
CME 307 / MS&E 311 / OIT 676: Optimization

Gradient descent

Professor Udell

Management Science and Engineering
Stanford

October 28, 2025

1 / 31



Outline

Unconstrained minimization

Quadratic approximations

Analysis via Polyak-Lojasiewicz condition

2 / 31



Unconstrained minimization

minimize f (x)

▶ f : Rn → R differentiable

▶ assume optimal value f ⋆ = infx f (x) is attained (and finite)

▶ assume a starting point x (0) is known

unconstrained minimization methods

▶ produce sequence of points x (k), k = 0, 1, . . . with

f (x (k))→ f ⋆

(we hope)

3 / 31



Gradient descent

minimize f (x)

idea: go downhill

Algorithm Gradient descent

Given: f : Rd → R, stepsize t, maxiters
Initialize: x = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

▶ update x :
x ← x − t∇f (x)

4 / 31



Gradient descent: choosing a step-size

▶ constant step-size. t(k) = t (constant)

▶ decreasing step-size. t(k) = 1/k

▶ line search. try different possibilities for t(k) until objective at new iterate

f (x (k)) = f (x (k−1) − t(k)∇f (x (k−1)))

decreases enough.

tradeoff: line search requires evaluating f (x) (can be expensive)

5 / 31



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo

6 / 31



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo

6 / 31



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?

A: yes! see gradient descent demo

6 / 31



Line search

define x+ = x − t∇f (x)
▶ exact line search: find t to minimize f (x+)
▶ the Armijo rule requires t to satisfy

f (x+) ≤ f (x)− ct∥∇f (x)∥2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

▶ set t = 1
▶ if step decreases objective value sufficiently, accept x+:

f (x+) ≤ f (x)− ct∥∇f (x)∥2 =⇒ x ← x+

otherwise, halve the stepsize t ← t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo

6 / 31



Demo: gradient descent

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

7 / 31

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb


How well does GD work?

for x ∈ Rn,

▶ f (x) = xT x

▶ f (x) = xTAx for A ⪰ 0

▶ f (x) = ∥x∥1 (nonsmooth but differentiable almost everywhere)

▶ f (x) = 1/x on x > 0 (strictly convex but not strongly convex)

https:
//github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb

8 / 31

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb


Outline

Unconstrained minimization

Quadratic approximations

Analysis via Polyak-Lojasiewicz condition

9 / 31



Quadratic approximation

Suppose f : Rn → R is twice differentiable. For any x ∈ Rn, approximate f about x :

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x).

If f is a quadratic function, ∇2f (x) = H is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

y⋆ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2
(y − x)TH(y − x)

=⇒ ∇f (x) + H(y⋆ − x) = 0

y⋆ = x − H−1(∇f (x)).

If we approximate the Hessian of f by H = 1
t I for some t > 0 and choose x+ to

minimize the quadratic approximation, we obtain the gradient descent update with
step size t:

x+ = x +−t∇f (x)

10 / 31



Quadratic approximation

Suppose f : Rn → R is twice differentiable. For any x ∈ Rn, approximate f about x :

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x).

If f is a quadratic function, ∇2f (x) = H is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

y⋆ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2
(y − x)TH(y − x)

=⇒ ∇f (x) + H(y⋆ − x) = 0

y⋆ = x − H−1(∇f (x)).

If we approximate the Hessian of f by H = 1
t I for some t > 0 and choose x+ to

minimize the quadratic approximation, we obtain the gradient descent update with
step size t:

x+ = x +−t∇f (x)

10 / 31



Quadratic approximation

Suppose f : Rn → R is twice differentiable. For any x ∈ Rn, approximate f about x :

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x).

If f is a quadratic function, ∇2f (x) = H is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

y⋆ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2
(y − x)TH(y − x)

=⇒ ∇f (x) + H(y⋆ − x) = 0

y⋆ = x − H−1(∇f (x)).

If we approximate the Hessian of f by H = 1
t I for some t > 0 and choose x+ to

minimize the quadratic approximation, we obtain the gradient descent update with
step size t:

x+ = x +−t∇f (x)
10 / 31



Quadratic upper bound

Definition (Smooth)

A function f : Rn → R is L-smooth if for all x , y ∈ Rn,

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator ∇f is L-Lipschitz continuous:

∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥

▶ ∇2f (x) ⪯ LI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-smooth
A: λmax(A)-smooth

11 / 31



Quadratic upper bound

Definition (Smooth)

A function f : Rn → R is L-smooth if for all x , y ∈ Rn,

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator ∇f is L-Lipschitz continuous:

∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥

▶ ∇2f (x) ⪯ LI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-smooth

A: λmax(A)-smooth

11 / 31



Quadratic upper bound

Definition (Smooth)

A function f : Rn → R is L-smooth if for all x , y ∈ Rn,

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator ∇f is L-Lipschitz continuous:

∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥

▶ ∇2f (x) ⪯ LI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-smooth
A: λmax(A)-smooth

11 / 31



Quadratic lower bound

Definition (Strongly convex)

A function f : Rn → R is µ-strongly convex for µ > 0 if for all x , y ∈ Rn,

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator ∇f is µ-coercive:

∥∇f (y)−∇f (x)∥ ≥ µ∥y − x∥

▶ ∇2f (x) ⪰ µI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-strongly convex
A: λmin(A)-strongly convex

12 / 31



Quadratic lower bound

Definition (Strongly convex)

A function f : Rn → R is µ-strongly convex for µ > 0 if for all x , y ∈ Rn,

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator ∇f is µ-coercive:

∥∇f (y)−∇f (x)∥ ≥ µ∥y − x∥

▶ ∇2f (x) ⪰ µI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-strongly convex

A: λmin(A)-strongly convex

12 / 31



Quadratic lower bound

Definition (Strongly convex)

A function f : Rn → R is µ-strongly convex for µ > 0 if for all x , y ∈ Rn,

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
∥y − x∥2.

Equivalently, assuming the derivatives exist,

▶ the operator ∇f is µ-coercive:

∥∇f (y)−∇f (x)∥ ≥ µ∥y − x∥

▶ ∇2f (x) ⪰ µI for all x ∈ dom f .

Q: For A ⪰ 0, the quadratic function f (x) = 1
2x

TAx is ?-strongly convex
A: λmin(A)-strongly convex

12 / 31



Some important functions

for A ∈ Rm×n, b ∈ Rm, x ∈ Rn,

▶ Quadratic loss. ∥Ax − b∥2

▶ Logistic loss. f (x) =
∑m

i=1 log(1 + exp
(
bia

T
i x

)
)

where ai is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.
Q: Which of these are strongly convex? Under what conditions?
A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.

13 / 31



Some important functions

for A ∈ Rm×n, b ∈ Rm, x ∈ Rn,

▶ Quadratic loss. ∥Ax − b∥2

▶ Logistic loss. f (x) =
∑m

i=1 log(1 + exp
(
bia

T
i x

)
)

where ai is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.
Q: Which of these are strongly convex? Under what conditions?
A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.

13 / 31



Some important functions

for A ∈ Rm×n, b ∈ Rm, x ∈ Rn,

▶ Quadratic loss. ∥Ax − b∥2

▶ Logistic loss. f (x) =
∑m

i=1 log(1 + exp
(
bia

T
i x

)
)

where ai is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.

Q: Which of these are strongly convex? Under what conditions?
A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.

13 / 31



Some important functions

for A ∈ Rm×n, b ∈ Rm, x ∈ Rn,

▶ Quadratic loss. ∥Ax − b∥2

▶ Logistic loss. f (x) =
∑m

i=1 log(1 + exp
(
bia

T
i x

)
)

where ai is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.
Q: Which of these are strongly convex? Under what conditions?

A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.

13 / 31



Some important functions

for A ∈ Rm×n, b ∈ Rm, x ∈ Rn,

▶ Quadratic loss. ∥Ax − b∥2

▶ Logistic loss. f (x) =
∑m

i=1 log(1 + exp
(
bia

T
i x

)
)

where ai is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.
Q: Which of these are strongly convex? Under what conditions?
A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.

13 / 31



Optimizing the upper bound

start at x (0). suppose f is L-smooth, so for all y ∈ R,

f (y) ≤ f (x (0)) +∇f (x)T (y − x (0)) +
L

2
∥y − x (0)∥2

let’s choose next iterate x (1) to minimize this upper bound:

x (1) = argmin
y

f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2

=⇒ ∇f (x (0)) + L(x (1) − x (0)) = 0

x (1) = x (0) − 1

L
∇f (x (0))

▶ gradient descent update with step size t = 1
L

▶ lower bound ensures true optimum can’t be too far away, and can be used to
prove convergence

14 / 31



Optimizing the upper bound

start at x (0). suppose f is L-smooth, so for all y ∈ R,

f (y) ≤ f (x (0)) +∇f (x)T (y − x (0)) +
L

2
∥y − x (0)∥2

let’s choose next iterate x (1) to minimize this upper bound:

x (1) = argmin
y

f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥2

=⇒ ∇f (x (0)) + L(x (1) − x (0)) = 0

x (1) = x (0) − 1

L
∇f (x (0))

▶ gradient descent update with step size t = 1
L

▶ lower bound ensures true optimum can’t be too far away, and can be used to
prove convergence

14 / 31



Outline

Unconstrained minimization

Quadratic approximations

Analysis via Polyak-Lojasiewicz condition

15 / 31



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : Rn → R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

16 / 31



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : Rn → R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

16 / 31



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : Rn → R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

16 / 31



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : Rn → R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?

A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

16 / 31



The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : Rn → R satisfies the Polyak-Lojasiewicz condition if

1

2
∥∇f (x)∥2 ≥ µ(f (x)− f ⋆)

Theorem ([Karimi, Nutini, and Schmidt (2016)])

Suppose f (x) = g(Ax) where g : Rm → R is strongly convex and A : Rn → Rm is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity
and yields simpler proofs

16 / 31



River valley

f (x , y) = (y − sin(x))2

17 / 31



Optimality condition for PL function

Theorem

Any stationary point of a Polyak-Lojasiewicz function is globally optimal.

proof: if ∇f (x̄) = 0, then

0 =
1

2
∥∇f (x)∥2 ≥ µ(f (x̄)− f ⋆) ≥ 0

=⇒ f (x̄) = f ⋆ is the global optimum.

18 / 31



Optimality condition for PL function

Theorem

Any stationary point of a Polyak-Lojasiewicz function is globally optimal.

proof: if ∇f (x̄) = 0, then

0 =
1

2
∥∇f (x)∥2 ≥ µ(f (x̄)− f ⋆) ≥ 0

=⇒ f (x̄) = f ⋆ is the global optimum.

18 / 31



strong convexity =⇒ Polyak-Lojasiewicz

Theorem

If f is µ-strongly convex, then f is µ-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y :

min
y

f (y) ≥ min
y

(
f (x) +∇f (x)T (y − x) +

µ

2
∥y − x∥2

)
f ⋆ ≥ f (x)− 1

2µ
∥∇f (x)∥2

since y = x −∇f (x)/µ minimizes the strong convexity upper bound

19 / 31



strong convexity =⇒ Polyak-Lojasiewicz

Theorem

If f is µ-strongly convex, then f is µ-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y :

min
y

f (y) ≥ min
y

(
f (x) +∇f (x)T (y − x) +

µ

2
∥y − x∥2

)
f ⋆ ≥ f (x)− 1

2µ
∥∇f (x)∥2

since y = x −∇f (x)/µ minimizes the strong convexity upper bound

19 / 31



Types of convergence

▶ objective converges
f (x (k))→ f ⋆

▶ iterates converge
x (k) → x⋆

under

▶ strong convexity: objective converges =⇒ iterates converge
proof: use strong convexity with x = x⋆ and y = x (k):

f (x (k))− f ⋆ ≥ µ

2
∥x (k) − x⋆∥2

▶ Polyak-Lojasiewicz: not necessarily true (x⋆ may not be unique)

20 / 31



Rates of convergence

▶ linear convergence with rate c

f (x (k))− f ⋆ ≤ ck(f (x (0))− f ⋆)

▶ looks like a line on a semi-log plot
▶ example: gradient descent on smooth strongly convex function

▶ sublinear convergence
▶ looks slower than a line (curves up) on a semi-log plot
▶ example: 1/k convergence

f (x (k))− f ⋆ ≤ O(1/k)

▶ example: gradient descent on smooth convex function
▶ example: stochastic gradient descent

21 / 31



Gradient descent converges linearly

Theorem

If f : Rn → R is µ-Polyak-Lojasiewicz, L-smooth, and x⋆ = argminx f (x) exists,
then gradient descent with stepsize L

x (k+1) = x (k) − 1

L
∇f (x (k))

converges linearly to f ⋆ with rate (1− µ
L ).

22 / 31



Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

f (x (k+1))− f (x (k)) ≤ ∇f (x (k))T (x (k+1) − x (k)) +
L

2
∥x (k+1) − x (k)∥2

≤ (−1

L
+

1

2L
)∥∇f (x (k))∥2

≤ − 1

2L
∥∇f (x (k))∥2

≤ −µ

L
(f (x (k))− f ⋆) ▷ (using PL)

decrement proportional to error =⇒ linear convergence:

f (x (k))− f ⋆ ≤ (1− µ

L
)(f (x (k−1))− f ⋆)

≤
(
1− µ

L

)k
(f (x (0))− f ⋆)

23 / 31



Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

f (x (k+1))− f (x (k)) ≤ ∇f (x (k))T (x (k+1) − x (k)) +
L

2
∥x (k+1) − x (k)∥2

≤ (−1

L
+

1

2L
)∥∇f (x (k))∥2

≤ − 1

2L
∥∇f (x (k))∥2

≤ −µ

L
(f (x (k))− f ⋆) ▷ (using PL)

decrement proportional to error =⇒ linear convergence:

f (x (k))− f ⋆ ≤ (1− µ

L
)(f (x (k−1))− f ⋆)

≤
(
1− µ

L

)k
(f (x (0))− f ⋆)

23 / 31



Practical convergence

▶ Gradient descent with optimal stepsize converges even faster.

f (x (k+1)) = inf
α
f (x (k) − α∇f (x (k))) ≤ f (x (k) − 1

L
∇f (x (k)))

▶ Local vs global convergence

24 / 31



Practical convergence

▶ Gradient descent with optimal stepsize converges even faster.

f (x (k+1)) = inf
α
f (x (k) − α∇f (x (k))) ≤ f (x (k) − 1

L
∇f (x (k)))

▶ Local vs global convergence

24 / 31



Outline

Applications of quadratic programs

Classification

25 / 31



Quadratic program: application

Markowitz portfolio optimization problem:

minimize γxTΣx − µT x
subject to

∑
i xi = 1

Ax = 0
variable x ∈ Rn

where

▶ Σ ∈ Rn×n: asset covariance matrix

▶ µ ∈ Rn: asset return vector

▶ γ ∈ R: risk aversion parameter
▶ rows of A ∈ Rm×n correspond to other portfolios

▶ ensures new portfolio is independent, e.g., of market returns

26 / 31



Quadratic program: application

control system design problem:

x+ = Ax + Bu

▶ x ∈ Rn: state (e.g., position, velocity)

▶ u ∈ Rm: control (e.g., force, torque)

minimize
∑T

t=1 x
T
t Qxt + uTt Rut

subject to xt+1 = Axt + But , t = 0, . . . ,T − 1
x0 = x init

27 / 31



Outline

Applications of quadratic programs

Classification

28 / 31



Application: classification

classification problem: m data points

▶ feature vector ai ∈ Rn, i = 1, . . . ,m

▶ label bi ∈ {−1, 1}, i = 1, . . . ,m

choose decision boundary aT x = 0 to separate data points into two classes

▶ aT x > 0 =⇒ predict class 1

▶ aT x < 0 =⇒ predict class -1

classification is correct if bia
T x > 0

▶ projective transformation transforms affine boundary to linear boundary

▶ classification is invariant to scalar multiplication of x

29 / 31



Application: classification

classification problem: m data points

▶ feature vector ai ∈ Rn, i = 1, . . . ,m

▶ label bi ∈ {−1, 1}, i = 1, . . . ,m

choose decision boundary aT x = 0 to separate data points into two classes

▶ aT x > 0 =⇒ predict class 1

▶ aT x < 0 =⇒ predict class -1

classification is correct if bia
T x > 0

▶ projective transformation transforms affine boundary to linear boundary

▶ classification is invariant to scalar multiplication of x

29 / 31



Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize
∑m

i=1 log(1 + exp
(
−biaTi x

)
) + r(x)

variable x ∈ Rn

where

▶ bi ∈ {−1, 1}, ai ∈ Rn

▶ r : Rn → R is a regularizer, e.g., ∥x∥2 or ∥x∥1

30 / 31



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn.

not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

31 / 31



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn. not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

31 / 31



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn. not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

31 / 31



Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize
∑m

i=1max(0, 1− bia
T
i x) + γ∥x∥2

variable x ∈ Rn

where bi ∈ {−1, 1} and ai ∈ Rn. not differentiable!

how to solve?

▶ use subgradient method

▶ transform to conic form

▶ solve dual problem instead

▶ smooth the objective

31 / 31


	Unconstrained minimization
	Quadratic approximations
	Analysis via Polyak-Lojasiewicz condition
	Appendix
	Applications of quadratic programs
	Classification


