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Recall “Classical” Robust Optimization (RO)

• Only information about unknowns z : they belong to an uncertainty set U

• Solve the following optimization problem:

(P)
inf
x

sup
z∈U

C (x , z)

s.t. fi (x , z) ≤ 0, ∀ z ∈ U , ∀ i ∈ I

• This model has infinitely many constraints

• W.l.o.g., we can consider uncertainty only in the constraints

• Each and every constraint must satisfied: fi (x , z) ≤ 0, ∀ z ∈ U

• How to reformulate this as a finite-dimensional, tractable optimization problem,

a.k.a. the robust counterpart?
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“Classical” Uncertainty Sets

The robust counterpart for (ā+ Pz)Tx ≤ b, ∀ z ∈ U is:

U-set U Robust Counterpart Tractability

Box ∥z∥∞ ≤ ρ āTx + ρ∥PTx∥1 ≤ b LO

Ellipsoidal ∥z∥2 ≤ ρ āTx + ρ∥PTx∥2 ≤ b CQO

Polyhedral Dz ≤ d ∃y :


āTx + dTy ≤ b

DTy = PTx

y ≥ 0

LO

Budget

{
∥z∥∞ ≤ ρ

∥z∥1 ≤ Γ
∃y : āTx + ρ∥y∥1 + Γ∥PTx − y∥∞ ≤ b LO

Convex hk(z) ≤ 0 ∃{wk , uk}k∈K :


aTx +

∑
k ukh

∗
k

(
wk
uk

)
≤ b∑

k wk = PTx

u ≥ 0

Conv. Opt.
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Box ∥z∥∞ ≤ ρ āTx + ρ∥PTx∥1 ≤ b LO

Ellipsoidal ∥z∥2 ≤ ρ āTx + ρ∥PTx∥2 ≤ b CQO
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• Several extensions

• Robust counterparts can be handled by large-scale modern solvers

• Enough for many practical problems
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Two Important Caveats for Robust Models
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Example: Facility Location Problem (Baron et al. 2011)

Need to decide where to open facilities, how much capacity to install, and how to assign

customer demands over a future planning horizon, in order to maximize profits.

Step 1. Start with a deterministic model formulation:

max
X ,I ,Z ,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − c sij)Xijτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi + Ki Ii )

subject to
∑
i∈F

Xijτ ≤ Djτ , j ∈ N , τ ∈ T ,

∑
j∈N

Xijτ ≤ Piτ , i ∈ F , τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F , τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|
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Xijτ ≤ Piτ , i ∈ F , τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F , τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|

Parameters

T : discrete planning horizon, indexed by τ

F : potential facility locations, indexed by i
N : demand node locations, indexed by j
p: unit price of goods
ci : cost per unit of production at facility i
Ci : cost per unit of capacity for facility i
Ki : cost of opening a facility at location i
csij : cost of shipping units from i to j
Djτ : demand in period τ at location j

Decision variables

Xijτ : quantity of demand j in period τ satisfied by i
Piτ : quantity produced at facility i in period τ

Ii : whether facility i is open (0/1)
Zi : capacity of facility i if open
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Step 2. Identify all uncertain parameters and model the uncertainty set U .
Baron et al. 2011 captured uncertain demands with an ellipsoidal uncertainty set:

U =

{
D ∈ R|N|·|T |

∣∣∣∣∣ ∑
j∈N

∑
t∈T

(
Djt − D̄jt

ϵtD̄jt

)2

≤ ρ2
}
,

{D̄jt}j∈N ;t∈T are “nominal” demands, ϵt is allowed deviation (%), ρ is the size of the ellipsoid
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j∈N

∑
t∈T

(
Djt − D̄jt

ϵtD̄jt

)2

≤ ρ2
}
,

Equivalently, can write Djt = D̄jt(1 + ϵt · z jt), where z ∈ U = {z ∈ R|N|·|T | : ∥z∥2 ≤ ρ}
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∑
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(
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≤ ρ2
}
,

Step 3. Derive robust counterpart for the problem. Here, a Conic Quadratic program.
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Compare Two Models
Our initial model, with decisions for quantities X :

max
X,I,Z,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − csij )Xijτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi + Ki Ii )

subject to
∑
i∈F

Xijτ ≤ Djτ , j ∈ N , τ ∈ T ,

∑
j∈N

Xijτ ≤ Piτ , i ∈ F, τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F, τ ∈ T (M is a large constant)

X ≥ 0, I ∈ {0, 1}|F|

Another model, with decisions for fractions of demands Y :

max
Y ,I,Z,P

∑
τ∈T

∑
i∈F

∑
j∈N

(p − csij )YijτDjτ −
∑
τ∈T

∑
i∈F

ciPiτ −
∑
i∈F

(CiZi − Ki Ii )

subject to
∑
i∈F

Yijτ ≤ 1, j ∈ N , τ ∈ T ,

∑
j∈N

YijτDjτ ≤ Piτ , i ∈ F, τ ∈ T ,

Piτ ≤ Zi , Zi ≤ M · Ii , i ∈ F, τ ∈ T
Y ≥ 0, I ∈ {0, 1}|F| (1)

• For fixed D, these deterministic/nominal models are equivalent
• But their robust counterparts are not equivalent!

– The feasible set in the second formulation is larger
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• Reason: true formulation allows choosing X (and Z ) after observing D:

maxI ,Z minDj,1 maxXi,j,1,Pi,1 minDj,2 maxXi,j,2,Pi,2 . . .

• Second formulation implements ordering quantities that depend on demand!
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The robust counterparts of equivalent deterministic

models may be different!

You should always try to allow your formulation
to be as flexible as possible!
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Dynamic Decisions and Robust Dynamic Optimization
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Dynamic (Robust) Optimization

x chosen 7→ z revealed 7→ y(x , z) chosen

Stochastic model:

min
x

Ez

[
min
y(x,z)

f (x , y , z)

] Robust model:

min
x

max
z∈U

min
y(x,z)

f (x , y , z)

• Solve problems via Dynamic Programming:

– Given x , z → find y⋆(x , z) → find x⋆

– Bellman principle: y⋆ optimal for any given x , z

1. Properly writing a robust DP

2. Tractable approximations with decision rules

3. A subtle point: is Bellman optimality really necessary?
• If not, what to replace it with?

• Why is this relevant?

4. Some applications
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A simple motivating example

Consider the following deterministic inventory management problem:

minimize
{xt}Tt=1

T∑
t=1

ordering cost︷︸︸︷
ctxt +

holding cost︷ ︸︸ ︷
ht(yt+1)

+ +

backlog cost︷ ︸︸ ︷
bt(−yt+1)

+


s.t. yt+1 = yt + xt − dt , ∀ t, (Stock balance)

Lt ≤ xt ≤ Ht , ∀ t, (Min/max order size)

y1 = a , (Initial stock level)
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s.t. yt+1 = yt + xt − dt , ∀ t, (Stock balance)

Lt ≤ xt ≤ Ht , ∀ t, (Min/max order size)

y1 = a , (Initial stock level)

where

• xt is number of goods ordered at time t and received at t + 1

• yt is number of goods in stock at beginning of time t

• dt is demand during period t

• a is the initial inventory
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Lt ≤ xt ≤ Ht , ∀ t, (Min/max order size)

y1 = a , (Initial stock level)

What if future demands known to reside in uncertainty set U?

d := (d1, d2, . . . , dT ) ∈ U ⊆ RT

Ordering policies can depend on revealed demands:

xt(d[t−1]), where d[t−1] := (d1, d2, . . . , dt−1) ∈ Rt−1.
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Robust Dynamic Programming Formulation

Our dynamic decision problem can also be written:

min
L1≤x1≤H1

[
c1x1 + max

d1∈U1(∅)

[
h1(y2)

+ + b1(−y2)
+

+ min
L2≤x2≤H2

[
c2x2 + max

d2∈U2(d1)

[
h2(y3)

+ + b2(−y3)
+ + . . .

+ min
LT≤xT≤HT

[
cT xT + max

dT∈UT (d[T−1])
[hT (yT+1)

+ + bT (−yT+1)
+]
]
. . .

]

where:

yt+1 := yt + xt − dt

Ut(d[t−1]) :=
{
d ∈ R : ∃ z ∈ RT−t such that [d[t−1]; d ; z ] ∈ U

}

1. Nested min-max problems

2. Explicit rule for “conditioning”: projection of uncertainty set
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Robust Dynamic Programming Formulation
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Bellman Principle; Robust DP Recursions
• The state of the system at time t:

St :=
[
yt ; d[t−1]

]
=

[
yt ; d1 d2; . . . ; dt−1

]
∈ RT

• Value function J⋆t (St) given by:

J⋆t (St) = min
Lt≤xt≤Ht

[
ctxt + max

dt∈Ut(d[t−1])

[
ht(yt+1)

+ + bt(−yt+1)
+ + J⋆t+1(St+1)

]]

Observations:

1. General U −→ high-dimensional St −→ curse of dimensionality

2. When U has special structure, can reduce state space
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+ + J⋆t+1(St+1)

]]

Observations:

1. General U −→ high-dimensional St −→ curse of dimensionality

2. When U has special structure, can reduce state space

Ubox =
{
d : d t ≤ dt ≤ d̄t ]

}
→ St = yt

Ubudget =
{
d : ∃ z , ∥z∥∞ ≤ 1, ∥z∥1 ≤ Γ, dt = d̄t + d̂tzt

}
→ St =

[
yt ,

t−1∑
τ=1

|zτ |
]T
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]]

Observations:

1. General U −→ high-dimensional St −→ curse of dimensionality

2. When U has special structure, can reduce state space

• Reduce computational burden

• Prove structural results, comparative statics

x⋆t (y) = min
(
Ht ,max(Lt , θt − y)

)
(modified) base-stock policy
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Tractable Approximations Via Decision Rules

Back to our basic dynamic robust model:

min
x

max
z∈U

min
y(z)

f (x , y , z)

• Finding Bellman-optimal rules y⋆(z) generally intractable

• Pragmatic idea: let’s focus on some “simple” decision rules that we can compute

• For instance, with a static y(z) = y , could just apply all our previous machinery

• Ben-Tal et. al: Linear Decision Rules

– Suppose we have a constraint

(ā+ Pz)Tx + dTy(z) ≤ b, ∀ z ∈ U

where y(z) is dynamically adjustable

– A linear (affine) form y = u + Vz would lead to the problem:

āTx + dTu + (PTx + VTd)Tz ≤ b, ∀z ∈ U .

Constraint linear in decisions x , u,V and uncertainty z , so all previous results apply!

• So how to apply these static or linear rules in a real problem?
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Implementation and Potential Pitfalls

Recall our inventory problem. The deterministic version can be reformulated as an LP:

minimize
xt ,yt ,s

+
t ,s−t

T∑
t=1

(
ctxt + hts

+
t + bts

−
t

)
s.t. s+t ≥ 0, s−t ≥ 0 , ∀ t,

s+t ≥ yt+1 , ∀ t,
s−t ≥ −yt+1 , ∀ t,
yt+1 = yt + xt − dt , ∀ t,
Lt ≤ xt ≤ Ht , ∀ t,

where

• s+t : physical inventory held at end of period t
• s−t : backlogged customer demand at end of period t

What if demand known to reside in an uncertainty set U?

d := (d1, d2, . . . , dT ) ∈ U ⊆ RT

15 / 47



Implementation and Potential Pitfalls

Recall our inventory problem. The deterministic version can be reformulated as an LP:

minimize
xt ,yt ,s

+
t ,s−t

T∑
t=1

(
ctxt + hts

+
t + bts

−
t

)
s.t. s+t ≥ 0, s−t ≥ 0 , ∀ t,

s+t ≥ yt+1 , ∀ t,
s−t ≥ −yt+1 , ∀ t,
yt+1 = yt + xt − dt , ∀ t,
Lt ≤ xt ≤ Ht , ∀ t,

where

• s+t : physical inventory held at end of period t
• s−t : backlogged customer demand at end of period t

What if demand known to reside in an uncertainty set U?

d := (d1, d2, . . . , dT ) ∈ U ⊆ RT

15 / 47



Näıve Robustification

Consider a näıve robust optimization model:

minimize
xt ,yt ,s

+
t ,s−t

T∑
t=1

(
ctxt + hts

+
t + bts

−
t

)
s.t. s+t ≥ 0, s−t ≥ 0 , ∀ t

s+t ≥ yt+1 , ∀ t
s−t ≥ −yt+1 , ∀ t
yt+1 = yt + xt − dt , ∀ t, ∀ d ∈ U
Lt ≤ xt ≤ Ht , ∀ t

Unfortunately, this is infeasible even when U = {d (1), d (2)}:{
yt+1 = yt + xt − d

(1)
t

yt+1 = yt + xt − d
(2)
t

}
⇒ d

(1)
t = d

(2)
t

Problem arises due to “=” constraint!
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Näıve Robustification
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A less näıve robustification

Robustify an alternate linear programming formulation:

minimize
xt ,s

+
t ,s−t

∑
t

(
ctxt + hts

+
t + bts

−
t

)
s.t. s+t ≥ 0, s−t ≥ 0, ∀t,

s+t ≥ y1 +
T∑

t′=1

(xt′ − dt′), ∀t,

s−t ≥ −y1 +
T∑

t′=1

(dt′ − xt′), ∀t,

Lt ≤ xt ≤ Ht , ∀t ,

where we simply replace yt+1 := y1 +
∑T

t′=1(xt′ − dt′).
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s−t ≥ −y1 +
T∑

t′=1

(dt′ − xt′), ∀t, ∀ d ∈ U

Lt ≤ xt ≤ Ht , ∀ t .

Q: If orders xt are static (i.e., fixed t = 0), should (s+t , s
−
t ) also be static?

A: No, that would be unnecessarily conservative!

Auxiliary (i.e., “reformulation”) variables should be fully adjustable, even

under static “implementable” decisions.
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Linear Decision Rules

• Take both ordering policies and auxiliary variables to depend linearly on demands

xt
(
d[t−1]

)
= x0t + Xtd[t−1]

s+t
(
d[t−1]

)
= s+t + S+

t d[t−1]

s−t
(
d[t−1]

)
= s−t + S−

t d[t−1]

• The Robust Counterpart problem becomes:

min
X

max
d∈U

T∑
t=1

ct · (x0t + Xtd) + ht · (s+t + S+
t d) + bt · (s−t + S−

t d)

s.t. s+t + S+
t d ≥ 0, s−t + S−

t d ≥ 0, ∀ d ∈ U

s+t + S+
t d ≥ y1 +

T∑
τ=1

(x0τ + Xτd [τ−1] − dτ ), ∀ d ∈ U ,

s−t + S−
t d ≥ −y1 −

T∑
τ=1

(x0τ + Xτd [τ−1] − dτ ), ∀ d ∈ U ,

Lt ≤ xt + Xtd ≤ Ht , ∀ d ∈ U ,

• Decision variables: coefficients X =
{
x0t ,Xt , s

+
t , S

+
t , s−t , S−

t

}T
t=1

• Two layers of sub-optimality: policies and auxiliary variables; any good?
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Empirical Performance: Ben-Tal et al. (’04, ’09)

ρ (%) OPT Linear (Gap) Static (Gap)

10 13531.8 13531.8 (+0.0%) 15033.4 (+11.1%)

20 15063.5 15063.5 (+0.0%) 18066.7 (+19.9%)

30 16595.3 16595.3 (+0.0%) 21100.0 (+27.1%)

40 18127.0 18127.0 (+0.0%) 24300.0 (+34.1%)

50 19658.7 19658.7 (+0.0%) 27500.0 (+39.9%)

60 21190.5 21190.5 (+0.0%) 30700.0 (+44.9%)

70 22722.2 22722.2 (+0.0%) 33960.0 (+49.5%)

Theorem ( Bertsimas, I., Parrilo 2010, I., Sharma & Sviridenko 2013 )

For any convex order costs ct(·) and inventory costs ht(·), affine orders xt(d[t−1]) and

affine auxiliary variables s+,−
t (d[t−1]) generate the optimal worst-case cost.

Why is this relevant?

1. Insight: orders only depend on backlogged demand

2. Computational: if ct , ht piecewise affine (m pieces), must solve O(m · T 2) LP

3. Extensions: can embed decisions at t = 0 (e.g., capacities, order pre-commitments)
4. Robust dynamic critically different from stochastic dynamic

– Stochastic model with complete P requires “complex” policies; affine very suboptimal
– Robust model admits a very “simple” class of optimal policies
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Bellman Optimality in Stochastic and Robust Models

“Nature” reveals z 7→ DM chooses y(z)

Stochastic model:

J⋆sto = Ez

[
min
y(z)

f (y , z)
] Robust model:

J⋆rob = max
z∈U

min
y(z)

f (y , z)

• Solve problems via Dynamic Programming:
– Given z , find y⋆(z) ∈ argminy f (y , z)

– Bellman principle: y⋆(z) optimal for any z

Question: Is Bellman optimality for y really necessary?

• For stochastic model, Bellman-optimally necessary to obtain J⋆sto

• For robust model, Bellman-optimally sufficient, but not necessary to obtain J⋆rob

– Any policy ywc from the set

Ywc :=
{
y : U → Rm : f

(
y(z), z

)
≤ J⋆

rob, ∀ z ∈ U
}
.

will be “optimal” in the robust problem, i.e., maxz∈U f (ywc(z), z) = J⋆
rob

• The set of worst-case optimal policies Ywc is non-empty and degenerate
– There are infinitely many worst-case optimal policies
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– Given z , find y⋆(z) ∈ argminy f (y , z)

– Bellman principle: y⋆(z) optimal for any z
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Implications for Robust Dynamic Models

1. Bellman optimality not necessary; worst-case optimality necessary
– Introduces degeneracy in policies/decisions

2. This degeneracy is typical for robust multi-stage problems

(“If adversary does not play optimally, you don’t have to, either...”)

3. Critically different from stochastic problems

4. A blessing: may allow finding policies with simple structure
– e.g., affine...

5. A curse: may yield Pareto inefficiencies in the decision process

6. Worst-case optimal policies must be implemented with resolving
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Another Caveat...
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Are Robust Solutions “Efficient”?

max
x∈X

min
u∈U

uTx

• Feasible set of solutions X =
{
x ∈ Rn : Ax ≤ b

}
• Uncertainty set of objective coefficients U = {u ∈ Rn : Du ≥ d}

• Classical RO framework finds the optimal value J⋆RO and a point x from the set

of robustly optimal solutions x ∈ XRO:

XRO =
{
x ∈ X : ∃ y ≥ 0 such that DTy = x , yTd ≥ J⋆RO

}
• x ∈ XRO ⇒ no other solution exists with higher worst-case objective value uTx

• What if an uncertainty scenario materializes that does not correspond to the

worst-case?

• Are there any guarantees that no other solution x̄ exists that, apart from protecting

us from worst-case scenarios, also performs better overall, under all possible

uncertainty realizations?
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Pareto Robustly Optimal solutions (I. & Trichakis 2014)

max
x∈X

min
u∈U

uTx (3)

Definition
A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (3) if

(a) it is robustly optimal, i.e., x ∈ XRO, and

(b) there is no x̄ ∈ X such that

uTx̄ ≥ uTx , ∀u ∈ U , and

ūTx̄ > ūTx , for some ū ∈ U .

• XPRO ⊆ XRO: set of all PRO solutions
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Some questions

• Given a RO solution, is it also PRO?

• How can one find a PRO solution?

• Can we optimize over XPRO?

• Can we characterize XPRO?

– Is it non-empty?

– Is it convex?

– When is XPRO = XRO?

• How does the notion generalize in other RO formulations?
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Finding PRO solutions

Theorem
Given a solution x ∈ XRO and an arbitrary point p̄ ∈ ri(U), consider the following

linear optimization problem:

maximize p̄Ty

subject to y ∈ U∗

x + y ∈ X .

Then, either

• the optimal value is zero and x ∈ XPRO, or

• the optimal value is strictly positive and x̄ = x + y⋆ ∈ XPRO, for any optimal y⋆.

• U∗ := {y ∈ Rn : yTu ≥ 0, ∀ u ∈ U} is the dual of U
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Remarks

• Finding a point ū ∈ ri(U) can be done efficiently using LP techniques

• Testing whether x ∈ XRO is no harder than solving the classical RO problem in this

setting

• Finding a PRO solution x ∈ XPRO is no harder than solving the classical RO

problem in this setting
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Optimizing Over / Understanding the Set XPRO

• Secondary objective r : can we solve

maximize rTx

subject to x ∈ XPRO?

• Interesting case: XRO ̸= XPRO

Proposition

XPRO is not necessarily convex.

Proposition

If XRO ̸= XPRO, then XPRO ∩ ri(XRO) = ∅.

• Whether solution to nominal RO is PRO depends on algorithm used for solving LP

• Simplex better for RO problems than interior point methods
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What Are The Gains?

Example (Portfolio)
• n + 1 assets, with returns ri

• ri = µi + σi ζi , i = 1, . . . , n, rn+1 = µn+1

• ζ unknown, U = {ζ ∈ Rn : −1 ≤ ζ ≤ 1, 1Tζ = 0}

• Objective: select weights x to maximize worst-case portfolio return

Example (Inventory)
• One warehouse, N retailers where uncertain demand is realized

• Transportation, holding costs and profit margins differ for each retailer

• Demand driven by market factors di = d0
i + qTi z , i = 1, . . . ,N

• Market factors z are uncertain

z ∈ U = {z ∈ RN : −b · 1 ≤ z ≤ b · 1, −B ≤ 1Tz ≤ B}
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Numerical experiments

Example (Project management)
• A PERT diagram given by directed, acyclic graph G = (N , E)

• N are project events, E are project activities / tasks
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Numerical experiments

Example (Project management)
• A PERT diagram given by directed, acyclic graph G = (N , E)

• N are project events, E are project activities / tasks

• Task e ∈ E has uncertain duration τe = τ 0e + δe

δ ∈ U :=
{
δ ∈ R|E|

+ : δ ≤ b · 1, 1Tδe ≤ B
}

• Task e ∈ E can be expedited by allocating a budgeted resource xe

τe = τ 0e + δe − xe

1Tx ≤ C

• Goal: find resource allocation x to minimize worst-case completion time
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Results – finance and inventory examples (10K instances)

Figure: TOP: portfolio example. BOTTOM: inventory example. LEFT: performance gains in

nominal scenario. RIGHT: maximal performance gains.
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Results – two project management networks

Careful To Avoid Näıve Inefficiencies In Robust
Models!
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“Classical” Uncertainty Sets

The robust counterpart for (ā+ Pz)Tx ≤ b, ∀ z ∈ U is:

U-set U Robust Counterpart Tractability

Box ∥z∥∞ ≤ ρ āTx + ρ∥PTx∥1 ≤ b LO

Ellipsoidal ∥z∥2 ≤ ρ āTx + ρ∥PTx∥2 ≤ b CQO

Polyhedral Dz ≤ d ∃y :


āTx + dTy ≤ b

DTy = PTx

y ≥ 0

LO

Budget

{
∥z∥∞ ≤ ρ

∥z∥1 ≤ Γ
∃y : āTx + ρ∥y∥1 + Γ∥PTx − y∥∞ ≤ b LO

Convex hk(z) ≤ 0 ∃{wk , uk}k∈K :


aTx +

∑
k ukh

∗
k

(
wk
uk

)
≤ b∑

k wk = PTx

u ≥ 0

Conv. Opt.

How to construct uncertainty sets?
How to pick parameters like ρ, Γ?
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How to Calibrate Uncertainty Sets?

• Take a probabilistic view: zi are random; true distribution P only known to satisfy P ∈ P

• We seek uncertainty sets U to get high probability of constraint satisfaction:

x satisfies (ā+ Pz)Tx ≤ b, ∀z ∈ U ⇒ P
[
(ā+ Pz)Tx ≤ b] is “large” ∀P ∈ P

Theorem
Suppose zi are independent r.v. with mean 0 and support on [−1, 1]. Then:

• Ubox := {z : ∥z∥∞ ≤ 1} ⇒ P
[
(ā+ Pz)Tx ≤ b] = 1. (no need for independence or 0-mean)

• Uellipsoid := {z : ∥z∥2 ≤
√

2 ln(1/ϵ)} ⇒ P
[
(ā+ Pz)Tx ≤ b] ≥ 1− ϵ.

• Uellipsoid-box := {z : ∥z∥2 ≤
√

2 ln(1/ϵ), ∥z∥∞ ≤ 1 } ⇒ P
[
(ā+ Pz)Tx ≤ b] ≥ 1− ϵ.

• Ubudget = {z ∈ RL : ∥z∥∞≤ 1,∥z∥1≤Γ=
√

2 ln(1/ϵ)
√
L} ⇒ P

[
(ā+ Pz)Tx ≤ b] ≥ 1− ϵ.

• Some probabilistic information allows controlling conservatism: useful in applications!

• The budget Γ depends on the dimension of z (L), whereas ρ does not!

• Proofs based on concentration inequalities
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(ā+ Pz)Tx ≤ b] = 1. (no need for independence or 0-mean)

• Uellipsoid := {z : ∥z∥2 ≤
√

2 ln(1/ϵ)} ⇒ P
[
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(ā+ Pz)Tx ≤ b] ≥ 1− ϵ.

• Some probabilistic information allows controlling conservatism: useful in applications!

• The budget Γ depends on the dimension of z (L), whereas ρ does not!

• Proofs based on concentration inequalities

35 / 47



How to Calibrate Uncertainty Sets?

• Take a probabilistic view: zi are random; true distribution P only known to satisfy P ∈ P

• We seek uncertainty sets U to get high probability of constraint satisfaction:
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(ā+ Pz)Tx ≤ b] ≥ 1− ϵ.

• Uellipsoid-box := {z : ∥z∥2 ≤
√

2 ln(1/ϵ), ∥z∥∞ ≤ 1 } ⇒ P
[
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Example: Portfolio Problem (Ben-Tal and Nemirovski)

• 200 risky assets; asset # 200 is cash, with yearly return r200 = 5% and zero risk

• Yearly returns ri are independent r.v. with values in [µi − σi , µi + σi ] and means µi :

µi = 1.05 + 0.3
(200− i)

199
, σi = 0.05 + 0.6

(200− i)

199
, i = 1, ..., 199.

• Goal: distribute $1 to maximize worst-case value-at-risk at level ϵ = 0.5%:

max
x,t

{
t : P

[ 199∑
i=1

rixi + r200x200 ≥ t

]
≥ 1− ϵ, ∀P,

200∑
i=1

xi = 1, x ≥ 0

}
,

• With zi := (ri − µi )/σi , let’s consider 3 uncertainty sets:

1. Ubox = {z : ∥z∥∞ ≤ 1}

2. Uellipsoid-box = {z : ∥z∥∞ ≤ 1, ∥z∥2 ≤ ρ}, with ρ =
√

2 ln(1/ϵ) = 3.255

3. Ubudget = {z : ∥z∥∞ ≤ 1, ∥z∥1 ≤ Γ} with Γ =
√

2 ln(1/ϵ)
√
199 = 45.921.

• Results:

– Ubox: worst-case returns yield less than risk-free return of 5%, so optimal to keep all

money in cash; robust optimal return 1.05, risk 0

– Uellipsoid-box: robust optimal value is 1.12, risk 0.5%

– Ubudget: robust optimal value is 1.10, risk 0.5%

• Allowing a tiny bit of risk can go a long way...
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– Ubox: worst-case returns yield less than risk-free return of 5%, so optimal to keep all
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Using Concentration Results to Model Uncertainty Sets

• Bertsimas & Bandi: use the implications of the Central Limit Theorem

• Suppose we have uncertainties {Xi}ni=1, each with mean µ, standard deviation σ

UCLT :=

{
(x1, . . . , xn) :

∣∣∣∣ n∑
i=1

xi − nµ

∣∣∣∣ ≤ Γσ
√
n

}
.

– If n large and CLT premises hold, Γ = 2 (3) would give 95% (99%) coverage

• Many extensions possible

– Modeling correlations through a factor model:

Ucorr :=
{
x : x = Pz + ϵ,

∣∣∣∑m
i=1 zi −mµy

∣∣∣ ≤ Γσz
√
m,

∣∣∣∑n
i=1 ϵi

∣∣∣ ≤ Γσϵ

√
n
}

– Using stable laws to model heavy-tailed cases where variance is undefined:

UHT :=
{
(x1, . . . , xn) :

∣∣∣∑n
i=1 xi − nµ

∣∣∣ ≤ Γn1/α
}

– Constructing typical sets: if Hf is the (Shannon) entropy of f ,

(i) P[z̃ ∈ Utypical] → 1, (ii)
∣∣∣ 1n log f (z̃ |z̃ ∈ Utypical

)
+ Hf

∣∣∣ ≤ ϵn

• Bertsimas & Bandi used these to derive robust equivalents for several classical

queueing theory and information theory results
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Distributionally Robust Optimization
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Distributionally Robust Modeling
• We saw that embedding some more probabilistic information can help

• Let’s change the paradigm slightly:
– we know the probability distribution for z̃ belongs to an ambiguity set: P ∈ P
– we model P and are interested in robust expected constraint satisfaction:

sup
P∈P

EP[f (x , z̃)] ≤ b

• Now, the adversary is choosing P, instead of z
– Advantage: EP[f (x , z̃)] as an expression of P is always linear

– If P has discrete, finite support: much of our earlier machinery (e.g., convex duality)

can be applied if the set P is “well-behaved”

– Continuous P: ∞-dimensional optimization

• Very old idea, dating to the 1950s (Scarf 1958, Zackova 1966)

• Kuhn, Shafiee, Wiesemann (2024): tutorial on state-of-the-art. Can model:
– known (bounds on) moments, e.g., means, covariance matrix, higher order

– known (bounds on) quantiles (e.g., median) or spread statistics

– multiple confidence regions

– distance from a nominal distribution (Kullback-Leibler, Wasserstein, etc.)
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Esfahani and Kuhn (2015)

Baseline problem. Single-stage stochastic program:

J⋆ := inf
x∈X

EP
[
h(x , z)

]
• x ∈ X ⊆ Rn is the decision,

• z ∈ U ⊆ Rm is a random vector,

• P (distribution of z) is unknown.

Data. We have i.i.d. samples ÛN := {z1, . . . , zN} and form the empirical distribution:

P̂N :=
1

N

N∑
i=1

δzi .

Classical solution method: Sample Average Approximation (SAA)

JSAA := inf
x∈X

EP̂N
[h(x , z)] = inf

x∈X

1

N

N∑
i=1

h(x , zi ).

SAA is asymptotically consistent, but for small N it can:

• overfit the data (“optimizer’s curse”)

• give poor out-of-sample performance
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Wasserstein Metric and Ambiguity Sets

Wasserstein distance. Let M(U) be the set of all distributions supported on U . For
Q1,Q2 ∈ M(U),

dW(Q1,Q2) := inf
π∈Π

∫
U2

∥ξ1 − ξ2∥ dπ(ξ1, ξ2)

• Π is the set of all couplings of Q1 and Q2, i.e., joint distributions of ξ1 and ξ2
with marginals given by Q1 and Q2, respectively

• ∥ · ∥ is any norm. More popular choices: ∥ · ∥∞, ∥ · ∥1, ∥ · ∥2

Wasserstein ambiguity set (ball).

Bϵ(P̂N) :=
{
Q ∈ M(U) : dW(Q, P̂N) ≤ ϵ

}
.

• Centered at the empirical distribution P̂N .

• Radius ϵ controls conservatism.

• Contains both discrete and continuous distributions close to P̂N .
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Wasserstein DRO Formulation

Distributionally robust objective. For fixed decision x , worst-case expected cost is:

sup
P∈Bϵ(P̂N )

EP
[
h(x , z)

]
.

Data-driven distributionally robust optimization:

JN(ϵ) := inf
x∈X

sup
P∈Bϵ(P̂N )

EP
[
h(x , z)

]
.

Interpretation:

• Take all distributions P within distance ϵ of the data-driven P̂N .

• Optimize against the most adversarial such distribution.

Goal:

• Choose ϵ and solve JN(ϵ) so that
– we get good out-of-sample performance, and
– we retain finite-sample and asymptotic guarantees.
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Measure Concentration and Choice of Radius

Assume a light-tail condition on P:

EP
[
exp(∥z∥a)

]
< ∞ for some a > 1.

Then a measure concentration result (Fournier–Guillin) implies: for some c1, c2 > 0,

PN
[
dW (P, P̂N) ≥ ϵ

]
≤

c1 exp
(
− c2Nϵmax{m,2}), ϵ ≤ 1,

c1 exp
(
− c2Nϵa

)
, ϵ > 1.

For a prescribed significance level β ∈ (0, 1), we can choose a radius ϵN(β) such that

PN
[
dW (P, P̂N) ≤ ϵN(β)

]
≥ 1− β.

Interpretation: with probability at least 1− β, the true distribution P lies inside the

Wasserstein ball BϵN (β)(P̂N).

43 / 47



Finite-sample Performance Guarantee

Fix β ∈ (0, 1) and choose ϵ = ϵN(β) as in the concentration bound

Let xN be an optimizer of the DRO problem

JN := inf
x∈X

sup
P∈BϵN (β)(P̂N )

EP[h(x , z)].

Then, with probability at least 1− β (over the sampling of ÛN),

EP
[
h(xN , z)

]
≤ JN .

So:

• JN is an upper confidence bound on the out-of-sample cost of xN valid with

confidence level 1− β

• We can also get asymptotic consistency: as βN → 0, by choosing ϵN = ϵN(βN),

we get JN → J⋆ almost surely, so the finite-sample Wasserstein DRO

asymptotically recovers the true stochastic program
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Convex Reformulations

Focus on Nature’s Problem, i.e., the inner worst-case expectation for a fixed x :

(NP) sup
P∈Bϵ(P̂N )

EP[ℓ(z)]

Assumptions: the support U of z is convex and closed and the loss function ℓ is:

ℓ(z) = max
k≤K

ℓk(z),

where each ℓk is proper, concave, and upper semicontinuous

Key result. The optimal value of (NP) equals the optimal value of:

min
λ, si , zik

λε+
1

N

N∑
i=1

si

s.t. [−ℓk + χU ]
∗(zik)− ⟨zik , ξi ⟩ ≤ si , ∀i , k ,

∥zik∥∗ ≤ λ, ∀i , k,

where χU is the indicator function of U , [f ]∗ is the Fenchel conjugate of f , and ∥ · ∥∗ is

the dual norm of ∥ · ∥.

• Enough to solve a finite-dimensional convex problem
• ℓk linear, U polyhedral, 1- or ∞-norm in dW(·, ·) ⇒ finite-dimensional LP
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Using Hypothesis Tests to Model Uncertainty Sets

Bertsimas, Gupta, Kallus (’17): data-driven uncertainty sets from hypothesis tests
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A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming. MPS / SIAM Series on Optimization. SIAM, 2009.

47 / 47


	References

