
CME 307 / MS&E 311 / OIT 676: Optimization

Interior Point Methods

Professor Udell

Management Science and Engineering
Stanford

November 10, 2025

slides developed with Prof. Luiz-Rafael Santos, UFSC https://lrsantos11.github.io/

1

https://lrsantos11.github.io/

Outline

IPM for linear and quadratic programs

IPM for convex nonlinear programming

IPM for conic optimization

2

IPM for linear and quadratic programs

Linear/Quadratic Program

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b,

x ≥ 0,

where Q ∈ Sn
+, and A ∈ Rm×n is full-rank.

▶ P := {x ∈ Rn | Ax = b, x ≥ 0} is a
polyhedron.

▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex
IPM: go through the middle!

Advantages of vertex solution vs interior solution?

3

IPM for linear and quadratic programs

Linear/Quadratic Program

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b,

x ≥ 0,

where Q ∈ Sn
+, and A ∈ Rm×n is full-rank.

▶ P := {x ∈ Rn | Ax = b, x ≥ 0} is a
polyhedron.

▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex
IPM: go through the middle!

Advantages of vertex solution vs interior solution?

3

IPM for linear and quadratic programs

Linear/Quadratic Program

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b,

x ≥ 0,

where Q ∈ Sn
+, and A ∈ Rm×n is full-rank.

▶ P := {x ∈ Rn | Ax = b, x ≥ 0} is a
polyhedron.

▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex
IPM: go through the middle!

Advantages of vertex solution vs interior solution?

3

IPM for linear and quadratic programs

Linear/Quadratic Program

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b,

x ≥ 0,

where Q ∈ Sn
+, and A ∈ Rm×n is full-rank.

▶ P := {x ∈ Rn | Ax = b, x ≥ 0} is a
polyhedron.

▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex
IPM: go through the middle!

Advantages of vertex solution vs interior solution?

3

IPM for linear and quadratic programs

Linear/Quadratic Program

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b,

x ≥ 0,

where Q ∈ Sn
+, and A ∈ Rm×n is full-rank.

▶ P := {x ∈ Rn | Ax = b, x ≥ 0} is a
polyhedron.

▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex
IPM: go through the middle!

Advantages of vertex solution vs interior solution?

3

IPM for linear and quadratic programs

Linear/Quadratic Program

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b,

x ≥ 0,

where Q ∈ Sn
+, and A ∈ Rm×n is full-rank.

▶ P := {x ∈ Rn | Ax = b, x ≥ 0} is a
polyhedron.

▶ If Q = 0, problem is a linear program.

How to solve LP/QP problems?

Simplex: vertex to vertex
IPM: go through the middle!

Advantages of vertex solution vs interior solution?

3

Building blocks of IPM

Ingredients for Interior Point Method

▶ Duality theory: Lagrangian function; KKT (first order optimality) condition.

▶ Barrier function: logarithmic barrier.

▶ Newton’s method (and a good linear solver)

The reward: fantastic convergence properties!

▶ Theoretical: O(
√
n log(1/ε)) iterations

▶ Practical: O(log n log(1/ε)) iterations

(but the per-iteration cost may be high due to the Newton solve: often O(n3))

4

Building blocks of IPM

Ingredients for Interior Point Method

▶ Duality theory: Lagrangian function; KKT (first order optimality) condition.

▶ Barrier function: logarithmic barrier.

▶ Newton’s method (and a good linear solver)

The reward: fantastic convergence properties!

▶ Theoretical: O(
√
n log(1/ε)) iterations

▶ Practical: O(log n log(1/ε)) iterations

(but the per-iteration cost may be high due to the Newton solve: often O(n3))

4

IPM: algorithmic template

IPM procedure

▶ replace inequalities with log barriers;

▶ form the Lagrangian;

▶ write down the KKT conditions of the perturbed problem;

▶ find one (or more) directions using Newton’s method on the KKT system;

▶ (decide how to combine the directions and) compute a stepsize.

5

Duality and KKT conditions

Primal-dual QPs

Primal problem

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b

x ≥ 0

Dual problem

maximize b⊤y − 1
2x

⊤Qx
subject to A⊤y + s − Qx = c

s ≥ 0

KKT conditions

Ax = b ▷(primal feasibility)

A⊤y + s − Qx = c ▷(dual feasibility)

XS1 = 0 ▷(complementarity: xi si = 0, i = 1, . . . , n)

(x , s) ≥ 0

where X = diag(x1, . . . , xn),S = diag(s1, . . . , sn) ∈ Rn×n, and e = (1, . . . , 1) ∈ Rn.

6

Duality and KKT conditions

Primal-dual QPs

Primal problem

minimize c⊤x + 1
2x

⊤Qx
subject to Ax = b

x ≥ 0

Dual problem

maximize b⊤y − 1
2x

⊤Qx
subject to A⊤y + s − Qx = c

s ≥ 0

KKT conditions

Ax = b ▷(primal feasibility)

A⊤y + s − Qx = c ▷(dual feasibility)

XS1 = 0 ▷(complementarity: xi si = 0, i = 1, . . . , n)

(x , s) ≥ 0

where X = diag(x1, . . . , xn),S = diag(s1, . . . , sn) ∈ Rn×n, and e = (1, . . . , 1) ∈ Rn. 6

Logarithmic barrier

− ln xj
replaces the inequality

xj ≥ 0
x

y

y = − ln x

minimize −
n∑

j=1

ln xj ⇐⇒ maximize
∏

1≤j≤n

xj

=⇒ keeps every entry of x away from 0.

7

Logarithmic barrier

− ln xj
replaces the inequality

xj ≥ 0
x

y

y = − ln x

minimize −
n∑

j=1

ln xj ⇐⇒ maximize
∏

1≤j≤n

xj

=⇒ keeps every entry of x away from 0.

7

Barrier primal QP

Step 1: replace inequality constraints by barrier

Replace the primal QP

minimize c⊤x + 1
2
x⊤Qx

subject to Ax = b
x ≥ 0

with the barrier primal QP

minimize c⊤x + 1
2
x⊤Qx − µ

n∑
j=1

ln xj

subject to Ax = b

8

Logarithmic barrier and stationarity

Step 2: remove equality constraints using Lagrangian

L(x , y , µ) = c⊤x +
1

2
x⊤Qx − y⊤(Ax − b)− µ

n∑
j=1

ln xj

A stationary point (x , y , µ) of the Lagrangian satisfies

∇xL(x , y , µ) = 0 = c + Qx − A⊤y − µX−1e

with X−1 = diag(x−1
1 , . . . , x−1

n) ∈ Rn×n, (xj > 0).

9

Logarithmic barrier and stationarity

Step 2: remove equality constraints using Lagrangian

L(x , y , µ) = c⊤x +
1

2
x⊤Qx − y⊤(Ax − b)− µ

n∑
j=1

ln xj

A stationary point (x , y , µ) of the Lagrangian satisfies

∇xL(x , y , µ) = 0 = c + Qx − A⊤y − µX−1e

with X−1 = diag(x−1
1 , . . . , x−1

n) ∈ Rn×n, (xj > 0).

9

KKT conditions for barrier problem

▶ Define s := µX−1e, which implies XS1 = µ1, to get

KKTµ

Ax = b

A⊤y + s − Qx = c

XS1 = µ1

(x , s) > 0

KKT

Ax = b

A⊤y + s − Qx = c

XS1 = 0

(x , s) ≥ 0

KKTµ → KKT as µ → 0.

10

KKT conditions for barrier problem

▶ Define s := µX−1e, which implies XS1 = µ1, to get

KKTµ

Ax = b

A⊤y + s − Qx = c

XS1 = µ1

(x , s) > 0

KKT

Ax = b

A⊤y + s − Qx = c

XS1 = 0

(x , s) ≥ 0

KKTµ → KKT as µ → 0.

10

KKT conditions for barrier problem

▶ Define s := µX−1e, which implies XS1 = µ1, to get

KKTµ

Ax = b

A⊤y + s − Qx = c

XS1 = µ1

(x , s) > 0

KKT

Ax = b

A⊤y + s − Qx = c

XS1 = 0

(x , s) ≥ 0

KKTµ → KKT as µ → 0.

10

Central path (LP case)

▶ Parameter µ controls the distance to optimality

c⊤x − b⊤y = c⊤x − x⊤A⊤y = x⊤s = nµ

▶ Analytic center (µ-center): unique point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the KKTµ conditions.

▶ The curve
Cµ = {(x(µ), y(µ), s(µ)) | µ > 0}

is called the primal-dual central path.

11

Central path (LP case)

▶ Parameter µ controls the distance to optimality

c⊤x − b⊤y = c⊤x − x⊤A⊤y = x⊤s = nµ

▶ Analytic center (µ-center): unique point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the KKTµ conditions.

▶ The curve
Cµ = {(x(µ), y(µ), s(µ)) | µ > 0}

is called the primal-dual central path.

11

Central path (LP case)

▶ Parameter µ controls the distance to optimality

c⊤x − b⊤y = c⊤x − x⊤A⊤y = x⊤s = nµ

▶ Analytic center (µ-center): unique point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the KKTµ conditions.

▶ The curve
Cµ = {(x(µ), y(µ), s(µ)) | µ > 0}

is called the primal-dual central path.

11

12

Recall Newton’s method for nonlinear equation

▶ For F : Rn → Rn smooth, solve F (x) = 0.

▶ Newton’s method: define Jacobian JF (x) so JF (x)ij =
∂Fi
∂xj

, and iterate

xk+1 = xk − αkJF (x
k)−1F (xk)

0.75 1.00 1.25 1.50 1.75

−1

1

2

xk+2 xkxk+1

13

Recall Newton’s method for nonlinear equation

▶ For F : Rn → Rn smooth, solve F (x) = 0.
▶ Newton’s method: define Jacobian JF (x) so JF (x)ij =

∂Fi
∂xj

, and iterate

xk+1 = xk − αkJF (x
k)−1F (xk)

0.75 1.00 1.25 1.50 1.75

−1

1

2

xk+2 xkxk+1

13

Recall Newton’s method for nonlinear equation

▶ For F : Rn → Rn smooth, solve F (x) = 0.
▶ Newton’s method: define Jacobian JF (x) so JF (x)ij =

∂Fi
∂xj

, and iterate

xk+1 = xk − αkJF (x
k)−1F (xk)

0.75 1.00 1.25 1.50 1.75

−1

1

2

xk+2 xkxk+1

13

Apply Method to KKTµ

The first order optimality conditions for the barrier problem form a large system of
nonlinear equations:

F (x , y , s) = 0,

where F : R2n+m 7→ R2n+m is defined as

F (x , y , s) =

 Ax −b
A⊤y + s − Qx −c

XS1 −µ1



▶ The first two blocks are linear.
▶ The last block, corresponding to the complementarity condition, is nonlinear.
▶ Jacobian is

JF (x , y , s) =

 A 0 0
−Q A⊤ I
S 0 X



14

Apply Method to KKTµ

The first order optimality conditions for the barrier problem form a large system of
nonlinear equations:

F (x , y , s) = 0,

where F : R2n+m 7→ R2n+m is defined as

F (x , y , s) =

 Ax −b
A⊤y + s − Qx −c

XS1 −µ1


▶ The first two blocks are linear.
▶ The last block, corresponding to the complementarity condition, is nonlinear.
▶ Jacobian is

JF (x , y , s) =

 A 0 0
−Q A⊤ I
S 0 X


14

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
KKTµ. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n (x

0)⊤s0

▶ For k = 1, 2, . . .

▶ µk = σµk−1, where σ ∈ (0, 1)
▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0

−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µk1− X kSk1


▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.
▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).

15

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
KKTµ. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n (x

0)⊤s0

▶ For k = 1, 2, . . .

▶ µk = σµk−1, where σ ∈ (0, 1)
▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0

−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µk1− X kSk1


▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.
▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).

15

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
KKTµ. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n (x

0)⊤s0

▶ For k = 1, 2, . . .

▶ µk = σµk−1, where σ ∈ (0, 1)
▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0

−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µk1− X kSk1


▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.
▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).

15

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
KKTµ. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n (x

0)⊤s0

▶ For k = 1, 2, . . .
▶ µk = σµk−1, where σ ∈ (0, 1)

▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0
−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µk1− X kSk1


▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.
▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).

15

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
KKTµ. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n (x

0)⊤s0

▶ For k = 1, 2, . . .
▶ µk = σµk−1, where σ ∈ (0, 1)
▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0

−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µk1− X kSk1



▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.
▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).

15

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
KKTµ. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n (x

0)⊤s0

▶ For k = 1, 2, . . .
▶ µk = σµk−1, where σ ∈ (0, 1)
▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0

−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µk1− X kSk1


▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.

▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).

15

Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter µ and make one (damped) Newton step towards the solution of
KKTµ. Then reduce the barrier parameter µ and repeat.

▶ Given (x0, y0, s0) feasible, µ0 =
1
n (x

0)⊤s0

▶ For k = 1, 2, . . .
▶ µk = σµk−1, where σ ∈ (0, 1)
▶ Find Newton direction (∆xk ,∆yk ,∆sk) by solving A 0 0

−Q A⊤ I
Sk 0 X k

∆xk

∆yk

∆sk

 =

 b − Axk

c − A⊤yk − sk + Qxk

µk1− X kSk1


▶ Find step length αk so (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk) is feasible.
▶ Make step (xk+1, yk+1, sk+1) = (xk + αk∆xk , yk + αk∆yk , sk + αk∆sk).

15

Path-following algorithm

▶ Short-step path-following method: O(
√
n) complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

Given ϵ > 0, suppose that a feasible starting point
(
x0, y0, s0

)
∈ N2(0.1) satisfies(

x0
)⊤

s0 = nµ0, where µ0 ≤ 1/ϵκ,

for some positive constant κ. Then for some K = O(
√
n ln(1/ϵ)), the optimality gap

is bounded by ϵ after at most K iterations:

µk ≤ ϵ, ∀k ≥ K

▶ θ-neighborhood of the central path:
N2(θ) := {(x , y , s) ∈ F0 | ∥XS1− µ1∥ ≤ θµ}, with µ = 1

nx
⊤s.

▶ Slow progress towards optimality

16

https://doi.org/10.1016/j.ejor.2011.09.017

Path-following algorithm

▶ Short-step path-following method: O(
√
n) complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

Given ϵ > 0, suppose that a feasible starting point
(
x0, y0, s0

)
∈ N2(0.1) satisfies(

x0
)⊤

s0 = nµ0, where µ0 ≤ 1/ϵκ,

for some positive constant κ. Then for some K = O(
√
n ln(1/ϵ)), the optimality gap

is bounded by ϵ after at most K iterations:

µk ≤ ϵ, ∀k ≥ K

▶ θ-neighborhood of the central path:
N2(θ) := {(x , y , s) ∈ F0 | ∥XS1− µ1∥ ≤ θµ}, with µ = 1

nx
⊤s.

▶ Slow progress towards optimality

16

https://doi.org/10.1016/j.ejor.2011.09.017

Path-following algorithm

▶ Short-step path-following method: O(
√
n) complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

Given ϵ > 0, suppose that a feasible starting point
(
x0, y0, s0

)
∈ N2(0.1) satisfies(

x0
)⊤

s0 = nµ0, where µ0 ≤ 1/ϵκ,

for some positive constant κ. Then for some K = O(
√
n ln(1/ϵ)), the optimality gap

is bounded by ϵ after at most K iterations:

µk ≤ ϵ, ∀k ≥ K

▶ θ-neighborhood of the central path:
N2(θ) := {(x , y , s) ∈ F0 | ∥XS1− µ1∥ ≤ θµ}, with µ = 1

nx
⊤s.

▶ Slow progress towards optimality

16

https://doi.org/10.1016/j.ejor.2011.09.017

Path-following algorithm

▶ Short-step path-following method: O(
√
n) complexity result

Theorem ([Gondzio, 2012, Thm. 3.1])

Given ϵ > 0, suppose that a feasible starting point
(
x0, y0, s0

)
∈ N2(0.1) satisfies(

x0
)⊤

s0 = nµ0, where µ0 ≤ 1/ϵκ,

for some positive constant κ. Then for some K = O(
√
n ln(1/ϵ)), the optimality gap

is bounded by ϵ after at most K iterations:

µk ≤ ϵ, ∀k ≥ K

▶ θ-neighborhood of the central path:
N2(θ) := {(x , y , s) ∈ F0 | ∥XS1− µ1∥ ≤ θµ}, with µ = 1

nx
⊤s.

▶ Slow progress towards optimality
16

https://doi.org/10.1016/j.ejor.2011.09.017

17

Infeasible-start vs. feasible IPM

Feasible (path-following) IPM: keep iterates feasible.

Maintain Ax = b, A⊤y + s −Qx = c , (x , s) > 0 at every step and solve the Newton
system  A 0 0

−Q A⊤ I
S 0 X

∆x
∆y
∆s

 =

 0

0

σµ1− XS1

 , µ = x⊤s
n .

Only complementarity is perturbed; feasibility is preserved.

Infeasible-start IPM: allow and drive down feasibility residuals.

Start from any (x > 0, s > 0, y) (not necessarily feasible) and solve A 0 0
−Q A⊤ I
S 0 X

∆x
∆y
∆s

 =

 rp
rd

σµ1− XS1

 ,
rp = b − Ax ,

rd = c + Qx − A⊤y − s.

18

Infeasible start details

▶ Direction decomposition. Using linearity, separate computation of step into step
to restore feasibility + step to improve complementarity: decompose
∆ = ∆p +∆d +∆µ, where ∆p,∆d restore feasibility and ∆µ optimizes. In
feasible IPM, ∆p = ∆d = 0.

▶ Residual contraction. Feasibility typically arrives before optimality, as linear
system is easier to solve than nonlinear: with step sizes (αP , αD),

r+p = (1− αP) rp, r+d = (1− αD) rd ,

▶ Positivity via fraction-to-the-boundary. Choose

αP = α0max{α : x + α∆x ≥ 0}, αD = α0max{α : s + α∆s ≥ 0}, α0 ≲ 1,

then update x+ = x + αP∆x , y+ = y + αD∆y , s+ = s + αD∆s.

19

Augmented system

Newton direction A 0 0
−Q A⊤ I
S 0 X

∆x
∆y
∆s

 =

 b − Ax
c − A⊤y − s+Qx

µk1− XS1

 =:

ξpξd
ξµ


use last (complementarity) block to solve for ∆s as a function of ∆x .

Augmented system

Define Θ = XS−1 (ill-conditioned!). Then ∆x and ∆y solve the Newton system
⇐⇒ [

−Q −Θ−1 A⊤

A 0

] [
∆x
∆y

]
=

[
ξd − X−1ξµ

ξp

]
▶ Newton system is nonsymmetric.
▶ Augmented system is symmetric but indefinite.

20

Normal equations

Augmented system[
−Θ−1 A⊤

A 0

] [
∆x
∆y

]
=

[
ξd − X−1ξµ

ξp

]
=:

[
g
ξp

]
Normal equations

Eliminate ∆x to arrive at the Normal equations

(AΘA⊤)∆y = AΘg + ξp

▶ AΘA⊤ is symmetric and positive semidefinite. (Finally!)
▶ Normal equations in QP (A(Q +Θ)A⊤)∆y = g are generally nearly dense,

even when A and Q are sparse.
▶ LP: Normal equations are often used.
▶ QP: usually use the indefinite augmented system.

21

Normal equations

Augmented system[
−Θ−1 A⊤

A 0

] [
∆x
∆y

]
=

[
ξd − X−1ξµ

ξp

]
=:

[
g
ξp

]
Normal equations

Eliminate ∆x to arrive at the Normal equations

(AΘA⊤)∆y = AΘg + ξp

▶ AΘA⊤ is symmetric and positive semidefinite. (Finally!)
▶ Normal equations in QP (A(Q +Θ)A⊤)∆y = g are generally nearly dense,

even when A and Q are sparse.
▶ LP: Normal equations are often used.
▶ QP: usually use the indefinite augmented system.

21

Outline

IPM for linear and quadratic programs

IPM for convex nonlinear programming

IPM for conic optimization

22

IPM for NLP

▶ Convex NLP

minimize f (x)
subject to g(x) ≤ 0

⇐⇒ minimize f (x)
subject to g(x) + z = 0, z ≥ 0

▶ Replace inequality z ≥ 0 with logarithmic barrier

minimize f (x)− µ
m∑
i=1

ln(zi) subject to g(x) + z = 0

▶ Write out Lagrangian

L(x , y , z , µ) = f (x) + y⊤(g(x) + z)− µ
m∑
i=1

ln(zi)

23

IPM for NLP

▶ Convex NLP

minimize f (x)
subject to g(x) ≤ 0

⇐⇒ minimize f (x)
subject to g(x) + z = 0, z ≥ 0

▶ Replace inequality z ≥ 0 with logarithmic barrier

minimize f (x)− µ

m∑
i=1

ln(zi) subject to g(x) + z = 0

▶ Write out Lagrangian

L(x , y , z , µ) = f (x) + y⊤(g(x) + z)− µ
m∑
i=1

ln(zi)

23

IPM for NLP

▶ Convex NLP

minimize f (x)
subject to g(x) ≤ 0

⇐⇒ minimize f (x)
subject to g(x) + z = 0, z ≥ 0

▶ Replace inequality z ≥ 0 with logarithmic barrier

minimize f (x)− µ

m∑
i=1

ln(zi) subject to g(x) + z = 0

▶ Write out Lagrangian

L(x , y , z , µ) = f (x) + y⊤(g(x) + z)− µ
m∑
i=1

ln(zi)

23

IPM for NLP

▶ Write conditions for stationary point

∇xL(x , z , y) = ∇f (x) + Jg (x)
⊤y = 0

∇yL(x , z , y) = g(x) + z = 0

∇zL(x , z , y) = y − µZ−11 = 0

▶ Write KKT system

∇f (x) + Jg (x)
⊤y = 0,

g(x) + z = 0

YZ1 = µ1

24

IPM for NLP

▶ Write conditions for stationary point

∇xL(x , z , y) = ∇f (x) + Jg (x)
⊤y = 0

∇yL(x , z , y) = g(x) + z = 0

∇zL(x , z , y) = y − µZ−11 = 0

▶ Write KKT system

∇f (x) + Jg (x)
⊤y = 0,

g(x) + z = 0

YZ1 = µ1

24

Newton for KKT of NLP

▶ Apply Newton method for KKT system

▶ Jacobian matrix of KKT system

JF (x , z , y) =

Q(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y


where Q(x , y) = ∇2f (x) +

∑m
i=1 yi∇2gi (x) is the Hessian of L

▶ Newton step for KKT systemQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µ1− YZ1



25

Newton for KKT of NLP

▶ Apply Newton method for KKT system

▶ Jacobian matrix of KKT system

JF (x , z , y) =

Q(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y


where Q(x , y) = ∇2f (x) +

∑m
i=1 yi∇2gi (x) is the Hessian of L

▶ Newton step for KKT systemQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µ1− YZ1



25

Newton for KKT of NLP

▶ Apply Newton method for KKT system

▶ Jacobian matrix of KKT system

JF (x , z , y) =

Q(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y


where Q(x , y) = ∇2f (x) +

∑m
i=1 yi∇2gi (x) is the Hessian of L

▶ Newton step for KKT systemQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µ1− YZ1


25

From QP to NLP

▶ Newton direction for NLPQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µ1− YZ1



▶ Augmented system for NLP[
Q(x , y) Jg (x)

⊤

Jg (x) −ZY−1

] [
∆x
∆y

]
=

[
−∇f (x)− Jg (x)

⊤y
−g(x)− µY−11

]
▶ Need to compute Q(x , y) and Jg (x) at each iteration

▶ Caveat: use trust region method to choose stepsize as Hessian may be
indefinite.

26

From QP to NLP

▶ Newton direction for NLPQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µ1− YZ1


▶ Augmented system for NLP[

Q(x , y) Jg (x)
⊤

Jg (x) −ZY−1

] [
∆x
∆y

]
=

[
−∇f (x)− Jg (x)

⊤y
−g(x)− µY−11

]

▶ Need to compute Q(x , y) and Jg (x) at each iteration

▶ Caveat: use trust region method to choose stepsize as Hessian may be
indefinite.

26

From QP to NLP

▶ Newton direction for NLPQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µ1− YZ1


▶ Augmented system for NLP[

Q(x , y) Jg (x)
⊤

Jg (x) −ZY−1

] [
∆x
∆y

]
=

[
−∇f (x)− Jg (x)

⊤y
−g(x)− µY−11

]
▶ Need to compute Q(x , y) and Jg (x) at each iteration

▶ Caveat: use trust region method to choose stepsize as Hessian may be
indefinite.

26

From QP to NLP

▶ Newton direction for NLPQ(x , y) Jg (x)
⊤ 0

Jg (x) 0 I
0 Z Y

∆x
∆y
∆z

 =

−∇f (x)− Jg (x)
⊤y

−g(x)− z
µ1− YZ1


▶ Augmented system for NLP[

Q(x , y) Jg (x)
⊤

Jg (x) −ZY−1

] [
∆x
∆y

]
=

[
−∇f (x)− Jg (x)

⊤y
−g(x)− µY−11

]
▶ Need to compute Q(x , y) and Jg (x) at each iteration

▶ Caveat: use trust region method to choose stepsize as Hessian may be
indefinite.

26

Outline

IPM for linear and quadratic programs

IPM for convex nonlinear programming

IPM for conic optimization

27

Self-concordant function

Definition

Function f : R → R is self-concordant if for some constant Mf ≥ 0, the inequality

f ′′′(x) ≤ Mf |f ′′(x)|3/2

holds for any x ∈ dom f .

A function f : Rn → R is self-concordant if its restriction to any line is
self-concordant. Equivalently,

∇3f (x)[u, u, u] ≤ Mf ∥u∥
3/2
∇2f (x)

, ∈ Rn

▶ A self-concordant function is always well approximated by a quadratic model.

▶ Self-concordance is invariant under affine transformations: if g(z) is
self-concordant, so is f (x) = g(Ax − b)

28

Self-concordant function

Definition

Function f : R → R is self-concordant if for some constant Mf ≥ 0, the inequality

f ′′′(x) ≤ Mf |f ′′(x)|3/2

holds for any x ∈ dom f .
A function f : Rn → R is self-concordant if its restriction to any line is
self-concordant. Equivalently,

∇3f (x)[u, u, u] ≤ Mf ∥u∥
3/2
∇2f (x)

, ∈ Rn

▶ A self-concordant function is always well approximated by a quadratic model.

▶ Self-concordance is invariant under affine transformations: if g(z) is
self-concordant, so is f (x) = g(Ax − b)

28

Self-concordant function

Definition

Function f : R → R is self-concordant if for some constant Mf ≥ 0, the inequality

f ′′′(x) ≤ Mf |f ′′(x)|3/2

holds for any x ∈ dom f .
A function f : Rn → R is self-concordant if its restriction to any line is
self-concordant. Equivalently,

∇3f (x)[u, u, u] ≤ Mf ∥u∥
3/2
∇2f (x)

, ∈ Rn

▶ A self-concordant function is always well approximated by a quadratic model.

▶ Self-concordance is invariant under affine transformations: if g(z) is
self-concordant, so is f (x) = g(Ax − b)

28

Newton’s method converges quadratically for self-concordant

functions

Recall we proved that Newton’s method converges quadratically (locally) when the
problem has Lipschitz Hessian (locally).

Using linesearch, a similar argument gives a global bound for self-concordant
optimization:

Theorem ([Boyd and Vandenberghe, 2004, Section 11.5])

Newton’s method with line search finds an ε approximate solution in less than
constant× (f (x0)− f ⋆) + log2 log2

1
ε iterations.

The constant depends only on the linesearch parameters c and β.

29

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Barrier function candidates

Which of these functions is self-concordant? Strongly convex? Smooth?

▶ − ln(x)

▶ exp (1/x)

f (x) = − ln(x) is self-concordant in R+ because

f ′(x) = −1

x
, f ′′(x) =

1

x2
, f ′′′(x) = − 2

x3

f (x) = exp (1/x) is not.

30

Barrier function candidates

Which of these functions is self-concordant? Strongly convex? Smooth?

▶ − ln(x)

▶ exp (1/x)

f (x) = − ln(x) is self-concordant in R+ because

f ′(x) = −1

x
, f ′′(x) =

1

x2
, f ′′′(x) = − 2

x3

f (x) = exp (1/x) is not.

30

Conic optimization

▶ Consider the optimization problem

minimize c⊤x
subject to Ax = b

x ∈ K

where K is a convex closed cone.

▶ The associated dual is

maximize b⊤y
subject to A⊤y + s = c

s ∈ K ∗ (Dual cone)

▶ Weak duality
c⊤x − b⊤y = x⊤(c − A⊤y) = x⊤s ≥ 0

▶ Conic optimization can be solved in polynomial time with IPMs

31

Conic optimization

▶ Consider the optimization problem

minimize c⊤x
subject to Ax = b

x ∈ K

where K is a convex closed cone.
▶ The associated dual is

maximize b⊤y
subject to A⊤y + s = c

s ∈ K ∗ (Dual cone)

▶ Weak duality
c⊤x − b⊤y = x⊤(c − A⊤y) = x⊤s ≥ 0

▶ Conic optimization can be solved in polynomial time with IPMs

31

Conic optimization

▶ Consider the optimization problem

minimize c⊤x
subject to Ax = b

x ∈ K

where K is a convex closed cone.
▶ The associated dual is

maximize b⊤y
subject to A⊤y + s = c

s ∈ K ∗ (Dual cone)

▶ Weak duality
c⊤x − b⊤y = x⊤(c − A⊤y) = x⊤s ≥ 0

▶ Conic optimization can be solved in polynomial time with IPMs

31

Conic optimization

▶ Consider the optimization problem

minimize c⊤x
subject to Ax = b

x ∈ K

where K is a convex closed cone.
▶ The associated dual is

maximize b⊤y
subject to A⊤y + s = c

s ∈ K ∗ (Dual cone)

▶ Weak duality
c⊤x − b⊤y = x⊤(c − A⊤y) = x⊤s ≥ 0

▶ Conic optimization can be solved in polynomial time with IPMs

31

Second-order conic optimization

▶ KSOC := {(x , t) | x ∈ Rn−1, t ∈ R, ∥x∥2 ≤ t, t ≥ 0} (Second-order cone)

▶ Logarithmic barrier function for the second-order cone

f (x , t) =

{
− ln(t2 − ∥x∥22) if ∥x∥ < t

+∞ otherwise

Theorem

The barrier function f (x , t) is self-concordant on KSOC.

Exercise: Prove in case n = 2.

32

Second-order conic optimization

▶ KSOC := {(x , t) | x ∈ Rn−1, t ∈ R, ∥x∥2 ≤ t, t ≥ 0} (Second-order cone)

▶ Logarithmic barrier function for the second-order cone

f (x , t) =

{
− ln(t2 − ∥x∥22) if ∥x∥ < t

+∞ otherwise

Theorem

The barrier function f (x , t) is self-concordant on KSOC.

Exercise: Prove in case n = 2.

32

Second-order conic optimization

▶ KSOC := {(x , t) | x ∈ Rn−1, t ∈ R, ∥x∥2 ≤ t, t ≥ 0} (Second-order cone)

▶ Logarithmic barrier function for the second-order cone

f (x , t) =

{
− ln(t2 − ∥x∥22) if ∥x∥ < t

+∞ otherwise

Theorem

The barrier function f (x , t) is self-concordant on KSOC.

Exercise: Prove in case n = 2.

32

Second-order conic optimization

▶ KSOC := {(x , t) | x ∈ Rn−1, t ∈ R, ∥x∥2 ≤ t, t ≥ 0} (Second-order cone)

▶ Logarithmic barrier function for the second-order cone

f (x , t) =

{
− ln(t2 − ∥x∥22) if ∥x∥ < t

+∞ otherwise

Theorem

The barrier function f (x , t) is self-concordant on KSOC.

Exercise: Prove in case n = 2.

32

Second-order conic optimization

▶ KSOC := {(x , t) | x ∈ Rn−1, t ∈ R, ∥x∥2 ≤ t, t ≥ 0} (Second-order cone)

▶ Logarithmic barrier function for the second-order cone

f (x , t) =

{
− ln(t2 − ∥x∥22) if ∥x∥ < t

+∞ otherwise

Theorem

The barrier function f (x , t) is self-concordant on KSOC.

Exercise: Prove in case n = 2.

32

Semidefinite programming

▶ Variable now is a symmetric matrix X ∈ K = Sn

▶ Define X • Y = tr(X⊤Y)

SDP and its dual

minimize C • X
subject to Ai • X = bi , i = 1, . . . ,m

X ⪰ 0

maximize b⊤y
subject to

∑m
i=1 yiAi + S = C

S ⪰ 0

Ai , C ∈ Sn and b ∈ Rm given, and X ,S ∈ Sn and y ∈ Rm unknown.

Theorem (Weak duality for SDP)

If X is primal feasible and (y ,S) is dual feasible, then

C • X − b⊤y = X • S ≥ 0

33

Semidefinite programming

▶ Variable now is a symmetric matrix X ∈ K = Sn

▶ Define X • Y = tr(X⊤Y)

SDP and its dual

minimize C • X
subject to Ai • X = bi , i = 1, . . . ,m

X ⪰ 0

maximize b⊤y
subject to

∑m
i=1 yiAi + S = C

S ⪰ 0

Ai , C ∈ Sn and b ∈ Rm given, and X ,S ∈ Sn and y ∈ Rm unknown.

Theorem (Weak duality for SDP)

If X is primal feasible and (y ,S) is dual feasible, then

C • X − b⊤y = X • S ≥ 0

33

Semidefinite programming

▶ Variable now is a symmetric matrix X ∈ K = Sn

▶ Define X • Y = tr(X⊤Y)

SDP and its dual

minimize C • X
subject to Ai • X = bi , i = 1, . . . ,m

X ⪰ 0

maximize b⊤y
subject to

∑m
i=1 yiAi + S = C

S ⪰ 0

Ai , C ∈ Sn and b ∈ Rm given, and X ,S ∈ Sn and y ∈ Rm unknown.

Theorem (Weak duality for SDP)

If X is primal feasible and (y ,S) is dual feasible, then

C • X − b⊤y = X • S ≥ 0

33

Semidefinite programming

▶ Variable now is a symmetric matrix X ∈ K = Sn

▶ Define X • Y = tr(X⊤Y)

SDP and its dual

minimize C • X
subject to Ai • X = bi , i = 1, . . . ,m

X ⪰ 0

maximize b⊤y
subject to

∑m
i=1 yiAi + S = C

S ⪰ 0

Ai , C ∈ Sn and b ∈ Rm given, and X ,S ∈ Sn and y ∈ Rm unknown.

Theorem (Weak duality for SDP)

If X is primal feasible and (y ,S) is dual feasible, then

C • X − b⊤y = X • S ≥ 0

33

Logarithmic barrier for SDP

▶ Logarithmic barrier function for the semi-definite cone

f (X) =

{
− ln(det(X)) if X ≻ 0

+∞ otherwise

▶ Facts (for small t):

▶ det(I + tU) = 1 + t tr(U) +O(t2)
▶ ln(1 + t tr(U)) ≈ t tr(U)

▶ Let X ≻ 0 and H ∈ Sn be given. Then

f (X + tH) = − ln(det(X + tH)) = − ln(det(X (I + tX−1H)))

= − ln(det(X))− ln(det(I + tX−1H))

= − ln(det(X))− ln(1 + t tr(X−1H) +O(t2))

= f (X)− tX−1 • H +O(t2)

34

Logarithmic barrier for SDP

▶ Logarithmic barrier function for the semi-definite cone

f (X) =

{
− ln(det(X)) if X ≻ 0

+∞ otherwise

▶ Facts (for small t):

▶ det(I + tU) = 1 + t tr(U) +O(t2)
▶ ln(1 + t tr(U)) ≈ t tr(U)

▶ Let X ≻ 0 and H ∈ Sn be given. Then

f (X + tH) = − ln(det(X + tH)) = − ln(det(X (I + tX−1H)))

= − ln(det(X))− ln(det(I + tX−1H))

= − ln(det(X))− ln(1 + t tr(X−1H) +O(t2))

= f (X)− tX−1 • H +O(t2)

34

Logarithmic barrier for SDP

▶ Logarithmic barrier function for the semi-definite cone

f (X) =

{
− ln(det(X)) if X ≻ 0

+∞ otherwise

▶ Facts (for small t):
▶ det(I + tU) = 1 + t tr(U) +O(t2)

▶ ln(1 + t tr(U)) ≈ t tr(U)
▶ Let X ≻ 0 and H ∈ Sn be given. Then

f (X + tH) = − ln(det(X + tH)) = − ln(det(X (I + tX−1H)))

= − ln(det(X))− ln(det(I + tX−1H))

= − ln(det(X))− ln(1 + t tr(X−1H) +O(t2))

= f (X)− tX−1 • H +O(t2)

34

Logarithmic barrier for SDP

▶ Logarithmic barrier function for the semi-definite cone

f (X) =

{
− ln(det(X)) if X ≻ 0

+∞ otherwise

▶ Facts (for small t):
▶ det(I + tU) = 1 + t tr(U) +O(t2)
▶ ln(1 + t tr(U)) ≈ t tr(U)

▶ Let X ≻ 0 and H ∈ Sn be given. Then

f (X + tH) = − ln(det(X + tH)) = − ln(det(X (I + tX−1H)))

= − ln(det(X))− ln(det(I + tX−1H))

= − ln(det(X))− ln(1 + t tr(X−1H) +O(t2))

= f (X)− tX−1 • H +O(t2)

34

Logarithmic barrier for SDP

▶ Logarithmic barrier function for the semi-definite cone

f (X) =

{
− ln(det(X)) if X ≻ 0

+∞ otherwise

▶ Facts (for small t):
▶ det(I + tU) = 1 + t tr(U) +O(t2)
▶ ln(1 + t tr(U)) ≈ t tr(U)

▶ Let X ≻ 0 and H ∈ Sn be given. Then

f (X + tH) = − ln(det(X + tH)) = − ln(det(X (I + tX−1H)))

= − ln(det(X))− ln(det(I + tX−1H))

= − ln(det(X))− ln(1 + t tr(X−1H) +O(t2))

= f (X)− tX−1 • H +O(t2)

34

Derivatives of Logarithmic barrier for SDP

▶ First derivative of f (X)

f ′(X) = lim
t→0

f (X + tH)− f (X)

t
= −X−1

So Df (X)[H] = −X−1 • H.

▶ Second derivative of f (X)

f ′(X + tH) = −[X (I + tX−1H)]−1 = −[I − tX−1H +O(t2)]X−1

= f ′(X) + tX−1HX−1 +O(t2)

so f ′′(X)[H] = X−1HX−1 and D2f (X)[H,G] = X−1HX−1 • G .

▶ f ′′′(X)[H,G] = −X−1HX−1GX−1 − X−1GX−1HX−1

35

Derivatives of Logarithmic barrier for SDP

▶ First derivative of f (X)

f ′(X) = lim
t→0

f (X + tH)− f (X)

t
= −X−1

So Df (X)[H] = −X−1 • H.

▶ Second derivative of f (X)

f ′(X + tH) = −[X (I + tX−1H)]−1 = −[I − tX−1H +O(t2)]X−1

= f ′(X) + tX−1HX−1 +O(t2)

so f ′′(X)[H] = X−1HX−1 and D2f (X)[H,G] = X−1HX−1 • G .

▶ f ′′′(X)[H,G] = −X−1HX−1GX−1 − X−1GX−1HX−1

35

Derivatives of Logarithmic barrier for SDP

▶ First derivative of f (X)

f ′(X) = lim
t→0

f (X + tH)− f (X)

t
= −X−1

So Df (X)[H] = −X−1 • H.

▶ Second derivative of f (X)

f ′(X + tH) = −[X (I + tX−1H)]−1 = −[I − tX−1H +O(t2)]X−1

= f ′(X) + tX−1HX−1 +O(t2)

so f ′′(X)[H] = X−1HX−1 and D2f (X)[H,G] = X−1HX−1 • G .

▶ f ′′′(X)[H,G] = −X−1HX−1GX−1 − X−1GX−1HX−1

35

Derivatives of Logarithmic barrier for SDP

▶ First derivative of f (X)

f ′(X) = lim
t→0

f (X + tH)− f (X)

t
= −X−1

So Df (X)[H] = −X−1 • H.

▶ Second derivative of f (X)

f ′(X + tH) = −[X (I + tX−1H)]−1 = −[I − tX−1H +O(t2)]X−1

= f ′(X) + tX−1HX−1 +O(t2)

so f ′′(X)[H] = X−1HX−1 and D2f (X)[H,G] = X−1HX−1 • G .

▶ f ′′′(X)[H,G] = −X−1HX−1GX−1 − X−1GX−1HX−1

35

Derivatives of Logarithmic barrier for SDP

▶ First derivative of f (X)

f ′(X) = lim
t→0

f (X + tH)− f (X)

t
= −X−1

So Df (X)[H] = −X−1 • H.

▶ Second derivative of f (X)

f ′(X + tH) = −[X (I + tX−1H)]−1 = −[I − tX−1H +O(t2)]X−1

= f ′(X) + tX−1HX−1 +O(t2)

so f ′′(X)[H] = X−1HX−1 and D2f (X)[H,G] = X−1HX−1 • G .

▶ f ′′′(X)[H,G] = −X−1HX−1GX−1 − X−1GX−1HX−1

35

Derivatives of Logarithmic barrier for SDP

▶ First derivative of f (X)

f ′(X) = lim
t→0

f (X + tH)− f (X)

t
= −X−1

So Df (X)[H] = −X−1 • H.

▶ Second derivative of f (X)

f ′(X + tH) = −[X (I + tX−1H)]−1 = −[I − tX−1H +O(t2)]X−1

= f ′(X) + tX−1HX−1 +O(t2)

so f ′′(X)[H] = X−1HX−1 and D2f (X)[H,G] = X−1HX−1 • G .

▶ f ′′′(X)[H,G] = −X−1HX−1GX−1 − X−1GX−1HX−1

35

Characterization of self-concordance for SDP

Theorem

The function f (X) = − ln detX is a convex barrier for Sn
+.

Proof sketch.

Let φ(t) = F (X + tH). Then, prove that φ′′(t) ≥ 0 for t > 0 such that
X + tH ≻ 0. Therefore, when X ≻ 0 approaches a singular matrix, its determinant
approaches zero, and the function f (X) → +∞.

Theorem ([Nestervov and Nemirovskii, 1994])

The barrier function f (X) = − ln detX is self-concordant on Sn
+.

36

Characterization of self-concordance for SDP

Theorem

The function f (X) = − ln detX is a convex barrier for Sn
+.

Proof sketch.

Let φ(t) = F (X + tH). Then, prove that φ′′(t) ≥ 0 for t > 0 such that
X + tH ≻ 0. Therefore, when X ≻ 0 approaches a singular matrix, its determinant
approaches zero, and the function f (X) → +∞.

Theorem ([Nestervov and Nemirovskii, 1994])

The barrier function f (X) = − ln detX is self-concordant on Sn
+.

36

Characterization of self-concordance for SDP

Theorem

The function f (X) = − ln detX is a convex barrier for Sn
+.

Proof sketch.

Let φ(t) = F (X + tH). Then, prove that φ′′(t) ≥ 0 for t > 0 such that
X + tH ≻ 0. Therefore, when X ≻ 0 approaches a singular matrix, its determinant
approaches zero, and the function f (X) → +∞.

Theorem ([Nestervov and Nemirovskii, 1994])

The barrier function f (X) = − ln detX is self-concordant on Sn
+.

36

Solving SDPs with IPMs

▶ Replace the primal SDP

minimize C • X
subject to AX = b,

X ⪰ 0,

with the primal barrier SDP

minimize C • X + µf (X)
subject to AX = b,

(with a barrier parameter µ ≥ 0).

▶ Formulate the Lagrangian

L(X , y ,S) = C • X + µf (X)− yT (AX − b),

with y ∈ Rm, and write the first order conditions (FOC) for a stationary point
of L:

C + µf ′(X)−A∗y = 0

37

Solving SDPs with IPMs

▶ Replace the primal SDP

minimize C • X
subject to AX = b,

X ⪰ 0,

with the primal barrier SDP

minimize C • X + µf (X)
subject to AX = b,

(with a barrier parameter µ ≥ 0).
▶ Formulate the Lagrangian

L(X , y ,S) = C • X + µf (X)− yT (AX − b),

with y ∈ Rm, and write the first order conditions (FOC) for a stationary point
of L:

C + µf ′(X)−A∗y = 0 37

Solving SDPs with IPMs (cont’d)

▶ Use f (X) = − ln detX and f ′(X) = −X−1 to obtain

C − µX−1 −A∗y = 0

▶ Denote S = µX−1, i.e., XS = µI . Then, the FOC can be written as

AX = b

A∗y + S = C

XS = µI

with X , S ∈ Sn
++.

38

Solving SDPs with IPMs (cont’d)

▶ Use f (X) = − ln detX and f ′(X) = −X−1 to obtain

C − µX−1 −A∗y = 0

▶ Denote S = µX−1, i.e., XS = µI . Then, the FOC can be written as

AX = b

A∗y + S = C

XS = µI

with X , S ∈ Sn
++.

38

Newton direction

Differentiating this system is hard! The Newton direction solves: A 0 0
0 A∗ I

µ
(
X−1 ⊙ X−1

)
0 I

 ·

 ∆X
∆y
∆S

 =

 ξb
ξC
ξµ

 .

We define the Kronecker product P ⊙ Q for P, Q ∈ Rn×n, which yields a linear
operator from Sn to Sn given by

(P ⊙ Q)U =
1

2

(
PUQT + QUPT

)
.

39

Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)
▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP
▶ problematic for SDP because solving a problem of size n involves linear algebra

operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]

40

https://doi.org/10.1016/j.ejor.2011.09.017

Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)

▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP
▶ problematic for SDP because solving a problem of size n involves linear algebra

operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]

40

https://doi.org/10.1016/j.ejor.2011.09.017

Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)
▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP
▶ problematic for SDP because solving a problem of size n involves linear algebra

operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]

40

https://doi.org/10.1016/j.ejor.2011.09.017

Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)
▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP
▶ problematic for SDP because solving a problem of size n involves linear algebra

operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]

40

https://doi.org/10.1016/j.ejor.2011.09.017

Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)
▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP

▶ problematic for SDP because solving a problem of size n involves linear algebra
operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]

40

https://doi.org/10.1016/j.ejor.2011.09.017

Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)
▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP
▶ problematic for SDP because solving a problem of size n involves linear algebra

operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]

40

https://doi.org/10.1016/j.ejor.2011.09.017

Summary

▶ IPM for SOCP and SDP with self-concordant barrier:

▶ polynomial complexity (predictable behaviour)
▶ Unified algorithm with fast convergence

▶ from LP via QP to NLP, SOCP and SDP

▶ efficient for LP, QP, SOCP
▶ problematic for SDP because solving a problem of size n involves linear algebra

operations in dimension n2

▶ and this requires n6 flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]

40

https://doi.org/10.1016/j.ejor.2011.09.017

	IPM for linear and quadratic programs
	IPM for convex nonlinear programming
	IPM for conic optimization

