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Announcements

announcements:

▶ website: https://stanford-cme-307.github.io/web
▶ instructors: Madeleine Udell and Dan Iancu
▶ TAs: Pratik Rathore and Benjamin Ward
▶ Ed for discussion and announcements
▶ fill out course survey (see website)
▶ talk to instructors after class and/or at office hours (see website)
▶ class attendance is required. will post slides, generally no recordings

before class starts: find someone you haven’t met and introduce yourselves.

▶ name, major, year
▶ something fun you did this summer
▶ did you feel the earthquake last night?
▶ why are you interested in optimization?
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Agenda for today

▶ Meet someone you’ve not met before

▶ Identify several types of optimization problem

▶ Discuss challenges in a real-world optimization problem

▶ Understand course objectives and expectations

▶ Review basic linear algebra
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Outline

What is an optimization problem?

Course goals and expectations

Linear Algebra Review
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(Integer) linear optimization problem

minimize cT x
subject to Ax = b

Cx ≤ d
ℓ ≤ x ≤ u

variable x ∈ Zn1 × Rn2

▶ objective cT x
▶ equality constraints Ax = b
▶ inequality constraints Cx ≤ d
▶ lower and upper bounds ℓ ≤ x ≤ u
▶ integer variables if n1 > 0

problem data:

▶ c ∈ Rn, n = n1 + n2 total variables
▶ ℓ ∈ Rn, u ∈ Rn

▶ A ∈ Rm1×n, b ∈ Rm
1 , C ∈ Rm2×n, d ∈ Rm2 m = m1 +m2 total constraints 5 / 21



LP example: diet problem

We an planning a backpacking trip, and want to minimize the total weight of the
food packed subject to nutritional requirements. We have a list of essential nutrients
and how much an active person needs of each. We also know the weight of each
food, and how much of each nutrient is in each food.

▶ xj servings of food j , j = 1, . . . , n

▶ cj weight per serving

▶ aij amount of nutrient i in food j

▶ bi required amount of nutrient i , i = 1, . . . ,m

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes?

▶ ensure diversity in diet?

▶ ranges of nutrients?
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LP example: diet problem

We an planning a backpacking trip, and want to minimize the total weight of the
food packed subject to nutritional requirements. We have a list of essential nutrients
and how much an active person needs of each. We also know the weight of each
food, and how much of each nutrient is in each food.

▶ xj servings of food j , j = 1, . . . , n

▶ cj weight per serving

▶ aij amount of nutrient i in food j

▶ bi required amount of nutrient i , i = 1, . . . ,m

minimize cT x
subject to Ax = b

x ≥ 0

extensions:

▶ foods come from recipes? x = By

▶ ensure diversity in diet? y ≤ u

▶ ranges of nutrients? Ax + s = b, l ≤ s ≤ u
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Nonlinear optimization problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m1

hi (x) = 0, i = 1, . . . ,m2

variable x ∈ Rn

▶ objective f0
▶ inequality constraints fi
▶ equality constraints hi

problem data:

▶ (blackbox) code to evaluate fi and hi for any x ∈ Rn

▶ (first order) and to compute gradients

▶ (second order) and to compute Hessians
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Example: process control

You are the process engineer for a desalination plant that produces drinking water.
The plant has a variety of knobs, collected in vector x , that you can turn to control
the process. These control, e.g., how much water is pumped into the plant, how
much pressure is used to force the water through filters, and how much of each
chemical is added to the water.

▶ f0(x): cost of water produced

▶ fi (x): level of each measured impurity in the water

▶ bi : maximum allowable level of each impurity

Given a setting of the knobs, you can observe the cost of water produced and the
levels of impurities.

What is the optimal setting of the knobs?
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Why optimization?

declarative programming:

▶ model: specify what you require and what you prefer

▶ solve: then figure out how to get it
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Optimization in operations




Energy

Scheduling Supply chain

Routing

▶ Optimization improves efficiency throughout the economy

▶ =⇒ more productivity, less waste, lower costs, lower carbon, more utility
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https://gocompetition.energy.gov/sites/default/files/Challenge3_Problem_Formulation_20230126.pdf


Where is optimization used?

▶ statistical estimation and machine learning

▶ controls (robotics, finance)

▶ operations (supply chain, logistics, routing, scheduling)

▶ . . .

characteristics of these problems differ:

▶ discrete vs continuous variables

▶ constrained vs unconstrained

▶ linear vs nonlinear

▶ estimated vs known problem data
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Optimization problems

important optimization problem classes:

▶ linear

▶ integer

▶ nonlinear (with linear or nonlinear constraints)

▶ quadratic

▶ unconstrained

▶ finite-sum

▶ conic

▶ convex

▶ black-box with (0, 1, or 2)-order oracle
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Modularity in optimization

how to optimize:

1. model problem as a mathematical optimization problem

2. identify the properties of the problem

3. use an appropriate solver (or write a new one)

. . . and iterate:

▶ approximate the problem to make it easier

▶ solve a sequence of approximated problems that converge to solve the original
problem

▶ or initialize (“warm-start”) a solver for the original problem with a solution to
the approximated problem
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Outline

What is an optimization problem?

Course goals and expectations

Linear Algebra Review
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Course goals

look at goals, materials, and grading on course website:
https://stanford-cme-307.github.io/web/

▶ Which goals sound exciting?

▶ Which goals don’t make sense?

▶ What else do you hope to accomplish?

▶ Do expectations make sense given course goals?
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Outline
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Course goals and expectations
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Linear independence

▶ the span of A1, . . . ,Ak ∈ Rm is the set of all linear combinations

λ1A1 + . . .+ λkAk , λ ∈ Rk

▶ vectors A1, . . . ,Ak ∈ Rm are linearly dependent if, for some λ ∈ Rk , λ ̸= 0,

λ1A1 + . . .+ λkAk = 0

▶ otherwise, they are linearly independent
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Linear and affine subspaces

▶ a linear subspace L is a set closed under addition and scalar multiplication:
for all v , w ∈ L and λ ∈ R,

v + w ∈ L, λv ∈ L

▶ an affine subspace A is a set of the form x0 + L where x0 ∈ Rn and L is a
linear subspace.

Q: for a linear subspace L, is span{A1, . . . ,Ak} ⊆ L? What about for an affine
subspace?

from these definitions, we can prove

▶ A is affine if and only if every affine combination of points in A is in A:

λv + (1− λ)w ∈ A ∀λ ∈ R, v ,w ∈ A
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Span and nullspace

matrix A ∈ Rm×n with columns A1, . . . ,An ∈ Rm. define

▶ span of A

▶ nullspace of A

▶ rank of A
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matrix A ∈ Rm×n with columns A1, . . . ,An ∈ Rm. define

▶ span of A: span(A) = {Ax | x ∈ Rn} ⊆ Rm

▶ nullspace of A: nullspace(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

▶ rank of A: Rank(A) = dim(span(A))

geometry? what is the relationship between these?

rank nullity Theorem:

Rank(A) + dim(nullspace(A)) = n

proof: on board (or in notes)
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Solution of linear system

matrix A ∈ Rm×n, b ∈ Rm, m ≤ n (“fat matrix”). define

▶ solution set of linear system {x : Ax = b}

Q: when does a solution exist? what is the dimension of the solution set? when is
the solution unique?
▶ solution exists if b ∈ span(A). define x0 so that Ax0 = b.
▶ solution set is an affine subspace of dimension n − Rank(A). proof:

▶ nullspace(A), is a linear subspace of dimension n − Rank(A) by rank-nullity
theorem

▶ solution set is {x : Ax = b} = {x0 + v : v ∈ nullspace(A)}
▶ solution is unique if nullspace(A) = 0, e.g., if m = n and A is full rank. In that

case, we say A is invertible and write x0 = A−1b.

if these are confusing:

▶ review linear algebra and prove them all!
▶ read the course notes
▶ come to office hours and/or review session this Friday
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What next?

▶ website: https://stanford-cme-307.github.io/web

▶ Ed for discussion and announcements

▶ fill out course survey (linked on website)

▶ talk to instructors after class and during office hours (see website)

▶ class attendance is required. will post some slides, generally no recordings
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