ & && s_t^- \geq -y_{t+1}, \forall t, \\ & && y_{t+1} = y_t + x_t - d_t, \forall t, \\ & && L_t \leq x_t \leq H_t, \forall t, \end{aligned}$$

where

- s_t^+ : physical inventory held at end of period t
- s_t^- : backlogged customer demand at end of period t

Implementation and Potential Pitfalls

Recall our inventory problem. The **deterministic** version can be reformulated as an LP:

$$\begin{aligned} & \underset{x_t, y_t, s_t^+, s_t^-}{\text{minimize}} && \sum_{t=1}^T (c_t x_t + h_t s_t^+ + b_t s_t^-) \\ & \text{s.t.} && s_t^+ \geq 0, s_t^- \geq 0, \forall t, \\ & && s_t^+ \geq y_{t+1}, \forall t, \\ & && s_t^- \geq -y_{t+1}, \forall t, \\ & && y_{t+1} = y_t + x_t - d_t, \forall t, \\ & && L_t \leq x_t \leq H_t, \forall t, \end{aligned}$$

where

- s_t^+ : physical inventory held at end of period t
- s_t^- : backlogged customer demand at end of period t

What if demand known to reside in an **uncertainty set** \mathcal{U} ?

$$d := (d_1, d_2, \dots, d_T) \in \mathcal{U} \subseteq \mathbb{R}^T$$

Naïve Robustification

Consider a naïve robust optimization model:

$$\begin{aligned} & \underset{x_t, y_t, s_t^+, s_t^-}{\text{minimize}} && \sum_{t=1}^T (c_t x_t + h_t s_t^+ + b_t s_t^-) \\ & \text{s.t.} && s_t^+ \geq 0, s_t^- \geq 0, \forall t \\ & && s_t^+ \geq y_{t+1}, \forall t \\ & && s_t^- \geq -y_{t+1}, \forall t \\ & && \textcolor{blue}{y_{t+1} = y_t + x_t - d_t, \forall t, \forall d \in \mathcal{U}} \\ & && L_t \leq x_t \leq H_t, \forall t \end{aligned}$$

Naïve Robustification

Consider a naïve robust optimization model:

$$\begin{aligned} & \underset{x_t, y_t, s_t^+, s_t^-}{\text{minimize}} && \sum_{t=1}^T (c_t x_t + h_t s_t^+ + b_t s_t^-) \\ & \text{s.t.} && s_t^+ \geq 0, s_t^- \geq 0, \forall t \\ & && s_t^+ \geq y_{t+1}, \forall t \\ & && s_t^- \geq -y_{t+1}, \forall t \\ & && \textcolor{blue}{y_{t+1} = y_t + x_t - d_t}, \forall t, \forall d \in \mathcal{U} \\ & && L_t \leq x_t \leq H_t, \forall t \end{aligned}$$

Unfortunately, this is **infeasible** even when $\mathcal{U} = \{d^{(1)}, d^{(2)}\}$:

$$\left\{ \begin{array}{l} y_{t+1} = y_t + x_t - \textcolor{red}{d}_t^{(1)} \\ y_{t+1} = y_t + x_t - \textcolor{red}{d}_t^{(2)} \end{array} \right\} \Rightarrow d_t^{(1)} = d_t^{(2)}$$

Problem arises due to “=” constraint!

A less naïve robustification

Robustify an alternate linear programming formulation:

$$\underset{x_t, s_t^+, s_t^-}{\text{minimize}} \quad \sum_t (c_t x_t + h_t s_t^+ + b_t s_t^-)$$

$$\text{s.t. } s_t^+ \geq 0, s_t^- \geq 0, \forall t,$$

$$s_t^+ \geq y_1 + \sum_{t'=1}^T (x_{t'} - \mathbf{d}_{t'}), \forall t,$$

$$s_t^- \geq -y_1 + \sum_{t'=1}^T (\mathbf{d}_{t'} - x_{t'}), \forall t,$$

$$L_t \leq x_t \leq H_t, \forall t,$$

where we simply replace $y_{t+1} := y_1 + \sum_{t'=1}^T (x_{t'} - \mathbf{d}_{t'})$.

A less naïve robustification

Robustify an alternate linear programming formulation:

$$\begin{aligned} & \underset{x_t, s_t^+, s_t^-}{\text{minimize}} \quad \sum_{t=1}^T (c_t x_t + h_t s_t^+ + b_t s_t^-) \\ & \text{s.t. } s_t^+ \geq 0, s_t^- \geq 0, \forall t, \\ & \quad s_t^+ \geq y_1 + \sum_{t'=1}^T (x_{t'} - \mathbf{d}_{t'}), \forall t, \quad \forall \mathbf{d} \in \mathcal{U} \\ & \quad s_t^- \geq -y_1 + \sum_{t'=1}^T (\mathbf{d}_{t'} - x_{t'}), \forall t, \quad \forall \mathbf{d} \in \mathcal{U} \\ & \quad L_t \leq x_t \leq H_t, \forall t. \end{aligned}$$

A less naïve robustification

Robustify an alternate linear programming formulation:

$$\begin{aligned} & \underset{x_t, s_t^+, s_t^-}{\text{minimize}} \quad \sum_{t=1}^T (c_t x_t + h_t s_t^+ + b_t s_t^-) \\ & \text{s.t. } s_t^+ \geq 0, s_t^- \geq 0, \forall t, \\ & \quad s_t^+ \geq y_1 + \sum_{t'=1}^T (x_{t'} - \mathbf{d}_{t'}), \forall t, \quad \forall \mathbf{d} \in \mathcal{U} \\ & \quad s_t^- \geq -y_1 + \sum_{t'=1}^T (\mathbf{d}_{t'} - x_{t'}), \forall t, \quad \forall \mathbf{d} \in \mathcal{U} \\ & \quad L_t \leq x_t \leq H_t, \forall t. \end{aligned}$$

Q: If orders x_t are **static** (i.e., fixed $t = 0$), should (s_t^+, s_t^-) also be static?

A less naïve robustification

Robustify an alternate linear programming formulation:

$$\begin{aligned} & \underset{x_t, s_t^+, s_t^-}{\text{minimize}} \quad \sum_{t=1}^T (c_t x_t + h_t s_t^+ + b_t s_t^-) \\ & \text{s.t. } s_t^+ \geq 0, s_t^- \geq 0, \forall t, \\ & \quad s_t^+ \geq y_1 + \sum_{t'=1}^T (x_{t'} - \mathbf{d}_{t'}), \forall t, \quad \forall \mathbf{d} \in \mathcal{U} \\ & \quad s_t^- \geq -y_1 + \sum_{t'=1}^T (\mathbf{d}_{t'} - x_{t'}), \forall t, \quad \forall \mathbf{d} \in \mathcal{U} \\ & \quad L_t \leq x_t \leq H_t, \forall t. \end{aligned}$$

Q: If orders x_t are **static** (i.e., fixed $t = 0$), should (s_t^+, s_t^-) also be static?

A: No, that would be **unnecessarily conservative!**

Auxiliary (i.e., “reformulation”) **variables should be fully adjustable, even under static “implementable” decisions.**

Linear Decision Rules

- Take both **ordering policies** and **auxiliary variables** to depend *linearly* on demands

$$x_t(\mathbf{d}_{[t-1]}) = x_t^0 + X_t \mathbf{d}_{[t-1]}$$

$$s_t^+(\mathbf{d}_{[t-1]}) = s_t^+ + S_t^+ \mathbf{d}_{[t-1]}$$

$$s_t^-(\mathbf{d}_{[t-1]}) = s_t^- + S_t^- \mathbf{d}_{[t-1]}$$

Linear Decision Rules

- Take both **ordering policies** and **auxiliary variables** to depend *linearly* on demands

$$x_t(d_{[t-1]}) = x_t^0 + X_t d_{[t-1]}$$

$$s_t^+(d_{[t-1]}) = s_t^+ + S_t^+ d_{[t-1]}$$

$$s_t^-(d_{[t-1]}) = s_t^- + S_t^- d_{[t-1]}$$

- The **Robust Counterpart** problem becomes:

$$\min_{\mathcal{X}} \max_{\mathbf{d} \in \mathcal{U}} \sum_{t=1}^T c_t \cdot (x_t^0 + X_t \mathbf{d}) + h_t \cdot (s_t^+ + S_t^+ \mathbf{d}) + b_t \cdot (s_t^- + S_t^- \mathbf{d})$$

$$\text{s.t. } s_t^+ + S_t^+ \mathbf{d} \geq 0, \quad s_t^- + S_t^- \mathbf{d} \geq 0, \quad \forall \mathbf{d} \in \mathcal{U}$$

$$s_t^+ + S_t^+ \mathbf{d} \geq y_1 + \sum_{\tau=1}^T (x_{\tau}^0 + X_{\tau} \mathbf{d}_{[\tau-1]} - \mathbf{d}_{\tau}), \quad \forall \mathbf{d} \in \mathcal{U},$$

$$s_t^- + S_t^- \mathbf{d} \geq -y_1 - \sum_{\tau=1}^T (x_{\tau}^0 + X_{\tau} \mathbf{d}_{[\tau-1]} - \mathbf{d}_{\tau}), \quad \forall \mathbf{d} \in \mathcal{U},$$

$$L_t \leq x_t + X_t \mathbf{d} \leq H_t, \quad \forall \mathbf{d} \in \mathcal{U},$$

- Decision variables:** coefficients $\mathcal{X} = \{x_t^0, X_t, s_t^+, S_t^+, s_t^-, S_t^-\}_{t=1}^T$

- Two** layers of sub-optimality: **policies and auxiliary variables**; any good?

Empirical Performance: Ben-Tal et al. ('04, '09)

ρ (%)	OPT	Linear (Gap)	Static (Gap)
10	13531.8	13531.8 (+0.0%)	15033.4 (+11.1%)
20	15063.5	15063.5 (+0.0%)	18066.7 (+19.9%)
30	16595.3	16595.3 (+0.0%)	21100.0 (+27.1%)
40	18127.0	18127.0 (+0.0%)	24300.0 (+34.1%)
50	19658.7	19658.7 (+0.0%)	27500.0 (+39.9%)
60	21190.5	21190.5 (+0.0%)	30700.0 (+44.9%)
70	22722.2	22722.2 (+0.0%)	33960.0 (+49.5%)

Empirical Performance: Ben-Tal et al. ('04, '09)

ρ (%)	OPT	Linear (Gap)	Static (Gap)
10	13531.8	13531.8 (+0.0%)	15033.4 (+11.1%)
20	15063.5	15063.5 (+0.0%)	18066.7 (+19.9%)
30	16595.3	16595.3 (+0.0%)	21100.0 (+27.1%)
40	18127.0	18127.0 (+0.0%)	24300.0 (+34.1%)
50	19658.7	19658.7 (+0.0%)	27500.0 (+39.9%)
60	21190.5	21190.5 (+0.0%)	30700.0 (+44.9%)
70	22722.2	22722.2 (+0.0%)	33960.0 (+49.5%)

Theorem (Bertsimas, I., Parrilo 2010, I., Sharma & Sviridenko 2013)

For any **convex** order costs $c_t(\cdot)$ and inventory costs $h_t(\cdot)$, affine orders $x_t(\mathbf{d}_{[t-1]})$ and affine auxiliary variables $s_t^{+,-}(\mathbf{d}_{[t-1]})$ generate the optimal worst-case cost.

Empirical Performance: Ben-Tal et al. ('04, '09)

ρ (%)	OPT	Linear (Gap)	Static (Gap)
10	13531.8	13531.8 (+0.0%)	15033.4 (+11.1%)
20	15063.5	15063.5 (+0.0%)	18066.7 (+19.9%)
30	16595.3	16595.3 (+0.0%)	21100.0 (+27.1%)
40	18127.0	18127.0 (+0.0%)	24300.0 (+34.1%)
50	19658.7	19658.7 (+0.0%)	27500.0 (+39.9%)
60	21190.5	21190.5 (+0.0%)	30700.0 (+44.9%)
70	22722.2	22722.2 (+0.0%)	33960.0 (+49.5%)

Theorem (Bertsimas, I., Parrilo 2010, I., Sharma & Sviridenko 2013)

For any **convex** order costs $c_t(\cdot)$ and inventory costs $h_t(\cdot)$, affine orders $x_t(d_{[t-1]})$ and affine auxiliary variables $s_t^{+,-}(d_{[t-1]})$ generate the optimal worst-case cost.

Why is this relevant?

1. *Insight*: orders only depend on **backlogged** demand
2. *Computational*: if c_t, h_t piecewise affine (m pieces), must solve $\mathcal{O}(m \cdot T^2)$ LP
3. *Extensions*: can embed decisions at $t = 0$ (e.g., capacities, order pre-commitments)
4. **Robust dynamic critically different from stochastic dynamic**
 - Stochastic model with complete \mathbb{P} requires “complex” policies; affine very suboptimal
 - Robust model admits a very “simple” class of optimal policies

Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z \mapsto DM chooses $y(z)$

Stochastic model:

$$J_{\text{sto}}^* = \mathbb{E}_z \left[\min_{y(z)} f(y, z) \right]$$

Robust model:

$$J_{\text{rob}}^* = \max_{z \in \mathcal{U}} \min_{y(z)} f(y, z)$$

Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z \mapsto DM chooses $y(z)$

Stochastic model:

$$J_{\text{sto}}^* = \mathbb{E}_z \left[\min_{y(z)} f(y, z) \right]$$

Robust model:

$$J_{\text{rob}}^* = \max_{z \in \mathcal{U}} \min_{y(z)} f(y, z)$$

- Solve problems via Dynamic Programming:
 - Given z , find $y^*(z) \in \arg \min_y f(y, z)$
 - Bellman principle: $y^*(z)$ optimal for any z

Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z \mapsto DM chooses $y(z)$

Stochastic model:

$$J_{\text{sto}}^* = \mathbb{E}_z \left[\min_{y(z)} f(y, z) \right]$$

Robust model:

$$J_{\text{rob}}^* = \max_{z \in \mathcal{U}} \min_{y(z)} f(y, z)$$

- Solve problems via Dynamic Programming:
 - Given z , find $y^*(z) \in \arg \min_y f(y, z)$
 - Bellman principle: $y^*(z)$ optimal for any z

Question: Is Bellman optimality for y really **necessary?**

Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z \mapsto DM chooses $y(z)$

Stochastic model:

$$J_{\text{sto}}^* = \mathbb{E}_z \left[\min_{y(z)} f(y, z) \right]$$

Robust model:

$$J_{\text{rob}}^* = \max_{z \in \mathcal{U}} \min_{y(z)} f(y, z)$$

- Solve problems via Dynamic Programming:
 - Given z , find $y^*(z) \in \arg \min_y f(y, z)$
 - Bellman principle: $y^*(z)$ optimal for any z

Question: Is Bellman optimality for y really **necessary**?

- For **stochastic model**, Bellman-optimally **necessary** to obtain J_{sto}^*
- For **robust model**, Bellman-optimally **sufficient**, but **not necessary** to obtain J_{rob}^*

Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z \mapsto DM chooses $y(z)$

Stochastic model:

$$J_{\text{sto}}^* = \mathbb{E}_z \left[\min_{y(z)} f(y, z) \right]$$

Robust model:

$$J_{\text{rob}}^* = \max_{z \in \mathcal{U}} \min_{y(z)} f(y, z)$$

- Solve problems via Dynamic Programming:
 - Given z , find $y^*(z) \in \arg \min_y f(y, z)$
 - Bellman principle: $y^*(z)$ optimal for any z

Question: Is Bellman optimality for y really **necessary**?

- For **stochastic model**, Bellman-optimally **necessary** to obtain J_{sto}^*
- For **robust model**, Bellman-optimally **sufficient**, but **not necessary** to obtain J_{rob}^*
 - Any policy y^{wc} from the set
$$\mathcal{Y}^{\text{wc}} := \{y : \mathcal{U} \rightarrow \mathbb{R}^m : f(y(z), z) \leq J_{\text{rob}}^*, \forall z \in \mathcal{U}\}.$$
will be “optimal” in the robust problem, i.e., $\max_{z \in \mathcal{U}} f(y^{\text{wc}}(z), z) = J_{\text{rob}}^*$

Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z \mapsto DM chooses $y(z)$

Stochastic model:

$$J_{\text{sto}}^* = \mathbb{E}_z \left[\min_{y(z)} f(y, z) \right]$$

Robust model:

$$J_{\text{rob}}^* = \max_{z \in \mathcal{U}} \min_{y(z)} f(y, z)$$

- Solve problems via Dynamic Programming:
 - Given z , find $y^*(z) \in \arg \min_y f(y, z)$
 - Bellman principle: $y^*(z)$ optimal for any z

Question: Is Bellman optimality for y really **necessary**?

- For **stochastic model**, Bellman-optimally **necessary** to obtain J_{sto}^*
- For **robust model**, Bellman-optimally **sufficient**, but **not necessary** to obtain J_{rob}^*

- Any policy y^{wc} from the set

$$\mathcal{Y}^{\text{wc}} := \{y : \mathcal{U} \rightarrow \mathbb{R}^m : f(y(z), z) \leq J_{\text{rob}}^*, \forall z \in \mathcal{U}\}.$$

will be “optimal” in the robust problem, i.e., $\max_{z \in \mathcal{U}} f(y^{\text{wc}}(z), z) = J_{\text{rob}}^*$

- The set of **worst-case optimal policies** \mathcal{Y}^{wc} is non-empty and degenerate

Implications for Robust Dynamic Models

1. Bellman optimality **not necessary**; **worst-case optimality** necessary
 - Introduces *degeneracy* in policies/decisions
2. This degeneracy is typical for **robust** multi-stage problems
 - (“If adversary does not play optimally, you don’t have to, either...”)
3. Critically different from **stochastic** problems
4. A blessing: may allow finding policies with **simple structure**
 - e.g., affine...
5. A curse: may yield Pareto inefficiencies in the decision process
6. Worst-case optimal policies **must be implemented with resolving**

Another Caveat...

Are Robust Solutions “Efficient”?

$$\max_{x \in \mathcal{X}} \min_{\mathbf{u} \in \mathcal{U}} \mathbf{u}^T x$$

- Feasible set of solutions $\mathcal{X} = \{x \in \mathbb{R}^n : Ax \leq b\}$
- Uncertainty set of objective coefficients $\mathcal{U} = \{\mathbf{u} \in \mathbb{R}^n : D\mathbf{u} \geq d\}$

Are Robust Solutions “Efficient”?

$$\max_{x \in \mathcal{X}} \min_{\mathbf{u} \in \mathcal{U}} \mathbf{u}^T x$$

- Feasible set of solutions $\mathcal{X} = \{x \in \mathbb{R}^n : Ax \leq b\}$
- Uncertainty set of objective coefficients $\mathcal{U} = \{\mathbf{u} \in \mathbb{R}^n : D\mathbf{u} \geq d\}$
- Classical RO framework finds the **optimal value** J_{RO}^* and a point x from the **set of robustly optimal solutions** $x \in X^{\text{RO}}$:

$$X^{\text{RO}} = \{x \in \mathcal{X} : \exists y \geq 0 \text{ such that } D^T y = x, \quad y^T d \geq J_{\text{RO}}^*\}$$

- $x \in X^{\text{RO}} \Rightarrow$ no other solution exists with higher **worst-case** objective value $\mathbf{u}^T x$

Are Robust Solutions “Efficient”?

$$\max_{x \in \mathcal{X}} \min_{\mathbf{u} \in \mathcal{U}} \mathbf{u}^T x$$

- Feasible set of solutions $\mathcal{X} = \{x \in \mathbb{R}^n : Ax \leq b\}$
- Uncertainty set of objective coefficients $\mathcal{U} = \{\mathbf{u} \in \mathbb{R}^n : D\mathbf{u} \geq d\}$
- Classical RO framework finds the **optimal value** J_{RO}^* and a point x from the **set of robustly optimal solutions** $x \in X^{\text{RO}}$:

$$X^{\text{RO}} = \{x \in \mathcal{X} : \exists y \geq 0 \text{ such that } D^T y = x, \quad y^T d \geq J_{\text{RO}}^*\}$$

- $x \in X^{\text{RO}} \Rightarrow$ no other solution exists with higher **worst-case** objective value $\mathbf{u}^T x$
- *What if an uncertainty scenario materializes that does not correspond to the worst-case?*
- *Are there any guarantees that no other solution \bar{x} exists that, apart from protecting us from worst-case scenarios, also performs better overall, under all possible uncertainty realizations?*

Pareto Robustly Optimal solutions (I. & Trichakis 2014)

$$\max_{x \in \mathcal{X}} \quad \min_{u \in \mathcal{U}} \quad u^T x \quad (3)$$

Definition

A solution x is called a **Pareto Robustly Optimal (PRO) solution** for Problem (3) if

- (a) it is robustly optimal, i.e., $x \in X^{\text{RO}}$, and
- (b) there is no $\bar{x} \in \mathcal{X}$ such that

$$\begin{aligned} u^T \bar{x} &\geq u^T x, \quad \forall u \in \mathcal{U}, \quad \text{and} \\ \bar{u}^T \bar{x} &> \bar{u}^T x, \quad \text{for some } \bar{u} \in \mathcal{U}. \end{aligned}$$

Pareto Robustly Optimal solutions (I. & Trichakis 2014)

$$\max_{x \in \mathcal{X}} \quad \min_{u \in \mathcal{U}} \quad u^T x \quad (3)$$

Definition

A solution x is called a **Pareto Robustly Optimal (PRO) solution** for Problem (3) if

- (a) it is robustly optimal, i.e., $x \in X^{\text{RO}}$, and
- (b) there is no $\bar{x} \in \mathcal{X}$ such that

$$\begin{aligned} u^T \bar{x} &\geq u^T x, \quad \forall u \in \mathcal{U}, \quad \text{and} \\ \bar{u}^T \bar{x} &> \bar{u}^T x, \quad \text{for some } \bar{u} \in \mathcal{U}. \end{aligned}$$

- $X^{\text{PRO}} \subseteq X^{\text{RO}}$: set of all PRO solutions

Some questions

- Given a RO solution, is it also PRO?
- How can one find a PRO solution?
- Can we optimize over X^{PRO} ?
- Can we characterize X^{PRO} ?
 - Is it non-empty?
 - Is it convex?
 - When is $X^{\text{PRO}} = X^{\text{RO}}$?
- How does the notion generalize in other RO formulations?

Finding PRO solutions

Theorem

Given a solution $x \in X^{\text{RO}}$ and an arbitrary point $\bar{p} \in \text{ri}(\mathcal{U})$, consider the following linear optimization problem:

$$\begin{aligned} & \text{maximize} && \bar{p}^T y \\ & \text{subject to} && y \in \mathcal{U}^* \\ & && x + y \in \mathcal{X}. \end{aligned}$$

Then, either

- $\mathcal{U}^* := \{y \in \mathbb{R}^n : y^T u \geq 0, \forall u \in \mathcal{U}\}$ is the dual of \mathcal{U}

Finding PRO solutions

Theorem

Given a solution $x \in X^{\text{RO}}$ and an arbitrary point $\bar{p} \in \text{ri}(\mathcal{U})$, consider the following linear optimization problem:

$$\begin{aligned} & \text{maximize} && \bar{p}^T y \\ & \text{subject to} && y \in \mathcal{U}^* \\ & && x + y \in \mathcal{X}. \end{aligned}$$

Then, either

- the optimal value is zero and $x \in X^{\text{PRO}}$, or
- $\mathcal{U}^* := \{y \in \mathbb{R}^n : y^T u \geq 0, \forall u \in \mathcal{U}\}$ is the dual of \mathcal{U}

Finding PRO solutions

Theorem

Given a solution $x \in X^{\text{RO}}$ and an arbitrary point $\bar{p} \in \text{ri}(\mathcal{U})$, consider the following linear optimization problem:

$$\begin{aligned} & \text{maximize} && \bar{p}^T y \\ & \text{subject to} && y \in \mathcal{U}^* \\ & && x + y \in \mathcal{X}. \end{aligned}$$

Then, either

- the optimal value is zero and $x \in X^{\text{PRO}}$, or
- the optimal value is strictly positive and $\bar{x} = x + y^* \in X^{\text{PRO}}$, for any optimal y^* .

- $\mathcal{U}^* := \{y \in \mathbb{R}^n : y^T u \geq 0, \forall u \in \mathcal{U}\}$ is the dual of \mathcal{U}

Remarks

- Finding a point $\bar{u} \in \text{ri}(\mathcal{U})$ can be done efficiently using LP techniques
- Testing whether $x \in X^{\text{RO}}$ is no harder than solving the classical RO problem in this setting
- Finding a PRO solution $x \in X^{\text{PRO}}$ is no harder than solving the classical RO problem in this setting

Optimizing Over / Understanding the Set X^{PRO}

- Secondary objective r : can we solve

$$\begin{aligned} & \text{maximize} && r^T x \\ & \text{subject to} && x \in X^{\text{PRO}}? \end{aligned}$$

- Interesting case: $X^{\text{RO}} \neq X^{\text{PRO}}$

Optimizing Over / Understanding the Set X^{PRO}

- Secondary objective r : can we solve

$$\begin{aligned} & \text{maximize} && r^T x \\ & \text{subject to} && x \in X^{\text{PRO}}? \end{aligned}$$

- Interesting case: $X^{\text{RO}} \neq X^{\text{PRO}}$

Proposition

X^{PRO} is not necessarily convex.

Proposition

If $X^{\text{RO}} \neq X^{\text{PRO}}$, then $X^{\text{PRO}} \cap \text{ri}(X^{\text{RO}}) = \emptyset$.

- Whether solution to nominal RO is PRO depends on algorithm used for solving LP
- Simplex **better for RO problems** than interior point methods

What Are The Gains?

Example (Portfolio)

- $n + 1$ assets, with returns r_i
- $r_i = \mu_i + \sigma_i \zeta_i, i = 1, \dots, n, r_{n+1} = \mu_{n+1}$
- ζ unknown, $U = \{\zeta \in \mathbb{R}^n : -\mathbf{1} \leq \zeta \leq \mathbf{1}, \mathbf{1}^T \zeta = 0\}$
- Objective: select weights x to maximize worst-case portfolio return

What Are The Gains?

Example (Portfolio)

- $n + 1$ assets, with returns r_i
- $r_i = \mu_i + \sigma_i \zeta_i, i = 1, \dots, n, r_{n+1} = \mu_{n+1}$
- ζ unknown, $U = \{\zeta \in \mathbb{R}^n : -\mathbf{1} \leq \zeta \leq \mathbf{1}, \mathbf{1}^T \zeta = 0\}$
- Objective: select weights x to maximize worst-case portfolio return

What Are The Gains?

Example (Portfolio)

- $n + 1$ assets, with returns r_i
- $r_i = \mu_i + \sigma_i \zeta_i, i = 1, \dots, n, r_{n+1} = \mu_{n+1}$
- ζ unknown, $\mathcal{U} = \{\zeta \in \mathbb{R}^n : -\mathbf{1} \leq \zeta \leq \mathbf{1}, \mathbf{1}^T \zeta = 0\}$
- Objective: select weights x to maximize worst-case portfolio return

Example (Inventory)

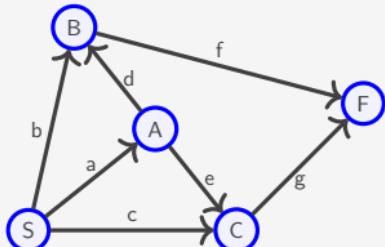
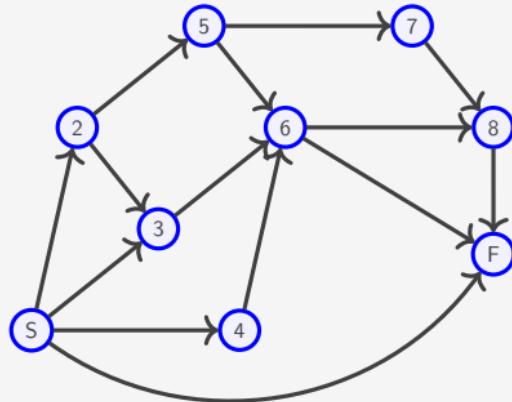
- One warehouse, N retailers where uncertain demand is realized
- Transportation, holding costs and profit margins differ for each retailer
- Demand driven by market factors $d_i = d_i^0 + q_i^T z, i = 1, \dots, N$
- Market factors z are uncertain

$$z \in \mathcal{U} = \{z \in \mathbb{R}^N : -b \cdot \mathbf{1} \leq z \leq b \cdot \mathbf{1}, -B \leq \mathbf{1}^T z \leq B\}$$

Numerical experiments

Example (Project management)

- A PERT diagram given by directed, acyclic graph $G = (\mathcal{N}, \mathcal{E})$
- \mathcal{N} are project events, \mathcal{E} are project activities / tasks



Numerical experiments

Example (Project management)

- A PERT diagram given by directed, acyclic graph $G = (\mathcal{N}, \mathcal{E})$
- \mathcal{N} are project events, \mathcal{E} are project activities / tasks
- Task $e \in \mathcal{E}$ has uncertain duration $\tau_e = \tau_e^0 + \delta_e$
$$\delta \in \mathcal{U} := \{\delta \in \mathbb{R}_+^{|\mathcal{E}|} : \delta \leq b \cdot \mathbf{1}, \mathbf{1}^T \delta \leq B\}$$
- Task $e \in \mathcal{E}$ can be expedited by allocating a budgeted resource x_e
$$\tau_e = \tau_e^0 + \delta_e - x_e$$

$$\mathbf{1}^T x \leq C$$
- Goal: find resource allocation x to minimize worst-case completion time

Results – finance and inventory examples (10K instances)

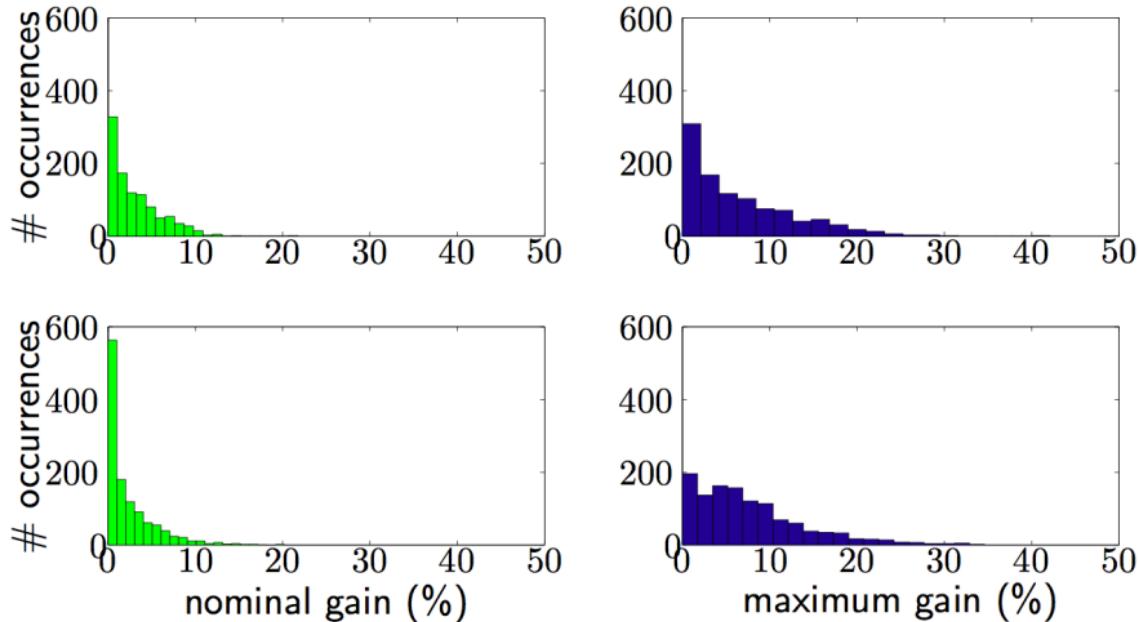
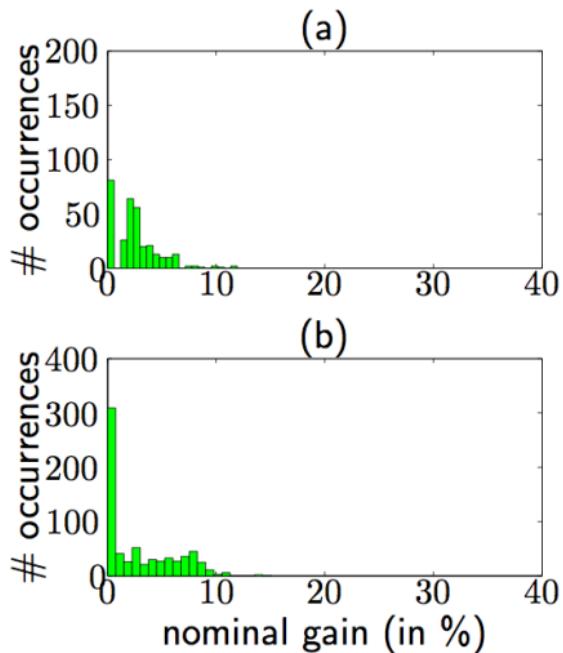
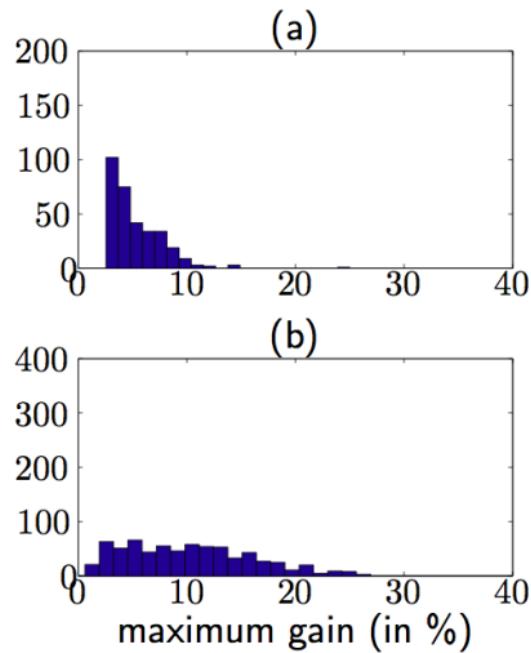
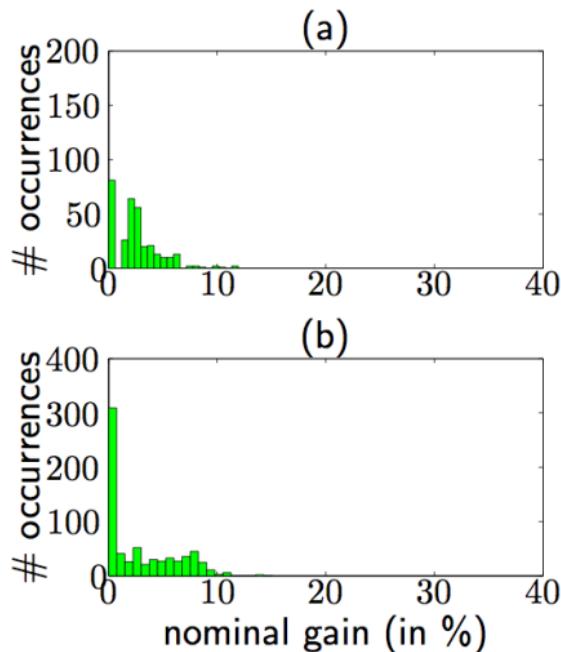
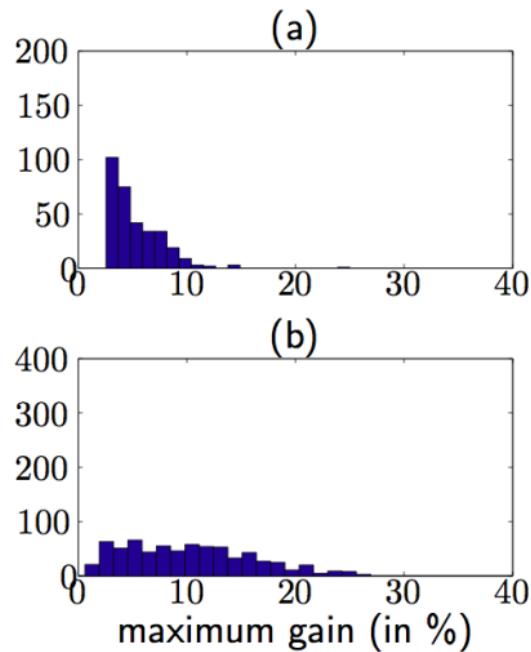


Figure: TOP: portfolio example. BOTTOM: inventory example. LEFT: performance gains in nominal scenario. RIGHT: maximal performance gains.

Results – two project management networks



Results – two project management networks



Careful To Avoid Naïve Inefficiencies In Robust Models!

“Classical” Uncertainty Sets

The robust counterpart for $(\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U}$ is:

U-set	\mathcal{U}	Robust Counterpart	Tractability
Box	$\ z\ _\infty \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _1 \leq b$	LO
Ellipsoidal	$\ z\ _2 \leq \rho$	$\bar{a}^T x + \rho \ P^T x\ _2 \leq b$	CQO
Polyhedral	$Dz \leq d$	$\exists y : \begin{cases} \bar{a}^T x + d^T y \leq b \\ D^T y = P^T x \\ y \geq 0 \end{cases}$	LO
Budget	$\begin{cases} \ z\ _\infty \leq \rho \\ \ z\ _1 \leq \Gamma \end{cases}$	$\exists y : \bar{a}^T x + \rho \ y\ _1 + \Gamma \ P^T x - y\ _\infty \leq b$	LO
Convex	$h_k(z) \leq 0$	$\exists \{w_k, u_k\}_{k \in K} : \begin{cases} a^T x + \sum_k u_k h_k^* \left(\frac{w_k}{u_k} \right) \leq b \\ \sum_k w_k = P^T x \\ u \geq 0 \end{cases}$	Conv. Opt.

How to construct uncertainty sets?
 How to pick parameters like ρ, Γ ?

How to Calibrate Uncertainty Sets?

- Take a **probabilistic** view: z_i are random; true distribution \mathbb{P} only known to satisfy $\mathbb{P} \in \mathcal{P}$
- We seek **uncertainty sets** \mathcal{U} to get **high probability of constraint satisfaction**:

$$x \text{ satisfies } (\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad \Rightarrow \quad \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \text{ is "large" } \forall \mathbb{P} \in \mathcal{P}$$

How to Calibrate Uncertainty Sets?

- Take a **probabilistic** view: z_i are random; true distribution \mathbb{P} only known to satisfy $\mathbb{P} \in \mathcal{P}$
- We seek **uncertainty sets** \mathcal{U} to get **high probability of constraint satisfaction**:

$$x \text{ satisfies } (\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad \Rightarrow \quad \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \text{ is "large" } \forall \mathbb{P} \in \mathcal{P}$$

How to Calibrate Uncertainty Sets?

- Take a **probabilistic** view: z_i are random; true distribution \mathbb{P} only known to satisfy $\mathbb{P} \in \mathcal{P}$
- We seek **uncertainty sets** \mathcal{U} to get **high probability of constraint satisfaction**:

$$x \text{ satisfies } (\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad \Rightarrow \quad \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \text{ is "large" } \forall \mathbb{P} \in \mathcal{P}$$

Theorem

Suppose z_i are independent r.v. with mean 0 and support on $[-1, 1]$. Then:

How to Calibrate Uncertainty Sets?

- Take a **probabilistic** view: z_i are random; true distribution \mathbb{P} only known to satisfy $\mathbb{P} \in \mathcal{P}$
- We seek **uncertainty sets** \mathcal{U} to get **high probability of constraint satisfaction**:

$$x \text{ satisfies } (\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad \Rightarrow \quad \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \text{ is "large" } \forall \mathbb{P} \in \mathcal{P}$$

Theorem

Suppose z_i are **independent r.v. with mean 0 and support on $[-1, 1]$** . Then:

- $\mathcal{U}_{\text{box}} := \{z : \|z\|_\infty \leq 1\} \Rightarrow \mathbb{P}[(\bar{a} + Pz)^T x \leq b] = 1$. (no need for independence or 0-mean)

How to Calibrate Uncertainty Sets?

- Take a **probabilistic** view: z_i are random; true distribution \mathbb{P} only known to satisfy $\mathbb{P} \in \mathcal{P}$
- We seek **uncertainty sets** \mathcal{U} to get **high probability of constraint satisfaction**:

$$x \text{ satisfies } (\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad \Rightarrow \quad \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \text{ is "large" } \forall \mathbb{P} \in \mathcal{P}$$

Theorem

Suppose z_i are **independent r.v. with mean 0 and support on $[-1, 1]$** . Then:

- $\mathcal{U}_{\text{box}} := \{z : \|z\|_\infty \leq 1\} \Rightarrow \mathbb{P}[(\bar{a} + Pz)^T x \leq b] = 1$. (no need for independence or 0-mean)
- $\mathcal{U}_{\text{ellipsoid}} := \{z : \|z\|_2 \leq \sqrt{2 \ln(1/\epsilon)}\} \Rightarrow \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \geq 1 - \epsilon$.

How to Calibrate Uncertainty Sets?

- Take a **probabilistic** view: \mathbf{z}_i are random; true distribution \mathbb{P} only known to satisfy $\mathbb{P} \in \mathcal{P}$
- We seek **uncertainty sets** \mathcal{U} to get **high probability of constraint satisfaction**:

$$x \text{ satisfies } (\bar{a} + P\mathbf{z})^T x \leq b, \forall \mathbf{z} \in \mathcal{U} \quad \Rightarrow \quad \mathbb{P}[(\bar{a} + P\mathbf{z})^T x \leq b] \text{ is "large" } \forall \mathbb{P} \in \mathcal{P}$$

Theorem

Suppose z_i are **independent r.v. with mean 0 and support on $[-1, 1]$** . Then:

- $\mathcal{U}_{\text{box}} := \{z : \|z\|_\infty \leq 1\} \Rightarrow \mathbb{P}[(\bar{a} + P\mathbf{z})^T x \leq b] = 1$. (no need for independence or 0-mean)
- $\mathcal{U}_{\text{ellipsoid}} := \{z : \|z\|_2 \leq \sqrt{2 \ln(1/\epsilon)}\} \Rightarrow \mathbb{P}[(\bar{a} + P\mathbf{z})^T x \leq b] \geq 1 - \epsilon$.
- $\mathcal{U}_{\text{ellipsoid-box}} := \{z : \|z\|_2 \leq \sqrt{2 \ln(1/\epsilon)}, \|z\|_\infty \leq 1\} \Rightarrow \mathbb{P}[(\bar{a} + P\mathbf{z})^T x \leq b] \geq 1 - \epsilon$.

How to Calibrate Uncertainty Sets?

- Take a **probabilistic** view: z_i are random; true distribution \mathbb{P} only known to satisfy $\mathbb{P} \in \mathcal{P}$
- We seek **uncertainty sets** \mathcal{U} to get **high probability of constraint satisfaction**:

$$x \text{ satisfies } (\bar{a} + Pz)^T x \leq b, \forall z \in \mathcal{U} \quad \Rightarrow \quad \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \text{ is "large" } \forall \mathbb{P} \in \mathcal{P}$$

Theorem

Suppose z_i are **independent r.v. with mean 0 and support on $[-1, 1]$** . Then:

- $\mathcal{U}_{\text{box}} := \{z : \|z\|_\infty \leq 1\} \Rightarrow \mathbb{P}[(\bar{a} + Pz)^T x \leq b] = 1$. (no need for independence or 0-mean)
- $\mathcal{U}_{\text{ellipsoid}} := \{z : \|z\|_2 \leq \sqrt{2 \ln(1/\epsilon)}\} \Rightarrow \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \geq 1 - \epsilon$.
- $\mathcal{U}_{\text{ellipsoid-box}} := \{z : \|z\|_2 \leq \sqrt{2 \ln(1/\epsilon)}, \|z\|_\infty \leq 1\} \Rightarrow \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \geq 1 - \epsilon$.
- $\mathcal{U}_{\text{budget}} = \{z \in \mathbb{R}^L : \|z\|_\infty \leq 1, \|z\|_1 \leq \Gamma = \sqrt{2 \ln(1/\epsilon)} \sqrt{L}\} \Rightarrow \mathbb{P}[(\bar{a} + Pz)^T x \leq b] \geq 1 - \epsilon$.

- Some probabilistic information allows controlling conservatism: **useful in applications!**
- The budget Γ depends on the dimension of z (L), whereas ρ does not!
- Proofs based on concentration inequalities

Example: Portfolio Problem (Ben-Tal and Nemirovski)

- 200 risky assets; asset # 200 is cash, with yearly return $r_{200} = 5\%$ and zero risk
- Yearly returns r_i are **independent r.v.** with values in $[\mu_i - \sigma_i, \mu_i + \sigma_i]$ and means μ_i :

$$\mu_i = 1.05 + 0.3 \frac{(200 - i)}{199}, \quad \sigma_i = 0.05 + 0.6 \frac{(200 - i)}{199}, \quad i = 1, \dots, 199.$$

- Goal: distribute \$1 to maximize worst-case value-at-risk at level $\epsilon = 0.5\%$:

$$\max_{x,t} \left\{ t : \mathbb{P} \left[\sum_{i=1}^{199} r_i x_i + r_{200} x_{200} \geq t \right] \geq 1 - \epsilon, \text{ } \forall \mathbb{P}, \sum_{i=1}^{200} x_i = 1, x \geq 0 \right\},$$

Example: Portfolio Problem (Ben-Tal and Nemirovski)

- 200 risky assets; asset # 200 is cash, with yearly return $r_{200} = 5\%$ and zero risk
- Yearly returns r_i are **independent r.v.** with values in $[\mu_i - \sigma_i, \mu_i + \sigma_i]$ and means μ_i :

$$\mu_i = 1.05 + 0.3 \frac{(200 - i)}{199}, \quad \sigma_i = 0.05 + 0.6 \frac{(200 - i)}{199}, \quad i = 1, \dots, 199.$$

- Goal: distribute \$1 to maximize worst-case value-at-risk at level $\epsilon = 0.5\%$:

$$\max_{x,t} \left\{ t : \mathbb{P} \left[\sum_{i=1}^{199} r_i x_i + r_{200} x_{200} \geq t \right] \geq 1 - \epsilon, \forall \mathbb{P}, \sum_{i=1}^{200} x_i = 1, x \geq 0 \right\},$$

- With $z_i := (r_i - \mu_i)/\sigma_i$, let's consider 3 uncertainty sets:

1. $\mathcal{U}_{\text{box}} = \{z : \|z\|_\infty \leq 1\}$

2. $\mathcal{U}_{\text{ellipsoid-box}} = \{z : \|z\|_\infty \leq 1, \|z\|_2 \leq \rho\}$, with $\rho = \sqrt{2 \ln(1/\epsilon)} = 3.255$

3. $\mathcal{U}_{\text{budget}} = \{z : \|z\|_\infty \leq 1, \|z\|_1 \leq \Gamma\}$ with $\Gamma = \sqrt{2 \ln(1/\epsilon)} \sqrt{199} = 45.921$.

Example: Portfolio Problem (Ben-Tal and Nemirovski)

- 200 risky assets; asset # 200 is cash, with yearly return $r_{200} = 5\%$ and zero risk
- Yearly returns r_i are **independent r.v.** with values in $[\mu_i - \sigma_i, \mu_i + \sigma_i]$ and means μ_i :

$$\mu_i = 1.05 + 0.3 \frac{(200 - i)}{199}, \quad \sigma_i = 0.05 + 0.6 \frac{(200 - i)}{199}, \quad i = 1, \dots, 199.$$

- Goal: distribute \$1 to maximize worst-case value-at-risk at level $\epsilon = 0.5\%$:

$$\max_{x,t} \left\{ t : \mathbb{P} \left[\sum_{i=1}^{199} r_i x_i + r_{200} x_{200} \geq t \right] \geq 1 - \epsilon, \forall \mathbb{P}, \sum_{i=1}^{200} x_i = 1, x \geq 0 \right\},$$

- With $z_i := (r_i - \mu_i)/\sigma_i$, let's consider 3 uncertainty sets:

1. $\mathcal{U}_{\text{box}} = \{z : \|z\|_\infty \leq 1\}$

2. $\mathcal{U}_{\text{ellipsoid-box}} = \{z : \|z\|_\infty \leq 1, \|z\|_2 \leq \rho\}$, with $\rho = \sqrt{2 \ln(1/\epsilon)} = 3.255$

3. $\mathcal{U}_{\text{budget}} = \{z : \|z\|_\infty \leq 1, \|z\|_1 \leq \Gamma\}$ with $\Gamma = \sqrt{2 \ln(1/\epsilon)} \sqrt{199} = 45.921$.

- **Results:**

- \mathcal{U}_{box} : worst-case returns yield less than risk-free return of 5%, so optimal to keep all money in cash; robust optimal return 1.05, risk 0
- $\mathcal{U}_{\text{ellipsoid-box}}$: robust optimal value is 1.12, risk 0.5%
- $\mathcal{U}_{\text{budget}}$: robust optimal value is 1.10, risk 0.5%

- Allowing a tiny bit of risk can go a long way...

Using Concentration Results to Model Uncertainty Sets

- Bertsimas & Bandi: use the **implications** of the **Central Limit Theorem**

Using Concentration Results to Model Uncertainty Sets

- Bertsimas & Bandi: use the **implications** of the **Central Limit Theorem**
- Suppose we have uncertainties $\{X_i\}_{i=1}^n$, each with mean μ , standard deviation σ

$$\mathcal{U}_{\text{CLT}} := \left\{ (x_1, \dots, x_n) : \left| \sum_{i=1}^n x_i - n\mu \right| \leq \Gamma \sigma \sqrt{n} \right\}.$$

- If n large and CLT premises hold, $\Gamma = 2$ (3) would give 95% (99%) coverage

Using Concentration Results to Model Uncertainty Sets

- Bertsimas & Bandi: use the **implications** of the **Central Limit Theorem**
- Suppose we have uncertainties $\{X_i\}_{i=1}^n$, each with mean μ , standard deviation σ

$$\mathcal{U}_{\text{CLT}} := \left\{ (x_1, \dots, x_n) : \left| \sum_{i=1}^n x_i - n\mu \right| \leq \Gamma \sigma \sqrt{n} \right\}.$$

- If n large and CLT premises hold, $\Gamma = 2$ (3) would give 95% (99%) coverage
- Many extensions possible

- Modeling correlations through a factor model:

$$\mathcal{U}_{\text{corr}} := \left\{ x : x = Pz + \epsilon, \left| \sum_{i=1}^m z_i - m\mu_y \right| \leq \Gamma \sigma_z \sqrt{m}, \left| \sum_{i=1}^n \epsilon_i \right| \leq \Gamma \sigma_\epsilon \sqrt{n} \right\}$$

- Using stable laws to model heavy-tailed cases where variance is undefined:

$$\mathcal{U}_{\text{HT}} := \left\{ (x_1, \dots, x_n) : \left| \sum_{i=1}^n x_i - n\mu \right| \leq \Gamma n^{1/\alpha} \right\}$$

- Constructing typical sets: if H_f is the (Shannon) entropy of f ,

$$(i) \mathbb{P}[\tilde{z} \in \mathcal{U}_{\text{typical}}] \rightarrow 1, \quad (ii) \left| \frac{1}{n} \log f(\tilde{z} | \tilde{z} \in \mathcal{U}_{\text{typical}}) + H_f \right| \leq \epsilon_n$$

Using Concentration Results to Model Uncertainty Sets

- Bertsimas & Bandi: use the **implications** of the **Central Limit Theorem**
- Suppose we have uncertainties $\{X_i\}_{i=1}^n$, each with mean μ , standard deviation σ

$$\mathcal{U}_{\text{CLT}} := \left\{ (x_1, \dots, x_n) : \left| \sum_{i=1}^n x_i - n\mu \right| \leq \Gamma \sigma \sqrt{n} \right\}.$$

- If n large and CLT premises hold, $\Gamma = 2$ (3) would give 95% (99%) coverage
- Many extensions possible
 - Modeling correlations through a factor model:
$$\mathcal{U}_{\text{corr}} := \left\{ x : x = Pz + \epsilon, \left| \sum_{i=1}^m z_i - m\mu_y \right| \leq \Gamma \sigma_z \sqrt{m}, \left| \sum_{i=1}^n \epsilon_i \right| \leq \Gamma \sigma_\epsilon \sqrt{n} \right\}$$
 - Using stable laws to model heavy-tailed cases where variance is undefined:
$$\mathcal{U}_{\text{HT}} := \left\{ (x_1, \dots, x_n) : \left| \sum_{i=1}^n x_i - n\mu \right| \leq \Gamma n^{1/\alpha} \right\}$$
 - Constructing typical sets: if H_f is the (Shannon) entropy of f ,
(i) $\mathbb{P}[\tilde{z} \in \mathcal{U}_{\text{typical}}] \rightarrow 1$, (ii) $\left| \frac{1}{n} \log f(\tilde{z} | \tilde{z} \in \mathcal{U}_{\text{typical}}) + H_f \right| \leq \epsilon_n$
- Bertsimas & Bandi used these to derive **robust equivalents** for several classical queueing theory and information theory results

Distributionally Robust Optimization

Distributionally Robust Modeling

- We saw that embedding some more probabilistic information can help

Distributionally Robust Modeling

- We saw that embedding some more probabilistic information can help
- Let's change the paradigm slightly:
 - we know the probability distribution for \tilde{z} belongs to an *ambiguity set*: $\mathbb{P} \in \mathcal{P}$
 - we model \mathcal{P} and are interested in robust expected constraint satisfaction:

$$\sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[f(x, \tilde{z})] \leq b$$

- Now, the adversary is choosing \mathbb{P} , instead of z
 - **Advantage:** $\mathbb{E}_{\mathbb{P}}[f(x, \tilde{z})]$ as an expression of \mathbb{P} is **always linear**
 - If \mathbb{P} has discrete, finite support: much of our earlier machinery (e.g., convex duality) can be applied if the set \mathcal{P} is “well-behaved”
 - Continuous \mathbb{P} : ∞ -dimensional optimization

Distributionally Robust Modeling

- We saw that embedding some more probabilistic information can help
- Let's change the paradigm slightly:
 - we know the probability distribution for \tilde{z} belongs to an *ambiguity set*: $\mathbb{P} \in \mathcal{P}$
 - we model \mathcal{P} and are interested in robust expected constraint satisfaction:

$$\sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[f(x, \tilde{z})] \leq b$$

- Now, the adversary is choosing \mathbb{P} , instead of z
 - **Advantage:** $\mathbb{E}_{\mathbb{P}}[f(x, \tilde{z})]$ as an expression of \mathbb{P} is **always linear**
 - If \mathbb{P} has discrete, finite support: much of our earlier machinery (e.g., convex duality) can be applied if the set \mathcal{P} is “well-behaved”
 - Continuous \mathbb{P} : ∞ -dimensional optimization
- Very old idea, dating to the 1950s (Scarf 1958, Zackova 1966)
- Kuhn, Shafiee, Wiesemann (2024): tutorial on state-of-the-art. Can model:
 - known (**bounds on**) moments, e.g., means, covariance matrix, higher order
 - known (**bounds on**) quantiles (e.g., median) or spread statistics
 - multiple confidence regions
 - distance from a nominal distribution (Kullback-Leibler, Wasserstein, etc.)

Esfahani and Kuhn (2015)

Baseline problem. Single-stage stochastic program:

$$J^* := \inf_{x \in X} \mathbb{E}_{\mathbb{P}}[h(x, \mathbf{z})]$$

- $x \in X \subseteq \mathbb{R}^n$ is the decision,
- $\mathbf{z} \in \mathcal{U} \subseteq \mathbb{R}^m$ is a random vector,
- \mathbb{P} (distribution of \mathbf{z}) is *unknown*.

Data. We have i.i.d. samples $\hat{\mathcal{U}}_N := \{z_1, \dots, z_N\}$ and form the empirical distribution:

$$\hat{\mathbb{P}}_N := \frac{1}{N} \sum_{i=1}^N \delta_{z_i}.$$

Esfahani and Kuhn (2015)

Baseline problem. Single-stage stochastic program:

$$J^* := \inf_{x \in X} \mathbb{E}_{\mathbb{P}}[h(x, \mathbf{z})]$$

- $x \in X \subseteq \mathbb{R}^n$ is the decision,
- $\mathbf{z} \in \mathcal{U} \subseteq \mathbb{R}^m$ is a random vector,
- \mathbb{P} (distribution of \mathbf{z}) is *unknown*.

Data. We have i.i.d. samples $\hat{\mathcal{U}}_N := \{z_1, \dots, z_N\}$ and form the empirical distribution:

$$\hat{\mathbb{P}}_N := \frac{1}{N} \sum_{i=1}^N \delta_{z_i}.$$

Classical solution method: **Sample Average Approximation (SAA)**

$$J_{\text{SAA}} := \inf_{x \in X} \mathbb{E}_{\hat{\mathbb{P}}_N}[h(x, \mathbf{z})] = \inf_{x \in X} \frac{1}{N} \sum_{i=1}^N h(x, z_i).$$

Esfahani and Kuhn (2015)

Baseline problem. Single-stage stochastic program:

$$J^* := \inf_{x \in X} \mathbb{E}_{\mathbb{P}}[h(x, \mathbf{z})]$$

- $x \in X \subseteq \mathbb{R}^n$ is the decision,
- $\mathbf{z} \in \mathcal{U} \subseteq \mathbb{R}^m$ is a random vector,
- \mathbb{P} (distribution of \mathbf{z}) is *unknown*.

Data. We have i.i.d. samples $\hat{\mathcal{U}}_N := \{z_1, \dots, z_N\}$ and form the empirical distribution:

$$\hat{\mathbb{P}}_N := \frac{1}{N} \sum_{i=1}^N \delta_{z_i}.$$

Classical solution method: **Sample Average Approximation (SAA)**

$$J_{\text{SAA}} := \inf_{x \in X} \mathbb{E}_{\hat{\mathbb{P}}_N}[h(x, \mathbf{z})] = \inf_{x \in X} \frac{1}{N} \sum_{i=1}^N h(x, z_i).$$

SAA is asymptotically consistent, but for small N it can:

- *overfit* the data (“optimizer’s curse”)
- give poor out-of-sample performance

Wasserstein Metric and Ambiguity Sets

Wasserstein distance. Let $\mathcal{M}(\mathcal{U})$ be the set of all distributions supported on \mathcal{U} . For $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{M}(\mathcal{U})$,

$$d_{\mathbb{W}}(\mathbb{Q}_1, \mathbb{Q}_2) := \inf_{\pi \in \Pi} \int_{\mathcal{U}^2} \|\xi_1 - \xi_2\| d\pi(\xi_1, \xi_2)$$

- Π is the set of all couplings of \mathbb{Q}_1 and \mathbb{Q}_2 , i.e., joint distributions of ξ_1 and ξ_2 with marginals given by \mathbb{Q}_1 and \mathbb{Q}_2 , respectively
- $\|\cdot\|$ is any norm. More popular choices: $\|\cdot\|_\infty, \|\cdot\|_1, \|\cdot\|_2$

Wasserstein Metric and Ambiguity Sets

Wasserstein distance. Let $\mathcal{M}(\mathcal{U})$ be the set of all distributions supported on \mathcal{U} . For $\mathbb{Q}_1, \mathbb{Q}_2 \in \mathcal{M}(\mathcal{U})$,

$$d_{\mathbb{W}}(\mathbb{Q}_1, \mathbb{Q}_2) := \inf_{\pi \in \Pi} \int_{\mathcal{U}^2} \|\xi_1 - \xi_2\| d\pi(\xi_1, \xi_2)$$

- Π is the set of all couplings of \mathbb{Q}_1 and \mathbb{Q}_2 , i.e., joint distributions of ξ_1 and ξ_2 with marginals given by \mathbb{Q}_1 and \mathbb{Q}_2 , respectively
- $\|\cdot\|$ is any norm. More popular choices: $\|\cdot\|_\infty, \|\cdot\|_1, \|\cdot\|_2$

Wasserstein ambiguity set (ball).

$$\mathbb{B}_\epsilon(\widehat{\mathbb{P}}_N) := \left\{ \mathbb{Q} \in \mathcal{M}(\mathcal{U}) : d_{\mathbb{W}}(\mathbb{Q}, \widehat{\mathbb{P}}_N) \leq \epsilon \right\}.$$

- Centered at the empirical distribution $\widehat{\mathbb{P}}_N$.
- Radius ϵ controls *conservatism*.
- Contains both discrete and continuous distributions close to $\widehat{\mathbb{P}}_N$.

Wasserstein DRO Formulation

Distributionally robust objective. For fixed decision x , worst-case expected cost is:

$$\sup_{\mathbb{P} \in \mathbb{B}_\epsilon(\widehat{\mathbb{P}}_N)} \mathbb{E}_{\mathbb{P}}[h(x, \mathbf{z})].$$

Data-driven distributionally robust optimization:

$$J_N(\epsilon) := \inf_{x \in X} \sup_{\mathbb{P} \in \mathbb{B}_\epsilon(\widehat{\mathbb{P}}_N)} \mathbb{E}_{\mathbb{P}}[h(x, \mathbf{z})].$$

Interpretation:

- Take all distributions \mathbb{P} within distance ϵ of the data-driven $\widehat{\mathbb{P}}_N$.
- Optimize against the *most adversarial* such distribution.

Goal:

- Choose ϵ and solve $J_N(\epsilon)$ so that
 - we get *good out-of-sample performance*, and
 - we retain *finite-sample* and *asymptotic* guarantees.

Measure Concentration and Choice of Radius

Assume a **light-tail condition** on \mathbb{P} :

$$\mathbb{E}_{\mathbb{P}} [\exp(\|z\|^a)] < \infty \quad \text{for some } a > 1.$$

Then a measure concentration result (Fournier–Guillin) implies: for some $c_1, c_2 > 0$,

$$\mathbb{P}^N[d_W(\mathbb{P}, \widehat{\mathbb{P}}_N) \geq \epsilon] \leq \begin{cases} c_1 \exp(-c_2 N \epsilon^{\max\{m, 2\}}), & \epsilon \leq 1, \\ c_1 \exp(-c_2 N \epsilon^a), & \epsilon > 1. \end{cases}$$

For a prescribed significance level $\beta \in (0, 1)$, we can choose a radius $\epsilon_N(\beta)$ such that

$$\mathbb{P}^N[d_W(\mathbb{P}, \widehat{\mathbb{P}}_N) \leq \epsilon_N(\beta)] \geq 1 - \beta.$$

Interpretation: with probability at least $1 - \beta$, the *true* distribution \mathbb{P} lies inside the Wasserstein ball $\mathbb{B}_{\epsilon_N(\beta)}(\widehat{\mathbb{P}}_N)$.

Finite-sample Performance Guarantee

Fix $\beta \in (0, 1)$ and choose $\epsilon = \epsilon_N(\beta)$ as in the concentration bound

Let x_N be an optimizer of the DRO problem

$$J_N := \inf_{x \in X} \sup_{\mathbb{P} \in \mathbb{B}_{\epsilon_N(\beta)}(\widehat{\mathbb{P}}_N)} \mathbb{E}_{\mathbb{P}}[h(x, \mathbf{z})].$$

Finite-sample Performance Guarantee

Fix $\beta \in (0, 1)$ and choose $\epsilon = \epsilon_N(\beta)$ as in the concentration bound

Let x_N be an optimizer of the DRO problem

$$J_N := \inf_{x \in X} \sup_{\mathbb{P} \in \mathbb{B}_{\epsilon_N(\beta)}(\widehat{\mathbb{P}}_N)} \mathbb{E}_{\mathbb{P}}[h(x, \mathbf{z})].$$

Then, with probability at least $1 - \beta$ (over the sampling of $\widehat{\mathcal{U}}_N$),

$$\mathbb{E}_{\mathbb{P}}[h(x_N, \mathbf{z})] \leq J_N.$$

So:

- J_N is an **upper confidence bound** on the **out-of-sample cost** of x_N valid with confidence level $1 - \beta$
- We can also get **asymptotic consistency**: as $\beta_N \rightarrow 0$, by choosing $\epsilon_N = \epsilon_N(\beta_N)$, we get $J_N \rightarrow J^*$ almost surely, so the finite-sample Wasserstein DRO asymptotically recovers the true stochastic program

Convex Reformulations

Focus on Nature's Problem, i.e., the *inner* worst-case expectation for a fixed x :

$$(NP) \sup_{\mathbb{P} \in \mathbb{B}_\epsilon(\widehat{\mathbb{P}}_N)} \mathbb{E}_{\mathbb{P}}[\ell(\mathbf{z})]$$

Assumptions: the support \mathcal{U} of \mathbf{z} is convex and closed and the loss function ℓ is:

$$\ell(\mathbf{z}) = \max_{k \leq K} \ell_k(\mathbf{z}),$$

where each ℓ_k is proper, **concave**, and upper semicontinuous

Convex Reformulations

Focus on Nature's Problem, i.e., the *inner* worst-case expectation for a fixed x :

$$(NP) \sup_{\mathbb{P} \in \mathbb{B}_\epsilon(\widehat{\mathbb{P}}_N)} \mathbb{E}_{\mathbb{P}}[\ell(\mathbf{z})]$$

Assumptions: the support \mathcal{U} of \mathbf{z} is convex and closed and the loss function ℓ is:

$$\ell(\mathbf{z}) = \max_{k \leq K} \ell_k(\mathbf{z}),$$

where each ℓ_k is proper, **concave**, and upper semicontinuous

Key result. The optimal value of (NP) equals the optimal value of:

$$\begin{aligned} \min_{\lambda, s_i, z_{ik}} \quad & \lambda \varepsilon + \frac{1}{N} \sum_{i=1}^N s_i \\ \text{s.t.} \quad & [-\ell_k + \chi_{\mathcal{U}}]^*(z_{ik}) - \langle z_{ik}, \xi_i \rangle \leq s_i, \quad \forall i, k, \\ & \|z_{ik}\|_* \leq \lambda, \quad \forall i, k, \end{aligned}$$

where $\chi_{\mathcal{U}}$ is the indicator function of \mathcal{U} , $[f]^*$ is the Fenchel conjugate of f , and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$.

- Enough to solve a finite-dimensional convex problem
- ℓ_k linear, \mathcal{U} polyhedral, 1- or ∞ -norm in $d_{\mathbb{W}}(\cdot, \cdot) \Rightarrow$ finite-dimensional LP

Using Hypothesis Tests to Model Uncertainty Sets

Bertsimas, Gupta, Kallus ('17): **data-driven** uncertainty sets from **hypothesis tests**

Table 1 Summary of data-driven uncertainty sets proposed in this paper. SOC, EC and LMI denote second-order cone representable sets, exponential cone representable sets, and linear matrix inequalities, respectively

Assumptions on \mathbb{P}^*	Hypothesis test	Geometric description	Eqs.	Inner problem
Discrete support	χ^2 -test	SOC	(13, 15)	
Discrete support	G-test	Polyhedral*	(13, 16)	
Independent marginals	KS Test	Polyhedral*	(21)	Line search
Independent marginals	K Test	Polyhedral*	(76)	Line search
Independent marginals	CvM Test	SOC*	(76, 69)	
Independent marginals	W Test	SOC*	(76, 70)	
Independent marginals	AD Test	EC	(76, 71)	
Independent marginals	Chen et al. [23]	SOC	(27)	Closed-form
None	Marginal Samples	Box	(31)	Closed-form
None	Linear Convex Ordering	Polyhedron	(34)	
None	Shawe-Taylor and Cristianini [46]	SOC	(39)	Closed-form
None	Delage and Ye [25]	LMI	(41)	

The additional “*” notation indicates a set of the above type with one additional, relative entropy constraint. *KS*, *K*, *CvM*, *W*, and *AD* denote the Kolmogorov–Smirnov, Kuiper, Cramer–von Mises, Watson and Anderson–Darling goodness of fit tests, respectively. In some cases, we can identify a worst-case realization of \mathbf{u} in (1) for bi-affine f and a candidate \mathbf{x} with a specialized algorithm. In these cases, the column “Inner Problem” roughly describes this algorithm

References I

A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear programs. *Mathematical Programming*, 99(2):351–376, 2004.

F. de Ruiter, A. Ben-Tal, R. Brekelmans, and D. den Hertog. Adjustable robust optimization with decision rules based on inexact revealed data. Center discussion paper series no. 2014-003, CentER, 2014.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. *Lectures on Stochastic Programming*. MPS / SIAM Series on Optimization. SIAM, 2009.