CME 307 / MS&E 311 / OIT 676: Optimization

Gradient descent

Professor Udell

Management Science and Engineering
Stanford

October 28, 2025

1/31

Outline

Unconstrained minimization

2/31

Unconstrained minimization

minimize f(x)

» f:R" — R differentiable
» assume optimal value f* = inf, f(x) is attained (and finite)

» assume a starting point x(9) is known
unconstrained minimization methods
> produce sequence of points x(K), k =0,1,... with
f(xK) — £

(we hope)

3/31

Gradient descent

minimize f(x)

idea: go downbhill

Algorithm Gradient descent

Given: f: R 5 R, stepsize t, maxiters
Initialize: x = 0 (or anything you'd like)
For: k=1,..., maxiters
» update x:
x < x — tVf(x)

4/31

Gradient descent: choosing a step-size

> constant step-size. t(k) = t (constant)
> decreasing step-size. t(¥) =1/k
> line search. try different possibilities for t(%) until objective at new iterate

(xR = F(x(k=1) — g £(x(k1)))

decreases enough.

tradeoff: line search requires evaluating f(x) (can be expensive)

5/31

Line search
define xT = x — tVf(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(x) < F(x) = ct| V()2

for some c € (0,1), e.g,, c = .01.

6/31

Line search
define xT = x — tVf(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(x) < F(x) = ctl| V()|
for some c € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:

> sett=1
» if step decreases objective value sufficiently, accept x™:

f(xT) < f(x) — ct||Vf(x)H2 — x<+x*

otherwise, halve the stepsize t <— t/2 and try again

6/31

Line search
define xT = x — tVf(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(x) < F(x) = ctl| V()|
for some c € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:

> sett=1
» if step decreases objective value sufficiently, accept x™:

f(xT) < f(x) = ct||VFX)|? = x+«x*
otherwise, halve the stepsize t <— t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?

6/31

Line search
define xT = x — tVf(x)

> exact line search: find t to minimize f(x™)
» the Armijo rule requires t to satisfy

F(x) < F(x) = ctl| V()|
for some c € (0,1), e.g., c = .01.
a simple backtracking line search algorithm:

> sett=1
» if step decreases objective value sufficiently, accept x™:

f(xT) < f(x) = ct||VFX)|? = x+«x*
otherwise, halve the stepsize t <— t/2 and try again

Q: can we can always satisfy the Armijo rule for some t?
A: yes! see gradient descent demo

6/31

Demo: gradient descent

https://github.com/stanford-cme-307 /demos/blob/main/gradient-descent.ipynb

7/31

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

How well does GD work?

(x) =xTAx for A= 0
» f(x)=|x|l1 (nonsmooth but differentiable almost everywhere)
(x)

=1/x on x > 0 (strictly convex but not strongly convex)

https:

//github.com/stanford-cme-307 /demos/blob/main/gradient-descent-contours.ipynb

8/31

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb
https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb

Outline

Quadratic approximations

9/31

Quadratic approximation
Suppose f : R" — R is twice differentiable. For any x € R”, approximate f about x:
Fy) % F6) + TFG)T(y = x) + 5 (v =20 T2 F(x)(y — x).
If f is a quadratic function, V2f(x) = H is constant.

10/31

Quadratic approximation

Suppose f : R" — R is twice differentiable. For any x € R”, approximate f about x:

Fy) % F6) + TFG)T(y = x) + 5 (v =20 T2 F(x)(y — x).

If f is a quadratic function, V2f(x) = H is constant.
Quadratic approximations are useful because quadratics are easy to minimize:

o= argmin F(x)+ V) (y —x) + %(y —x)TH(y — x)

= VI(x)+H(Yy —x)=0
y* = x—HYVf(x)).

10/31

Quadratic approximation

Suppose f : R" — R is twice differentiable. For any x € R”, approximate f about x:

1
S =)V = %).
If f is a quadratic function, V2f(x) = H is constant.

F(y) = F(x) + VF()T(y —x) +

Quadratic approximations are useful because quadratics are easy to minimize:

o= argmin F(x)+ V) (y —x) + %(y —x)TH(y — x)

= VI(x)+H(Yy —x)=0
y* = x—HYVf(x)).

If we approximate the Hessian of f by H = %I for some t > 0 and choose x™ to
minimize the quadratic approximation, we obtain the gradient descent update with
step size t:

xT =x+ —tVf(x)

10/31

Quadratic upper bound

Definition (Smooth)
A function f : R” — R is L-smooth if for all x,y € R",

(y) < 70+ VAT (y =)+ 5 lly = xI

Equivalently, assuming the derivatives exist,
» the operator Vf is L-Lipschitz continuous:
IVF(y) = V()| < Llly — x|

> V2f(x) < LI for all x € domf.

11/31

Quadratic upper bound

Definition (Smooth)
A function f : R” — R is L-smooth if for all x,y € R",

L
Fy) <0+ V) (v = x) + Sy = I
Equivalently, assuming the derivatives exist,
» the operator Vf is L-Lipschitz continuous:
IVF(y) = VFx)I < Llly — x|

> V2f(x) < LI for all x € domf.

Q: For A = 0, the quadratic function f(x) = 1x" Ax is ?-smooth

11/31

Quadratic upper bound

Definition (Smooth)
A function f : R” — R is L-smooth if for all x,y € R",

L
Fy) <0+ V) (v = x) + Sy = I
Equivalently, assuming the derivatives exist,
» the operator Vf is L-Lipschitz continuous:
IVF(y) = VFx)I < Llly — x|

> V2f(x) < LI for all x € domf.

Q: For A = 0, the quadratic function f(x) = 1x" Ax is ?-smooth
A: \pax(A)-smooth

11/31

Quadratic lower bound

Definition (Strongly convex)
A function f : R” — R is u-strongly convex for p > 0 if for all x,y € R”,

f(y) 2 F(x) + V)T (y =) + Slly = xI”.

Equivalently, assuming the derivatives exist,
» the operator Vf is p-coercive:
IVE(y) = VEX) = plly — x|l

> V2f(x) = ul for all x € domf.

12/31

Quadratic lower bound

Definition (Strongly convex)
A function f : R” — R is u-strongly convex for p > 0 if for all x,y € R”,

F(y) 2 £+ VFC)T(y = x) + Slly = I
Equivalently, assuming the derivatives exist,
» the operator Vf is p-coercive:
IVE(y) = VEX) = plly — x|l
> V2f(x) = ul for all x € domf.

Q: For A > 0, the quadratic function f(x) = %XTAX is ?-strongly convex

12/31

Quadratic lower bound

Definition (Strongly convex)
A function f : R” — R is u-strongly convex for p > 0 if for all x,y € R”,

F(y) 2 £+ VFC)T(y = x) + Slly = I
Equivalently, assuming the derivatives exist,
» the operator Vf is p-coercive:
IVE(y) = VEX) = plly — x|l
> V2f(x) = ul for all x € domf.

Q: For A > 0, the quadratic function f(x) = %XTAX is ?-strongly convex
A: \pin(A)-strongly convex

12/31

Some important functions

for Ac R™" pecR™ x e R",

» Quadratic loss. ||Ax — b||?
> Logistic loss. f(x) =3 " log(1+ exp (b,-aiTx))
where a; is ith row of A

13/31

Some important functions

for Ac R™" pecR™ x e R",

» Quadratic loss. ||Ax — b||?
> Logistic loss. f(x) =3 " log(1+ exp (b,-aiTx))
where a; is ith row of A

Q: Which of these are smooth? Under what conditions?

13/31

Some important functions

for Ac R™" pecR™ x e R",

» Quadratic loss. ||Ax — b||?
> Logistic loss. f(x) =3 " log(1+ exp (b,-aiTx))
where a; is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.

13/31

Some important functions

for Ac R™" pecR™ x e R",

» Quadratic loss. ||Ax — b||?
> Logistic loss. f(x) =3 " log(1+ exp (b,-aiTx))
where a; is ith row of A

Q: Which of these are smooth? Under what conditions?
A: Both.

Q: Which of these are strongly convex? Under what conditions?

13/31

Some important functions

for Ac R™" pecR™ x e R",

» Quadratic loss. ||Ax — b||?
> Logistic loss. f(x) =3 " log(1+ exp (b,-aiTx))
where a; is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.

Q: Which of these are strongly convex? Under what conditions?

A: Quadratic loss is strongly convex if A is rank n. Logistic loss is strongly convex
on a compact domain if A is rank n.

13/31

Optimizing the upper bound
start at x(9). suppose f is L-smooth, so for all y € R,
Fy) < F(4) + VFG)T(y = £@) 4 Sy = O
let's choose next iterate x() to minimize this upper bound:
xM) = argmin f(x) + VF(x)T(y — x) + é”y —x|?

y

Ne X(O)_%w(xm))

14/31

Optimizing the upper bound
start at x(9). suppose f is L-smooth, so for all y € R,
Fy) < F(4) + VFG)T(y = £@) 4 Sy = O
let's choose next iterate x() to minimize this upper bound:

X(l) = argmin f(x) + Vf(x)T(y — X) + éHy — XH2
y

— VF(x) 4+ 1(x) - x@) =0
LU (0 %vf(xm))

- . . _ 1
> gradient descent update with step size t = |

» lower bound ensures true optimum can’t be too far away, and can be used to
prove convergence

14/31

Outline

Analysis via Polyak-Lojasiewicz condition

15/31

The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)
A function f : R"” — R satisfies the Polyak-Lojasiewicz condition if

IR > ()~ £4)

16/31

The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R"” — R satisfies the Polyak-Lojasiewicz condition if
1
SIVECI = () = %)

Theorem (2016)])

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex and A: R" — R is
linear. Then f is Polyak-Lojasiewicz.

16/31

The Polyak-Lojasiewicz condition
Definition (Polyak-Lojasiewicz condition)
A function f : R"” — R satisfies the Polyak-Lojasiewicz condition if

IR > ()~ £4)

Theorem (2016)])

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex and A: R" — R is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

16/31

The Polyak-Lojasiewicz condition
Definition (Polyak-Lojasiewicz condition)
A function f : R"” — R satisfies the Polyak-Lojasiewicz condition if

IR > ()~ £4)

Theorem (2016)])

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex and A: R" — R is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?

16/31

The Polyak-Lojasiewicz condition

Definition (Polyak-Lojasiewicz condition)

A function f : R"” — R satisfies the Polyak-Lojasiewicz condition if
1
SIVECI = () = %)

Theorem (2016)])

Suppose f(x) = g(Ax) where g : R™ — R is strongly convex and A: R" — R is
linear. Then f is Polyak-Lojasiewicz.

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even
when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker than strong convexity

and yields simpler proofs 1631

River valley

f(x,y) = (v —sin(x))?

3D Plot of (Y - np.sin(X))**2 + .2°X

-100

-75
-50

5

Aeimuth

Elevation ———

17/31

Optimality condition for PL function

Any stationary point of a Polyak-Lojasiewicz function is globally optimal.

18/31

Optimality condition for PL function

Theorem

Any stationary point of a Polyak-Lojasiewicz function is globally optimal.

proof: if Vf(x) =0, then
1 _
0= S[IVF()I® = u(f (%) —) 2 0

= f(X) = f* is the global optimum.

18/31

strong convexity —- Polyak-Lojasiewicz

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.

19/31

strong convexity —- Polyak-Lojasiewicz

Theorem

If f is p-strongly convex, then f is u-Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over y:

minf(y) > min (£(x) + VF()T(y = x)+ Slly = xI)

1
fr > f(X)—ﬂIIVf(X)H2

since y = x — Vf(x)/u minimizes the strong convexity upper bound

19/31

Types of convergence

» objective converges
F(xW)) — £

» iterates converge

k) *

X(— X

under

» strong convexity: objective converges = iterates converge
proof: use strong convexity with x = x* and y = x(k):

FR) = £ = S0 |2
» Polyak-Lojasiewicz: not necessarily true (x* may not be unique)

20/31

Rates of convergence

» linear convergence with rate ¢

fF(x®) — £ < H(F(xD) — %)

» looks like a line on a semi-log plot
» example: gradient descent on smooth strongly convex function

» sublinear convergence

> looks slower than a line (curves up) on a semi-log plot
> example: 1/k convergence

F(xH)) - F* < O(1/k)

P> example: gradient descent on smooth convex function
P> example: stochastic gradient descent

21/31

Gradient descent converges linearly

Theorem
If f : R" — R is u-Polyak-Lojasiewicz, L-smooth, and x* = argmin, f(x) exists,
then gradient descent with stepsize L

1) (k) _ %Vf(x(k))

converges linearly to f* with rate (1 —).

22/31

proof: plug in update rule to L-smoothness condition

F(x)y —

Gradient descent converges linearly: proof

f(x(¥)

<

IN

IN

Vf(x k>) (x(kFD) —
1

(= z

—iumx(k P

"
_z(f(x(k)) _

)

RO éllx(k“) N0

)HVf(Sl

> (using PL)

I?

23/31

Gradient descent converges linearly: proof

proof: plug in update rule to L-smoothness condition

FOUADY ()Y < W) T (D) _ () 4 éllx(k“) _

v%+ NTA) P

T

IN

< —%(f(x(k)) —f*) > (using PL)
decrement proportional to error = linear convergence:

) = < (1= D)(Ft) - 1)

< (1 - %)k (F(x©@) — £+

k)||2

23/31

Practical convergence

» Gradient descent with optimal stepsize converges even faster.

f(xEH) = inf F(xK) — aVF(xK)) < F(x(K) — %Vf(x(k)))

24 /31

Practical convergence

» Gradient descent with optimal stepsize converges even faster.

f(xEH) = inf F(xK) — aVF(xK)) < F(x(K) — %Vf(x(k)))

» Local vs global convergence

24 /31

Outline

Applications of quadratic programs

25/31

Quadratic program: application

Markowitz portfolio optimization problem:

minimize yxTIx —pu’x
subjectto > ;x; =1

Ax =0
variable x eR"

where

> 3 € R"™": asset covariance matrix
» 1 € R™ asset return vector

» ~ € R: risk aversion parameter
» rows of A € R™*" correspond to other portfolios
P ensures new portfolio is independent, e.g., of market returns

26 /31

Quadratic program: application

control system design problem:

xT = Ax + Bu

> x € R": state (e.g., position, velocity)
» u e R™: control (e.g., force, torque)
minimize Zthl x] Qxt + u/] Ruy
subject to xt11 = Ax¢+Buy, t=0,...,T -1

Xg = Xinit

27/31

Outline

Classification

28/31

Application: classification

classification problem: m data points

> feature vector a; e R, i=1,....m
> label b; € {-1,1}, i=1,...,m

choose decision boundary a’ x = 0 to separate data points into two classes

» a’x >0 = predict class 1
> a’x <0 = predict class -1

classification is correct if bja’x > 0

29/31

Application: classification

classification problem: m data points

> feature vector a; e R, i=1,....m
> label b; € {-1,1}, i=1,...,m

choose decision boundary a’ x = 0 to separate data points into two classes

» a’x >0 = predict class 1
> a’x <0 = predict class -1

classification is correct if bja’x > 0

» projective transformation transforms affine boundary to linear boundary

» classification is invariant to scalar multiplication of x

29/31

Logistic regression

(regularized) logistic regression minimizes the finite sum

minimize Y 7, log(1 + exp (—b,-a,-Tx)) + r(x)
variable x & R”

where
> b,' S {—1,1}, a; € R"

» r:R" — R is a regularizer, e.g., ||x||? or ||x||1

30/31

Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a x) + 7||x|?
variable x € R”

where b; € {—1,1} and a; € R".

31/31

Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a x) + 7||x|?
variable x € R”

where b; € {—1,1} and a; € R". not differentiable!

31/31

Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a x) + 7||x|?
variable x € R”

where b; € {—1,1} and a; € R". not differentiable!

how to solve?

31/31

Support vector machine

support vector machine (SVM) minimizes the finite sum

minimize Y7 max(0,1 — b;a x) + 7||x|?
variable x € R”

where b; € {—1,1} and a; € R". not differentiable!

how to solve?

» use subgradient method
» transform to conic form
» solve dual problem instead

» smooth the objective

31/31

	Unconstrained minimization
	Quadratic approximations
	Analysis via Polyak-Lojasiewicz condition
	Appendix
	Applications of quadratic programs
	Classification

