Lecture 19 : Dynamic Robust Optimization

+
Distributionall Robust Optimization

December 3, 2025
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Recall “Classical’” Robust Optimization (RO)

® Only information about unknowns z: they belong to an uncertainty set U/

Solve the following optimization problem:

inf sup C(x,z)
(P) X zeld
st. fi(x,z) <0,Vzel,Viel

This model has infinitely many constraints

® W.l.o.g., we can consider uncertainty only in the constraints

Each and every constraint must satisfied: f; (x,z) <0,Vz e U

How to reformulate this as a finite-dimensional, tractable optimization problem,
a.k.a. the robust counterpart?
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“Classical” Uncertainty Sets

The robust counterpart for

(G+Pz)x< b VzeclUli
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“Classical” Uncertainty Sets

The robust counterpart for

(G+Pz)x < b VzeclUlis:

U-set u Robust Counterpart Tractability

Box [[z]]oo < p ax+ p||P'x|ls < b LO

Ellipsoidal llzll2 < p ax+p|P'x|l < b CQO
Ix+dy<b

Polyhedral Dz <d Jy : K D'y = P'x LO
y=>0

Budget {'z”OO =P Jy s ax+pllyli +TIPx = ylleo < b LO

el < T

Ix+ 3, uhi () < b

Convex h«(z) <0 Hwi, uktrek S, Wk = PTx Conv. Opt.
u>0
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“Classical” Uncertainty Sets

The robust counterpart for

(G+Pz)x < b VzeclUlis:

U-set u Robust Counterpart Tractability

Box [[z]]oo < p ax+ p||P'x|ls < b LO

Ellipsoidal llzll2 < p ax+p|P'x|l < b CQO
Ix+dy<b

Polyhedral Dz <d Jy : K D'y = P'x LO
y=>0

Budget {|z||oo =P Jy s ax+pllyli +TIPx = ylleo < b LO

Izl <T

Ix+ 3, uhi () < b

Convex h«(z) <0 Hwi, uktrek S, Wk = PTx Conv. Opt.
u>0

® Several extensions

® Robust counterparts can be handled by large-scale modern solvers

® Enough for many practical problems

3/47



Two Important Caveats for Robust Models I
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Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.
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Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

RO B) 3) BT ) SRR S LT
’ TET I€EF jJEN TET IEF i€EF
subject to ZX,—,—T <Dy, JjeEN,T€T,

ieF
Y Xjr<Pnr, i€F TET,
JEN
P < Z, Zi<M-I, i€eF, €T (Mis a large constant)
X >0, Ie{o0,1}7

Parameters Decision variables

T discrete planning horizon, indexed by 7
JF: potential facility locations, indexed by i
N: demand node locations, indexed by j
p: unit price of goods

¢t cost per unit of production at facility 7
C;: cost per unit of capacity for facility 7
Kj: cost of opening a facility at location i
c,-j: cost of shipping units from i to j

Dj+: demand in period 7 at location j

Xijr: quantity of demand j in period T satisfied by /
Pi-: quantity produced at facility i in period 7

li: whether facility i is open (0/1)

Z;: capacity of facility i if open
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Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

AT 222 (P Xir =D D aPir =) (GZi+ Kil)

TET i€EF jeN TET IEF ieF
subject to ZX,—,—T <Dy, JjeEN,T€T,

iceF

Y Xjr<Pnr, i€F TET,

JEN

P, <Z, Zi<M-I;, i€F, 7€T (Misa large constant)
X >0, Ie{o0,1}7"

Step 2. Identify all uncertain parameters and model the uncertainty set /.
Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

Sy (B )<p}

{D c RWIEHITI
JEN teT

{Djt}jenrteT are “nominal” demands, ¢; is allowed deviation (%), p is the size of the ellipsoid

5/47



Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign
customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

AT 222 (P Xir =D D aPir =) (GZi+ Kil)

TET i€EF jeN TET IEF ieF
subject to ZX,—,—T <Dy, JjeEN,T€T,
ieF
Y Xjr<Pnr, i€F TET,
JEN
P < Z, Zi<M-I, i€eF, €T (Mis a large constant)

X >0, Ie{o0,1}7

Step 2. Identify all uncertain parameters and model the uncertainty set /.
Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

Sy (B )<p}

{D c RWIEHITI
JEN teT

Equivalently, can write Dj; = Djt(1 + €: - zjt), where z € U = {z € RVI'ITT - |z||, < p}

5/47



Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign

customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

AT 222 (P Xir =D D aPir =) (GZi+ Kil)

TET i€EF jeN TET IEF ieF
subject to ZX,—,—T <Dy, JjeEN,T€T,
ieF
Y Xjr<Pnr, i€F TET,
JEN
P < Z, Zi<M-I, i€eF, €T (Mis a large constant)

X >0, Ie{0,1}”!

Step 2. Identify all uncertain parameters and model the uncertainty set /.
Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

S5 (252) <}

{D c RWIEHITI
JEN teT

Step 3. Derive robust counterpart for the problem. Here, a Conic Quadratic program.
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Compare Two Models

Our initial model, with decisions for quantities X:

max Z Z Z(p — C;-)X,'_,'T — Z Z ciPir — Z(C,’Z,’ =+ K,'/,')

X1z,P TETIEFJEN TETIEF i€EF
subject to ZX"J'T <Dj, JEN,TE€ET,
i€eF
D Xjr <Pz, i€F TET,
JEN
P, < Z, Z<M-I, i€ F, €T (Misa large constant)

X >0, Ie{o0,1}7
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Compare Two Models

Our initial model, with decisions for quantities X:

max Z Z Z(p — C;)X,'_,'T — Z Z ciPir — Z(C{Z; =+ K,'/,')

X,1,Z,P h h h !
TET IEFJEN TET IEF ieEF
subject to > Xjr <Di-, JEN,TET,
ieF
> Xjr <P, i€F, TET,
JEN

P, < Z, Z<M-I, i€ F, €T (Misa large constant)
X >0, Ie{o0,1}7

Another model, with decisions for fractions of demands Y:

max Z Z Z(P* C:’JS')Y"J'TDJ'T - Z Zcfpf‘r - Z(C;Zi — Kil;)

vilz.p TETIEFjEN TeETIiEF ieF
subject to d Vi <1, JEN,TET,
iceF
> YyDjr <Py, i€F, TET,
JEN
P < Z, Zi<M-I, ieF, TeT
y >0, Ie{0,1}7! 1)
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Compare Two Models

Our initial model, with decisions for quantities X:

XX, ST = )Xigr — D D> cPir — > _(GZi + Kily)

TET IEFJEN TETIEF ieF
subject to ZX"J'T <Dj, JEN,TE€ET,

ieF

> Xjr <P, i€F, TET,

JEN

P, < Z, Z<M-I, i€ F, €T (Misa large constant)
X >0, Ie{o0,1}7

Another model, with decisions for fractions of demands Y:

YT’BZ%P Z Z Z(P —¢;)YirDjr — Z Z ciPir — Z(C’Zi — Kil;)

TET IEF jEN TETIEF ieF
subject to d Vi <1, JEN,TET,
ieF
> YyDjr <Py, i€F, TET,
JEN
Pir < Zy, Zi<M-Ilj, i€F, 1T
y>o0, Ie{o1}7! (1)

® For fixed D, these deterministic/nominal models are equivalent
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Compare Two Models

Our initial model, with decisions for quantities X:

XX, ST = )Xigr — D D> cPir — > _(GZi + Kily)

TETIEFJEN TETIEF ieF
subject to ZX"J'T <Dj, JEN,TE€ET,
i€eF
> Xjr <P, i€F, TET,
JEN
P, < Z, Z<M-I, i€ F, €T (Misa large constant)

X >0, Ie{o0,1}7!

Another model, with decisions for fractions of demands Y:

YT’BZ%P Z Z Z(P —¢;)YirDjr — Z Z ciPir — Z(C’Zi — Kil;)

TETIEFjEN TeETIiEF ieF
subject to Z Yir <1, JeEN,T€T,

ieF

> YyDjr <Py, i€F, TET,

JEN

P < Z, Zi<M-I, ieF, TeT

Y >0, Ie{0,1}7!

® For fixed D, these deterministic/nominal models are equivalent
® But their robust counterparts are not equivalent!
— The feasible set in the second formulation is larger

(&)

6/47



Compare Two Models

Our initial model, with decisions for quantities X:
UERED 9D 90 DI CEE S AED D SLLEED D CERRLY
TET IEF JEN TET IEF i€EF

subject to ZXU’ <Dj, JjEN,TET,

ieF

> Xjr <P, i€F, TET,

JEN

P, < Z, Z;<M-I, i€F, €T (Mis a large constant)

X >0, Ie{o01}7!

Another model, with decisions for fractions of demands Y:

ST SIS =) YirDir = D> > ciPir — Y _(GZi — Kily)

TETIEF JEN TET IEF ieF
subject to Z Yir <1, JEN,T€T,

i€eF

> YDy <P, i€F, TET,

JEN

P, <Z, Z<M-l, i€F, 1T
y>o0, Ie{o,1}7!
® Reason: true formulation allows choosing X (and Z) after observing D:
max; z Minp; , Maxx, ;, p,; MiNp, , Maxx, ., p,,
® Second formulation implements ordering quantities that depend on demand!

(2
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The robust counterparts of equivalent deterministic
models may be different!

You should always try to allow your formulation
to be as flexible as possible!
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Dynamic Decisions and Robust Dynamic Optimization I
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Dynamic (Robust) Optimization

x chosen — zrevealed — y(x,z) chosen
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Dynamic (Robust) Optimization
x chosen — zrevealed — y(x,z) chosen

Stochastic model: Robust model:

i i min max min f(x,y,z
min E, lellyg) f(x,y,z)] L ( )
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Dynamic (Robust) Optimization

x chosen — zrevealed — y(x,z) chosen

Stochastic model: Robust model:
i i min max min f(x,y,z
min E, lellyg) f(x,y. z)] L (x,y,2)

® Solve problems via Dynamic Programming:
- Given x,z —  find y*(x,z) —  find x*

- Bellman principle: y* optimal for any given x, z
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Dynamic (Robust) Optimization

x chosen — zrevealed — y(x,z) chosen

Stochastic model: Robust model:

min max min f(x,y,z
:| x  zeU y(x,z) ( Y )

min EZ{ min f(x,y,z)
x y(x:2)

® Solve problems via Dynamic Programming:
- Given x,z —  find y*(x,z) —  find x*

- Bellman principle: y* optimal for any given x, z

1. Properly writing a robust DP
2. Tractable approximations with decision rules

3. A subtle point: is Bellman optimality really necessary?
e If not, what to replace it with?

e Why is this relevant?

4. Some applications
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A simple motivating example

Consider the following deterministic inventory management problem

" holding cost  backlog cost
T ordering cost
mimize > GXR + hilven)” +bilyern)”
m%m}rTnlze Ce Xt + ne(Yes1 t\—Yt+1
Xthi=1 t=1

s.t. Yi+1 = Yt + Xt — dt7 Vt,

(Stock balance)
L < x: < Hy, Vi,

(Min/max order size)

n=a, (Initial stock level)
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A simple motivating example

Consider the following deterministic inventory management problem

T ordering cost holding cost  backlog cost
~ =~ N
inimni he(yer1) ™ + be(—yern) "
m%m}rTnlze Z Ce Xt + Ne( Vi1 (—Ye+1
M= t=1

St Yer1 =Y+ X — dt7 Vta

(Stock balance)
L < x: < Hy, Vi,

(Min/max order size)

n=a, (Initial stock level)

where

® x; is number of goods ordered at time t and received at t + 1

® v, is number of goods in stock at beginning of time ¢t
® d, is demand during period t

® 3 is the initial inventory
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A simple motivating example

Consider the following deterministic inventory management problem

" holding cost  backlog cost
T ordering cost
mimize > GXR + hilven)” +bilyern)”
m%m}rTnlze Ce Xt + ne(Yes1 t\—Yt+1
Xthi=1 t=1

St Vi1 = e + Xt — dt7 Vta

(Stock balance)
L < x: < Hy, Vi,

(Min/max order size)

n=a, (Initial stock level)

What if future demands known to reside in an uncertainty set /7

d:= ((11, Cf27.

.,dr)EUCR
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A simple motivating example
Consider the following deterministic inventory management problem:

holding cost  backlog cost

T ordering cost
m%m}rTnlze Z cexe + he(Yes1)t +be(—yes1)t
Xt =1 t=1

sit. Yer1 = yr +xe — di, Vi, (Stock balance)
Ly < xt < Hy, Vi, (Min/max order size)

n=a, (Initial stock level)

What if future demands known to reside in uncertainty set /7

d:=(dy,db,....,d7) EUCR"

Ordering policies can depend on revealed demands:
Xt(d[t,l]), where d[t—l] = (d17 do, ..., dt—l) e RtL
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Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:

min  |cx3 + ma h T4 bi(—y)"
L1§X1§H1|: 1 d1€Z/f1>((@)|: 1(_)/2) * 1( y2)

+ min |:CX+ max [h + 4 b(—va)t
Ly<xx<H, 272 dh EU(dh) 2(}/3) * 2( }/3) +

+  min [CTXT +  max  [hr(yra)T + bT(—yTH)*ﬂ .. }

Lr<xr<Hr dreUr(dir—q)

where:
Yer1 = Ye + X — dy
U(den) i={d € R : 3z € RT* such that [dje_1y; d ;2] € U}
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Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:

min  |cx3 + ma h T4 bi(—y)"
L1§X1I§H1|: 1 d1€Z/f1>((@)|: 1(_)/2) 1( y2)

min | cox; max |h T4 by(—y3)T + ...
+L2§X2SH2{ 2 2+d261/l2(d1)|: 2(}/3) i 2( }/3) +

+ min [cx+ max h + 4 pr(— +}
Ly <xr<Hrt T dTEL{T(d[T—u)[ T(yT+1) T( }/T+1) ]

where:
Yer1 = Ye + X — dy
U(den) i={d € R : 3z € RT* such that [dje_1y; d ;2] € U}

1. Nested min-max problems

2. Explicit rule for “conditioning”: projection of uncertainty set
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Bellman Principle; Robust DP Recursions

® The state of the system at time t:

Sti= [yt die—g] = [y i d ... dea] ERT
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Bellman Principle; Robust DP Recursions

® The state of the system at time t:

Sti= [yt die—g] = [y i d ... dea] ERT

® Value function Jf(S;) given by:

S8 =, min, et max | [Adyenn)” + be(—yen)” + S (Sen)]

Observations:
1. General Y — high-dimensional S; — curse of dimensionality
2. When U has special structure, can reduce state space
Uo={d d <d<d]} > Si=n

t—1
- A~ T
ubudget = {d . HZ, HZ”OO < 1a HZHl < ra dp = d; + dfzt} - Sf - [-yf’ z :|ZTH
T=1
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Bellman Principle; Robust DP Recursions

® The state of the system at time t:

Sti= [yt die—g] = [y i d ... dea] ERT

® Value function Jf(S;) given by:

S8 =, min, et max | [Adyenn)” + be(—yen)” + S (Sen)]

Observations:

1. General Y — high-dimensional S; — curse of dimensionality

2. When U has special structure, can reduce state space
® Reduce computational burden
® Prove structural results, comparative statics

xt(y) = min(H, max(Le, 0 — y)) (modified) base-stock policy
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Tractable Approximations Via Decision Rules
Back to our basic dynamic robust model:

min maxmin f(x,y,z
lin maxmin (x,y,2)

¢ Finding Bellman-optimal rules y*(z) generally intractable
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Tractable Approximations Via Decision Rules
Back to our basic dynamic robust model:
min maxmin f(x,y,z
lin maxmin (x,y,2)
¢ Finding Bellman-optimal rules y*(z) generally intractable

® Pragmatic idea: let's focus on some “simple” decision rules that we can compute

® For instance, with a static y(z) =y, could just apply all our previous machinery

Ben-Tal et. al: Linear Decision Rules
— Suppose we have a constraint
(G+Pz)x+dy(z)<b, Vzel

where y(z) is dynamically adjustable

- A linear (affine) form y = u+ Vz would lead to the problem:
ax+du+ (Px+Vd)z<b, Vzel.

Constraint linear in decisions x, u, V and uncertainty z, so all previous results apply!
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Tractable Approximations Via Decision Rules
Back to our basic dynamic robust model:
min maxmin f(x,y,z
lin maxmin (x,y,2)
¢ Finding Bellman-optimal rules y*(z) generally intractable

® Pragmatic idea: let's focus on some “simple” decision rules that we can compute

® For instance, with a static y(z) =y, could just apply all our previous machinery

Ben-Tal et. al: Linear Decision Rules
— Suppose we have a constraint
(G+Pz)x+dy(z)<b, Vzel

where y(z) is dynamically adjustable

- A linear (affine) form y = u+ Vz would lead to the problem:
ax+du+ (Px+Vd)z<b, Vzel.

Constraint linear in decisions x, u, V and uncertainty z, so all previous results apply!

® So how to apply these static or linear rules in a real problem?
14/47



Implementation and Potential Pitfalls

Recall our inventory problem. The deterministic version can be reformulated as an LP:

.
minimize Z (cexe + hes + besy)

X YeoStSe —1
s.t. s >0,s, >0,Vt,
S§ > Y1, Vi,
St = —Yr+1, Vi,
Yerl = Ye + Xe — dp, Vit
Ly <xt < H;,Vt,

where

e 5 : physical inventory held at end of period t
® s, : backlogged customer demand at end of period ¢t
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Implementation and Potential Pitfalls

Recall our inventory problem. The deterministic version can be reformulated as an LP:

T
minimize Z (C Xt + hst + b s_)
Xt tS¢ tSt
Xt,Yt557 5S¢ =1
s.t. s >0,s, >0,Vt,

S§ > Y1, Vi,

St = —Ye+1, Vi,

Yerl = Ye + Xe — dp, Vit

Ly <xt < H;,Vt,
where

e 5 : physical inventory held at end of period t
® s, : backlogged customer demand at end of period ¢t

What if demand known to reside in an uncertainty set /7

d:=(dy,ds,...,dr) U CR"
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Naive Robustification

Consider a naive robust optimization model:

minimize
Xr,)’nS;r )St

s.t.

]~

(cexe + hest + besy)
1

~

s; >0,s, >0,Vt
S?—Zyt+l7Vt
St_z_yf+17Vt

Yeri =Yt +x—de, Vt, Vd el
LtSXtSHt,Vt

16 /47



Naive Robustification

Consider a naive robust optimization model:

T
. . . + -
minimize Z cexe + hesy + bes, )

Xt YtsSt »Se =1
st. st >0,s; >0,Vt
QL > Y1, Vi
2 —Yt+1, Vit

)/t—&-l:)/t‘i’xt*dt,Vt,VdGu
LtSXtSHt,Vt

Unfortunately, this is infeasible even when &/ = {d®), d(?}

Yert = ye +x — di) = dM = ¢
Virl = Vi + Xp — d(2) t t

Problem arises due to “=" constraint!
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A less naive robustification

Robustify an alternate linear programming formulation:

minimize Z (cexe + hes + bes;)

+ =
Xt,S; ,S; B

st. s >0,s; >0, Vt,

T
5:» > »n+ Z(Xt’ - dt/)a Vf,

t'=1

.
s 2+ Y (dv—xi), Ve,

t/=1
LtSXtSHta Vta

where we simply replace y;1 := y1 + ZI,:l(Xt/ — dy).
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A less naive robustification

Robustify an alternate linear programming formulation:

-
minimize E ctxt + htst + bss; )

—+
Xt ,S¢ ,Sr =1

st. s >0,s; >0, Vt,

2y1+th/ dy), Vt, ¥d €U
t'=1
.
st 2 -y+ Y (dv—xv), Vt, Vd €U
t'=1
Le <x¢ < He, Vit
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A less naive robustification

Robustify an alternate linear programming formulation:

-
minimize E ctxt + htst + bss; )

+
Xt ,S¢ ,Sr =1

st. s >0,s; >0, Vt,

2y1+z xp —dy), Vt, ¥d el
t'=1
.
st 2 -y+ Y (dv—xv), Vt, Vd €U
t'=1
Le <xt < Hg,Vt.

Q: If orders x; are static (i.e., fixed t = 0), should (s;",s; ) also be static?
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A less naive robustification

Robustify an alternate linear programming formulation:

-
minimize E ctxt + htst + bss; )

+
Xt ,S¢ ,Sr =1

st. s >0,s; >0, Vt,

Zyl—i—ZXt/ dy), Vt, Vd el
t'=1
.
st 2 -y+ Y (dv—xv), Vt, Vd €U
t'=1
Le <xt < Hg,Vt.

Q: If orders x; are static (i.e., fixed t = 0), should (s;",s; ) also be static?

A: No, that would be unnecessarily conservative!
Auxiliary (i.e., “reformulation”) variables should be fully adjustable, even
under static “implementable” decisions.

18/ 47



Linear Decision Rules

® Take both ordering policies and auxiliary variables to depend /inearly on demands
xe(die-1y) = x¢ + Xedjeyy
s (d[t,l]) =5 + de[tfl]
se (die-y) = s + S¢ diey
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Linear Decision Rules

® Take both ordering policies and auxiliary variables to depend /inearly on demands

xe(die-1y) = x¢ + Xedjeyy
S;L (d[t—l]) = S:r + de[t—l]
St (d[tfl]) =5 + St_d[tfl]

® The Robust Counterpart problem becomes:

-
m?in max ct - (XX 4+ Xed) + he - (s + S;7d) + by - (s; + S;d)
t=1
st. s +S57d>0, s; +S;d>0,VdelU
T
sT+STdZ2yn+ > (4 Xedjpoy — d;), Vd €U,
T=1
.
sc+S7d> -y =Y (4 Xedp_y—dr), Vd €U,
T=1

Lt§Xt+Xtd§Ht,Vd€U,

.. . . ~ e T
* Decision variables: coefficients X = {x?, X,s;", 5", s;,S; },_,
® Two layers of sub-optimality: policies and auxiliary variables; any good?
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Empirical

Performance: Ben-Tal et al. ('04, '09)
p (%) | OPT Linear (Gap) Static (Gap)

10 | 13531.8 | 13531.8 (+0.0%) | 15033.4 (+11.1%)
20 | 15063.5 | 15063.5 (+0.0%) | 18066.7 (+19.9%)
30 | 16595.3 | 16595.3 (+0.0%) | 21100.0 (+27.1%)
40 | 18127.0 | 18127.0 (+0.0%) | 24300.0 (+34.1%)
50 | 19658.7 | 19658.7 (+0.0%) | 27500.0 (+39.9%)
60 | 21190.5 | 211905 (+0.0%) | 30700.0 (+44.9%)
70 | 22722.2 | 22722.2 (+0.0%) | 33960.0 (+49.5%)

20 /47



Empirical Performance: Ben-Tal et al. (04, '09)
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30 16595.3 | 16595.3 (+0.0%) | 21100.0 (+27.1%)
40 18127.0 | 18127.0 (+0.0%) | 24300.0 (+34.1%)
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70 22722.2 | 22722.2 (+0.0%) | 33960.0 (+49.5%)

Theorem ( Bertsimas, |., Parrilo 2010, I., Sharma & Sviridenko 2013 )

For any convex order costs c;(-) and inventory costs h:(-), affine orders x(d;—1}) and

affine auxiliary variables s;~ ( di:—1)) generate the optimal worst-case cost.
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10 13531.8 | 13531.8 (4+0.0%) | 15033.4 (+11.1%)

20 15063.5 | 15063.5 (+0.0%) | 18066.7 (4+19.9%)

30 16595.3 | 16595.3 (+0.0%) | 21100.0 (+27.1%)

40 18127.0 | 18127.0 (+0.0%) | 24300.0 (+34.1%)

50 19658.7 | 19658.7 (+0.0%) | 27500.0 (4+39.9%)
( ) ( )
( ) ( )

60 21190.5 | 21190.5 (+0.0%) | 30700.0 (+44.9%
70 22722.2 | 22722.2 (+0.0%) | 33960.0 (+49.5%

Theorem ( Bertsimas, |., Parrilo 2010, I., Sharma & Sviridenko 2013 )

For any convex order costs c;(-) and inventory costs h:(-), affine orders x(d;—1}) and
affine auxiliary variables s;~ ( di:—1)) generate the optimal worst-case cost.

Why is this relevant?

Insight: orders only depend on backlogged demand
Computational: if c;, h; piecewise affine (m pieces), must solve O(m - T2) LP
Extensions: can embed decisions at t = 0 (e.g., capacities, order pre-commitments)

Robust dynamic critically different from stochastic dynamic

- Stochastic model with complete P requires “complex” policies; affine very suboptimal
20 /47
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Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
J:O:Ez[min f(y,z } Ji, = maxmin f(y,z
] min (v, 2) b = Maxmin (v, 2)

21/47



Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
J:O:Ez[min f(y,z } Ji, = maxmin f(y,z
] min (v, 2) b = Maxmin (v, 2)

® Solve problems via Dynamic Programming:
- Given z, find y*(z) € argmin, f(y, 2)

- Bellman principle: y*(z) optimal for any z

21/47



Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
J:O:Ez[min f(y,z } Ji, = maxmin f(y,z
] min (v, 2) b = Maxmin (v, 2)

® Solve problems via Dynamic Programming:
- Given z, find y*(z) € argmin, f(y, 2)

- Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? I

21/47



Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
J:O:Ez[min f(y,z } Ji, = maxmin f(y,z
] min (v, 2) b = Maxmin (v, 2)

® Solve problems via Dynamic Programming:
- Given z, find y*(z) € argmin, f(y, 2)

- Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? I

® For stochastic model, Bellman-optimally necessary to obtain JZ

*

® For robust model, Bellman-optimally sufficient, but not necessary to obtain JJ,

21/47



Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
J:O:Ez[min f(y,z } Ji, = maxmin f(y,z
] min (v, 2) b = Maxmin (v, 2)

® Solve problems via Dynamic Programming:
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- Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? I

® For stochastic model, Bellman-optimally necessary to obtain JZ

*
rob

® For robust model, Bellman-optimally sufficient, but not necessary to obtain
- Any policy y" from the set
= {y:Z/{—HRm : f(y(z),z)gJ,*ob, VZGZ/I}.

will be “optimal” in the robust problem, i.e., max,cy f(y"“(2),z) = S5y
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Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z +— DM chooses y(z)

Stochastic model: Robust model:
J:O:Ez[min f(y,z } Ji, = maxmin f(y,z
] min (v, 2) b = Maxmin (v, 2)

Solve problems via Dynamic Programming:
- Given z, find y*(z) € argmin, f(y, 2)

- Bellman principle: y*(z) optimal for any z

Question: Is Bellman optimality for y really necessary? I

For stochastic model, Bellman-optimally necessary to obtain JZ,

® For robust model, Bellman-optimally sufficient, but not necessary to obtain

- Any policy y" from the set
= {y ‘U — RT f(y(z),z) < S, Vz GZ/I}.

*

will be “optimal” in the robust problem, i.e., max,cy f(y"“(2),z) = S5y

The set of worst-case optimal policies )" is non-empty and degenerate

*
rob
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Implications for Robust Dynamic Models

1. Bellman optimality not necessary; worst-case optimality necessary

- Introduces degeneracy in policies/decisions

N

. This degeneracy is typical for robust multi-stage problems

(“If adversary does not play optimally, you don’t have to, either...”)

3. Critically different from stochastic problems

4. A blessing: may allow finding policies with simple structure

- e.g., affine...

5. A curse: may yield Pareto inefficiencies in the decision process

6. Worst-case optimal policies must be implemented with resolving

2247



Another Caveat... I
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Are Robust Solutions “Efficient”?

max min u'x

xeX ueld
® Feasible set of solutions X = {x € R" : Ax < b}

® Uncertainty set of objective coefficients i/ = {u € R" : Du > d}
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Are Robust Solutions “Efficient”?

max min u'x

xXEX ueU
® Feasible set of solutions X = {x € R" : Ax < b}
® Uncertainty set of objective coefficients i/ = {u € R" : Du > d}

¢ Classical RO framework finds the optimal value J, and a point x from the set
of robustly optimal solutions x € XR9:

XRO = {xeX:EIyEOsuch that D'y = x, dezJﬁo}

® x € XRO = no other solution exists with higher worst-case objective value u'x

® What if an uncertainty scenario materializes that does not correspond to the
worst-case?

® Are there any guarantees that no other solution X exists that, apart from protecting
us from worst-case scenarios, also performs better overall, under all possible
uncertainty realizations?
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Pareto Robustly Optimal solutions (I. & Trichakis 2014)

max  min u'x (3)
xeX  ueld

Definition
A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (3) if
(a) it is robustly optimal, i.e., x € X9, and
(b) there is no X € X such that
u'x>u'x, Yuel, and

x> i'x, forsome i€ U.
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Pareto Robustly Optimal solutions (I. & Trichakis 2014)

max  min u'x (3)
xeX  ueld

Definition
A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (3) if
(a) it is robustly optimal, i.e., x € X9, and
(b) there is no X € X such that
u'x>u'x, Yuel, and

x> i'x, forsome i€ U.

o XPRO c XRO. get of all PRO solutions
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Some questions

Given a RO solution, is it also PRO?
® How can one find a PRO solution?

® Can we optimize over XPRO?

Can we characterize XFPRO?

- Is it non-empty?
- Is it convex?

- When is XPRO = xRO?

® How does the notion generalize in other RO formulations?
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Finding PRO solutions

Theorem
Given a solution x € X®O and an arbitrary point p € ri(U), consider the following
linear optimization problem:
maximize p'y
subject to y e U*
x+yeX.
Then, either

o U :={yeR": ylu>0,VueclU}is the dual of U
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Finding PRO solutions

Theorem
Given a solution x € X®O and an arbitrary point p € ri(U), consider the following
linear optimization problem:

maximize p'y

subject to y e U*

x+yeX.
Then, either
e the optimal value is zero and x € XPRO | or

e the optimal value is strictly positive and X = x + y* € XPRO | for any optimal y*.

J

o U :={yeR": ylu>0,VueclU}is the dual of U

2747



Remarks

® Finding a point & € ri(i{) can be done efficiently using LP techniques

® Testing whether x € X®O is no harder than solving the classical RO problem in this
setting

e Finding a PRO solution x € XPRO is no harder than solving the classical RO
problem in this setting
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Optimizing Over / Understanding the Set X'R©

® Secondary objective r: can we solve

maximize  r'x

subject to  x € XPRO?

® Interesting case: XRO £ XPRO
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Optimizing Over / Understanding the Set X'R©
® Secondary objective r: can we solve
-

maximize r'x
subject to  x € XPRO?

® Interesting case: XRO £ XPRO

Proposition

XPRO s not necessarily convex.

Proposition
If XRO £ XPRO then XPRO N rj(XRO) = ¢.

® Whether solution to nominal RO is PRO depends on algorithm used for solving LP

® Simplex better for RO problems than interior point methods
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What Are The Gains?

Example (Portfolio)
® n+ 1 assets, with returns r;
®ri=pi+0oi, i=1,...,n rap1 = pnp1

® Cunknown, U={¢€R": -1<(¢<1,1¢=0}

® Objective: select weights x to maximize worst-case portfolio return
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What Are The Gains?

Example (Portfolio)

® n+ 1 assets, with returns r;
® ri=pi+0oiC,i=1,...,n 1=t
® Cunknown, U={¢€R": -1<(¢<1,1¢=0}

® Objective: select weights x to maximize worst-case portfolio return

Example (Inventory)
® One warehouse, N retailers where uncertain demand is realized
® Transportation, holding costs and profit margins differ for each retailer
® Demand driven by market factors d; = d° + qlz, i=1,...,N
® Market factors z are uncertain

zeU={zeR":-b-1<z<b-1, -B<1z2< B}
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Numerical experiments

Example (Project management)
e A PERT diagram given by directed, acyclic graph G = (N, €)

e N\ are project events, £ are project activities / tasks

31/47



Numerical experiments

Example (Project management)
e A PERT diagram given by directed, acyclic graph G = (N, €)

e N\ are project events, £ are project activities / tasks

Task e € £ has uncertain duration 7, = Tg + e
e ={6eRf . 6<b-1, 15 <B)

Task e € £ can be expedited by allocating a budgeted resource x,

Te:TS—i—(Se—Xe
1'x < C

Goal: find resource allocation x to minimize worst-case completion time
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Results — finance and inventory examples (10K instances)

@600 600
2

9400 400

=

9200 200

o

S0 30 40 50 © 10 20 30 40 50
£ 600 600

e

9400 400

=

9200 200

o

™20 30 40 50 © 10 20 30 40 50

nominal gain (%) maximum gain (%)

Figure: TOP: portfolio example. BOTTOM: inventory example. LEFT: performance gains in
nominal scenario. RIGHT: maximal performance gains.
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Results — two project management networks
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Results — two project management networks

(a)

20 30 40

(b)
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8 50L 50 l
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0 400 (b) 400
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=900 200
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maximum gain (in %)

Careful To Avoid Naive Inefficiencies In Robust
Models!
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“Classical” Uncertainty Sets

The robust counterpart for | (3+ Pz)'x < b, Vz €U |is:

U-set U Robust Counterpart Tractability
Box [[z]]oo < p ax+p||P'x|l1 < b LO
Ellipsoidal Izl < p ax+p|P'x|l2 < b CQO
Ax+dy<b
Polyhedral Dz <d Jy : DTy — P’y LO
y=>0
0o <
Budget lzlleo < 3y x4 plyl +TIIPx = yllee < b LO
Izl <T
ax+ X, uch; (L:) <b
Convex h(z) <0 Hwi, uktrex S Wk = P'x Conv. Opt.
u>0

How to construct uncertainty sets?

How to pick parameters like p,['?
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How to Calibrate Uncertainty Sets?

® Take a probabilistic view: z; are random; true distribution P only known to satisfy P € P
® We seek uncertainty sets { to get high probability of constraint satisfaction:

x satisfies (3+ Pz)'x < b,VzeU = P[(a+ Pz)'x < b]is “large” VP € P
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rtainty sets [/ to get high probability of constraint satisfaction:

x satisfies (3+ Pz)'x < b,VzeU = P[(a+ Pz)'x < b]is “large” VP € P

Theorem
Suppose z; are ind

® Upox :={z:

® Uellipsoid 1= {Z :

ependent r.v. with mean 0 and support on [—1,1]. Then:

HZHoc < 1} = P[(5—|— PZ)TX < b] = 1. (no need for independence or 0-mean)

lzll, < v/2In(1/e)} = P[(3+ Pz)'x < b] >1—ce.

35/47



How to Calibrate Uncertainty Sets?

® Take a probabilistic view: z; are random; true distribution P only known to satisfy P € P

® \We seek unce

rtainty sets [/ to get high probability of constraint satisfaction:

x satisfies (3+ Pz)'x < b,VzeU = P[(a+ Pz)'x < b]is “large” VP € P

Theorem
Suppose z; are ind

® Upox :={z:

O uellipsoid-box =

® Uellipsoid 1= {Z :

ependent r.v. with mean 0 and support on [—1,1]. Then:

HZHOC < 1} = P[(5—|— PZ)TX < b] = 1. (no need for independence or 0-mean)
lzll, < v/2In(1/e)} = P[(3+ Pz)'x < b] >1—ce.
{z: |zll, < v2In(1/e), |zl <1} = P[(3+Pz)x < b >1—e.

35/47



How to Calibrate Uncertainty Sets?
® Take a probabilistic view: z; are random; true distribution P only known to satisfy P € P
® We seek uncertainty sets { to get high probability of constraint satisfaction:

x satisfies (3+ Pz)'x < b,VzeU = P[(a+ Pz)'x < b]is “large” VP € P

Theorem
Suppose z; are independent r.v. with mean 0 and support on [—1,1]. Then:

® Upex :={z : ||z|, <1} = P[(a+ Pz)'x < b] = 1. (no need for independence or 0-mean)
® Ueliipsoid = {z : ||z]|, < \/W} = P[(é—i— Pz)x < b >1—e.

® Uaiipsoicbo = {2 @ |1ll, < +/2In(1/e), ||zll, <1} = P[5+ Pz)x < bl >1-c

® Ubuger = {z €ER" 1 ||2]| < 1,|lz]|, <T=+/2In(1/e)VL} = P[(3+Pz)'x<b]>1—e

® Some probabilistic information allows controlling conservatism: useful in applications!
® The budget I' depends on the dimension of z (L), whereas p does not!

® Proofs based on concentration inequalities
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Example: Portfolio Problem (Ben-Tal and Nemirovski)

® 200 risky assets; asset # 200 is cash, with yearly return oo = 5% and zero risk

® Yearly returns r; are independent r.v. with values in [u,- — g, i + a/] and means p;:

(00-7) (200 — i)
g 1= 00540610,

® Goal: distribute $1 to maximize worst-case value-at-risk at level ¢ = 0.5%:

199 200
max{t : ]P)|:Z riXi + rp0X200 > t:| >1—ck¢, V]P), ZX,‘ =1 x> 0},

X,t
i=1 i=1

i =1.05+0.3 =1,..,199.
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® 200 risky assets; asset # 200 is cash, with yearly return oo = 5% and zero risk

® Yearly returns r; are independent r.v. with values in [u,- — g, i + a/] and means p;:

(00-7) (200 — i)
g 1= 00540610,

® Goal: distribute $1 to maximize worst-case value-at-risk at level ¢ = 0.5%:

199 200
max{t : ]P)|:Z riXi + rp0X200 > t:| >1—ck¢, V]P), ZX,‘ =1 x> 0},

X,t
i=1 i=1

i =1.05+0.3 =1,..,199.

® With z := (ri — p;)/0i, let's consider 3 uncertainty sets:
L Ubox = {2 [|z]loc <1}

2. Uetiipsoid-box = {2 1 [|z]lec < 1, ||zl < p}, with p = /2In(1/€) = 3.255
3. Ubudget = {z : [|z]|oc < 1,||z]Js < T} with T =+/2In(1/€)v/199 = 45.921.
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Example: Portfolio Problem (Ben-Tal and Nemirovski)

® 200 risky assets; asset # 200 is cash, with yearly return oo = 5% and zero risk

® Yearly returns r; are independent r.v. with values in [u,- — g, i + a/] and means p;:

(00-7) (200 — i)
g 1= 00540610,

® Goal: distribute $1 to maximize worst-case value-at-risk at level ¢ = 0.5%:

199 200
max{t : ]P)|:Z riXi + rp0X200 > t:| >1—ck¢, V]P), ZX,‘ =1 x> 0},

X,t
i=1 i=1

i =1.05+0.3 =1,..,199.

® With z := (ri — p;)/0i, let's consider 3 uncertainty sets:
L Ubox = {2 [|z]loc <1}

2. Ueliipsoid-box = {2 : [|z]|oc < 1,||z]]2 < p}, with p = /2In(1/e) = 3.255
3. Ubudget = {z 1 ||z||oc < 1,]|z[|s < T} with T =+/2In(1/e)v/199 = 45.921.
® Results:

= Upox: worst-case returns yield less than risk-free return of 5%, so optimal to keep all
money in cash; robust optimal return 1.05, risk 0

= Uliipsoid-box: robust optimal value is 1.12, risk 0.5%

— Upudget: robust optimal value is 1.10, risk 0.5%
® Allowing a tiny bit of risk can go a long way...
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Using Concentration Results to Model Uncertainty Sets

® Bertsimas & Bandi: use the implications of the Central Limit Theorem
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® Suppose we have uncertainties {X;}"_;, each with mean p, standard deviation o
n

Zx,- —nu| < ra\/ﬁ}.

i=1

- If nlarge and CLT premises hold, I = 2 (3) would give 95% (99%) coverage
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® Many extensions possible

- Modeling correlations through a factor model:
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- Using stable laws to model heavy-tailed cases where variance is undefined:
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Using Concentration Results to Model Uncertainty Sets

® Bertsimas & Bandi: use the implications of the Central Limit Theorem

® Suppose we have uncertainties {X;}"_;, each with mean p, standard deviation o
n

Zx,- —nu| < ra\/ﬁ}.

i=1

- If nlarge and CLT premises hold, I = 2 (3) would give 95% (99%) coverage

Ucrlt = {(xl, ceyXn)

® Many extensions possible

- Modeling correlations through a factor model:

Ueorr := {x : x = Pz +e, ‘2:11 zi — m,uy‘ <To,/m, 27:1 e,-’ < rae\/ﬁ}

- Using stable laws to model heavy-tailed cases where variance is undefined:
Unt = {(xl, ceyXn) ’27:1 X; — n,u‘ < rnl/a}

- Constructing typical sets: if Hr is the (Shannon) entropy of f,
(i) PIZ € Usypicall = 1. (ii) |2 10g F(212 € Upypical) + Hr| < e

® Bertsimas & Bandi used these to derive robust equivalents for several classical
queueing theory and information theory results
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Distributionally Robust Optimization I
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Distributionally Robust Modeling

® We saw that embedding some more probabilistic information can help
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Distributionally Robust Modeling
® We saw that embedding some more probabilistic information can help

® |et's change the paradigm slightly:
- we know the probability distribution for Z belongs to an ambiguity set: P € P

- we model P and are interested in robust expected constraint satisfaction:

sup Ep[f(x,2)] < b
PeP

® Now, the adversary is choosing P, instead of z
- Advantage: Ep[f(x,Z)] as an expression of P is always linear

- If P has discrete, finite support: much of our earlier machinery (e.g., convex duality)
can be applied if the set P is “well-behaved”

- Continuous IP: oo-dimensional optimization

39/47



Distributionally Robust Modeling
® We saw that embedding some more probabilistic information can help

® |et's change the paradigm slightly:
- we know the probability distribution for Z belongs to an ambiguity set: P € P

- we model P and are interested in robust expected constraint satisfaction:

sup Ep[f(x,2)] < b
PeP

Now, the adversary is choosing PP, instead of z
- Advantage: Ep[f(x,Z)] as an expression of P is always linear

- If P has discrete, finite support: much of our earlier machinery (e.g., convex duality)
can be applied if the set P is “well-behaved”

- Continuous IP: oo-dimensional optimization

Very old idea, dating to the 1950s (Scarf 1958, Zackova 1966)

Kuhn, Shafiee, Wiesemann (2024): tutorial on state-of-the-art. Can model:
- known (bounds on) moments, e.g., means, covariance matrix, higher order
- known (bounds on) quantiles (e.g., median) or spread statistics
- multiple confidence regions

- distance from a nominal distribution (Kullback-Leibler, Wasserstein, etc.)
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Esfahani and Kuhn (2015)

Baseline problem. Single-stage stochastic program:
JO = Xlgf( Ep[h(x, 2)]
® x ¢ X CR"is the decision,

® zclU CR™is arandom vector,
e P (distribution of z) is unknown.

Data. We have i.i.d. samples Z/A{N :={z1,...,2zn} and form the empirical distribution:

N 1 N
IP)N = Nz(szr..
i=1
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Baseline problem. Single-stage stochastic program:
JO = Xlgf( Ep[h(x, 2)]
® x ¢ X CR"is the decision,

® zclU CR™is arandom vector,
e P (distribution of z) is unknown.

Data. We have i.i.d. samples Uy = {z1,...,2zn} and form the empirical distribution:

N 1 N
IP)N = Nz(szr..
i=1

Classical solution method: Sample Average Approximation (SAA)

N
. . 1
Jsan = Xlgi E@N[h(x, z)] :):reﬂ)"( NZ;h(x,z,-).
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Esfahani and Kuhn (2015)

Baseline problem. Single-stage stochastic program:

J* = Xlgf( Ep[h(x, 2)]

® x ¢ X CR"is the decision,
® zclU CR™is arandom vector,
e P (distribution of z) is unknown.

Data. We have i.i.d. samples Uy = {z1,...,2zn} and form the empirical distribution:

N 1 N
Py = N ; 0z
Classical solution method: Sample Average Approximation (SAA)
N
Jsan 1= inf B [h(x,2)] = inf N;h(x,z,-).

SAA is asymptotically consistent, but for small N it can:

® overfit the data (“optimizer's curse”)
® give poor out-of-sample performance

40/ 47



Wasserstein Metric and Ambiguity Sets

Wasserstein distance. Let M(Uf) be the set of all distributions supported on Y. For

1. Q: € M),
(@ Q)= if, [ [l = €l dn(ér, )

® [1is the set of all couplings of Q; and Q,, i.e., joint distributions of &; and &
with marginals given by Q; and Q,, respectively

® || - || is any norm. More popular choices: || - |loo, || |1, ]| - [|2
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Wasserstein Metric and Ambiguity Sets

Wasserstein distance. Let M(Uf) be the set of all distributions supported on Y. For

1. Q: € M),
(@ Q)= if, [ [l = €l dn(ér, )

® [1is the set of all couplings of Q; and Q,, i.e., joint distributions of &; and &
with marginals given by Q; and Q,, respectively

® || - || is any norm. More popular choices: || - |loo, || |1, ]| - [|2

Wasserstein ambiguity set (ball).
B(Py) = {Q e M@U) : du(QPu) < e}
® Centered at the empirical distribution @N.

® Radius € controls conservatism.

® Contains both discrete and continuous distributions close to I@N.
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Wasserstein DRO Formulation

Distributionally robust objective. For fixed decision x, worst-case expected cost is:

sup  Ep[h(x,z)].
PeB. (Py)

Data-driven distributionally robust optimization:

In(e) == ;2; sup Ep [h(x,2)].
PeB. (Pn)

Interpretation:

® Take all distributions P within distance e of the data-driven @N.

® Optimize against the most adversarial such distribution.

Goal:

® Choose € and solve Jy(¢) so that

- we get good out-of-sample performance, and
- we retain finite-sample and asymptotic guarantees.
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Measure Concentration and Choice of Radius

Assume a light-tail condition on P:

Ep[exp(]|z]|?)] < oo for some a > 1.

Then a measure concentration result (Fournier—Guillin) implies: for some ¢, ¢, > 0,

— )

a exp( — CQNEmaX{m’Z}), e<l1

PN[dw(P, E\DN) > 6] <
crexp( — c2Ne?), e>1.

For a prescribed significance level 3 € (0,1), we can choose a radius ey(/3) such that

PYdw(P,Py) < en(B)] > 1- 8.

Interpretation: with probability at least 1 — 3, the true distribution P lies inside the
Wasserstein ball B, 5)(Pn).
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Finite-sample Performance Guarantee
Fix 8 € (0,1) and choose € = ep(f) as in the concentration bound

Let xy be an optimizer of the DRO problem

Jy:=inf  sup  Ep[h(x,Zz)].
xex PEB. ,,(5)(Pn)
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Finite-sample Performance Guarantee
Fix 8 € (0,1) and choose € = ep(f) as in the concentration bound

Let xy be an optimizer of the DRO problem
Jy:=inf  sup  Ep[h(x,Zz)].

X ~
xe PGBEN(B)(PN)

Then, with probability at least 1 — § (over the sampling of Z)N)

Ep [/‘I(XN7 Z)] S JN.

So:

® Jy is an upper confidence bound on the out-of-sample cost of xy valid with
confidence level 1 — 3

® We can also get asymptotic consistency: as Sy — 0, by choosing ey = en(58n),
we get Jy — J* almost surely, so the finite-sample Wasserstein DRO
asymptotically recovers the true stochastic program
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Convex Reformulations

Focus on Nature's Problem, i.e., the inner worst-case expectation for a fixed x:

(NP) sup Ep[l(z)]
PeB. (Pn)

Assumptions: the support U of z is convex and closed and the loss function ¢ is:

U(z) = maxti(2),

where each /, is proper, concave, and upper semicontinuous
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Convex Reformulations

Focus on Nature's Problem, i.e., the inner worst-case expectation for a fixed x:

(NP) sup. Ep[l(2)]
PeB. (Pn)

Assumptions: the support U of z is convex and closed and the loss function ¢ is:
l(z) = max{y(z
(2) = maxtu(2),
where each /, is proper, concave, and upper semicontinuous

Key result. The optimal value of (NP) equals the optimal value of:

1N
)\rw;i’r;ik Ae + N ; Si
s.t. [l + xul*(zik) = (zik, &) < si, Vi k,
lzulls < A, Vi, k,
where Xy is the indicator function of U, [f]* is the Fenchel conjugate of f, and || - ||« is
the dual norm of | - ||.

® Enough to solve a finite-dimensional convex problem

® /i linear, U polyhedral, 1- or co-norm in dw(-,-) = finite-dimensional LP
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Using Hypothesis Tests to Model Uncertainty Sets

Bertsimas, Gupta, Kallus ('17): data-driven uncertainty sets from hypothesis tests

Table 1 Summary of data-driven uncertainty sets proposed in this paper. SOC, EC and LMI denote
second-order cone representable sets, exponential cone representable sets, and linear matrix inequalities,
respectively

Assumptions on P* Hypothesis test Geometric description Eqgs. Inner problem
Discrete support xz—test Nele (13, 15)
Discrete support G-test Polyhedral* (13, 16)
Independent marginals KS Test Polyhedral* 21 Line search
Independent marginals K Test Polyhedral* (76) Line search
Independent marginals CvM Test SOC* (76, 69)
Independent marginals W Test SOC* (76, 70)
Independent marginals AD Test EC (76,71)
Independent marginals Chen et al. [23] SoC 27) Closed-form
None Marginal Samples Box 31 Closed-form
None Linear Convex Polyhedron (34)
Ordering
None Shawe-Taylor and SoC 39) Closed-form
Cristianini [46]
None Delage and Ye LMI 41)
[25]

The additional “*” notation indicates a set of the above type with one additional, relative entropy constraint.
KS, K, CvM, W, and AD denote the Kolmogorov—Smirnov, Kuiper, Cramer-von Mises, Watson and
Anderson-Darling goodness of fit tests, respectively. In some cases, we can identify a worst-case realization
of win (1) for bi-affine f and a candidate x with a specialized algorithm. In these cases, the column “Inner
Problem” roughly describes this algorithm
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