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IPM for linear and quadratic programs

Simplex: vertex to vertex

Linear/Quadratic Program IPM: go through the middle!

minimize c¢'x+ XTQX
subject to Ax = b
x > 0,

where @ € S, and A € R™*" is full-rank.
> P={xeR"|Ax=b,x>0}isa
polyhedron.

> If Q@ =0, problem is a linear program.

How to solve LP/QP problems?

Advantages of vertex solution vs interior solution?



Building blocks of IPM

Ingredients for Interior Point Method

» Duality theory: Lagrangian function; KKT (first order optimality) condition.
» Barrier function: logarithmic barrier.

» Newton's method (and a good linear solver)



Building blocks of IPM

Ingredients for Interior Point Method

» Duality theory: Lagrangian function; KKT (first order optimality) condition.
» Barrier function: logarithmic barrier.

» Newton's method (and a good linear solver)

The reward: fantastic convergence properties!

» Theoretical: O(./nlog(1/¢c)) iterations
» Practical: O(log nlog(1/¢)) iterations
(but the per-iteration cost may be high due to the Newton solve: often O(n?))



IPM: algorithmic template

IPM procedure

» replace inequalities with log barriers;

» form the Lagrangian;

» write down the KKT conditions of the perturbed problem;

» find one (or more) directions using Newton's method on the KKT system;
» (decide how to combine the directions and) compute a stepsize.



Duality and KKT conditions

Primal-dual QPs

Primal problem Dual problem
minimize c¢'x+ XTQX maximize bTy — %XTQX
subject to Ax = b subjectto ATy +s— @x=c

x>0 s>0



Duality and KKT conditions

Primal-dual QPs

Primal problem Dual problem
minimize c¢'x+ 2XTQX maximize bTy — %XTQX
subject to Ax=0b subjectto ATy +s— @x=c

x>0 s>0

KKT conditions

Ax =b > (primal feasibility)
Aly+s—Qx=c I>(dual feasibility)
XS51=0 >>(complementarity: x;5; =0,i =1,...,n)

(x,s) >0

where X = diag(xi,...,x,),S = diag(s1,...,sp) € R™", and e = (1,...,1) € R".



Logarithmic barrier
y
—In Xj

replaces the inequality
Xj Z 0

y=-—Inx

T~




Logarithmic barrier

y
A
replaces the inequality
Xj Z 0
n
minimize —E In x; = maximize H Xj
Jj=1 1<j<n

— keeps every entry of x away from O.



Barrier primal QP
Step 1: replace inequality constraints by barrier
Replace the primal QP
minimize c¢'x + %XTQX
subject to Ax=0b
x>0

with the barrier primal QP

n
minimize  ¢'x + 2x' Qx — p E In x;
=1

subject to Ax = b



Logarithmic barrier and stationarity

Step 2: remove equality constraints using Lagrangian

1
T T
L(x,y,pu) =c X—|—§X Rx—y AX— Zlnxj



Logarithmic barrier and stationarity

Step 2: remove equality constraints using Lagrangian

1
E(X,y,,u):CTX—I—EXTQX— (Ax—b Zlnxj

A stationary point (x,y, ) of the Lagrangian satisfies

VL(x,y, 1) =0 =c+Qx—Aly —puX?

with X1 =diag(x; 1,...,x; 1) € R™" (x; > 0).



KKT conditions for barrier problem

» Define s := uX'e, which implies XS1 = 1, to get

KKT,
Ax=b
Aly+s—Qx=c
XS51=pul
(x,s)>0

10



KKT conditions for barrier problem

» Define s := uX'e, which implies XS1 = 1, to get

KKT, KKT
Ax=b
Aly+s—Qx=c
XS51=pul
(x,s)>0

Ax =
T _ _
Aly+s—Qx=c
X51=0
(x,5) 20
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KKT conditions for barrier problem

» Define s := uX'e, which implies XS1 = 1, to get

KKT, KKT
Aly+s—Qx=c Aly+s—Qx=c

XS1 =l XS1=0

(x,5) >0 (x,5) >0

KKT, — KKT as . — 0.
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Central path (LP case)

» Parameter (1 controls the distance to optimality

c'x—b'y=c'x—x"ATy =x

11



Central path (LP case)

» Parameter (1 controls the distance to optimality
clx— bTy —c'x—x'A' T
» Analytic center (p-center): unique point
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Central path (LP case)

» Parameter (1 controls the distance to optimality

clx— bTy —c'x—x'A' T
» Analytic center (p-center): unique point

(x(u),y(p),s(p)),  x(p) >0, s(u) >0

that satisfies the KKT), conditions.

» The curve
Cu = {(x(1), (1), s(w)) | 1 > 0}

is called the primal-dual central path.
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Recall Newton’s method for nonlinear equation

» For F : R" — R"” smooth, solve F(x) =0.
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Recall Newton’s method for nonlinear equation

» For F : R" — R"” smooth, solve F(x) =0.
» Newton’'s method: define Jacobian Jg(x) so Jr(x); = %’2' and iterate

XKL = Xk — ay Jp(xK) TR (xK)
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Recall Newton’s method for nonlinear equation

» For F : R" — R"” smooth, solve F(x) =0.
» Newton’'s method: define Jacobian Jg(x) so Jr(x); = g—)’;{, and iterate

XKL = Xk — ay Jp(xK) TR (xK)

1.75
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Apply Method to KKT,

The first order optimality conditions for the barrier problem form a large system of
nonlinear equations:

F(X7y7 5) =0,
where F : R2™tm 5 R27M s defined as
Ax —b
F(x,y,s)= |[ATy +s—Q@x —c
XS1 1
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Apply Method to KKT,

The first order optimality conditions for the barrier problem form a large system of
nonlinear equations:

F(X7y7 5) =0,
where F : R2™tm 5 R27M s defined as
Ax —b
F(x,y,s)= |[ATy +s—Q@x —c
XS1 1

» The first two blocks are linear.
» The last block, corresponding to the complementarity condition, is nonlinear.
» Jacobian is

A 0 0
JF(vaas): -Q AT
S 0 X

14



Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter p and make one (damped) Newton step towards the solution of
KKT,. Then reduce the barrier parameter u and repeat.

15



Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter p and make one (damped) Newton step towards the solution of
KKT,. Then reduce the barrier parameter u and repeat.

> Given (xo, yo, 50) feasible, g = £(x0)Ts°

n

15



Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter p and make one (damped) Newton step towards the solution of
KKT,. Then reduce the barrier parameter u and repeat.

> Given (xo, yo, 50) feasible, g = £(x0)Ts°

n
> Fork=1,2,...
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Interior-point QP Algorithm

IPM Framework

Fix the barrier parameter p and make one (damped) Newton step towards the solution of
KKT,. Then reduce the barrier parameter u and repeat.

» Given (xo, Yo, So) feasible, pg = %(XO)TSO
» For k=1,2,...
» Lk = opk—1, where o € (0,1)
> Find Newton direction (Ax*, Ay* Ask) by solving

{ A 0 0—‘ Axk b — Axk
-Q AT | Ay = |c— ATyk — sk 4+ Qx¥
LSk 0 X<| |Ask k1l — xksk1

> Find step length ax so (XX + axAxK, y* + ax Ay, sk + o, Ask) is feasible.
> Make step (xKt1, yk+1 skt1) = (xk 4+ ap AxK, vk + apAyk, s + ax Ask).

15



Path-following algorithm

» Short-step path-following method: O(y/n) complexity result

16
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Path-following algorithm
» Short-step path-following method: O(y/n) complexity result
Theorem ( )
Given € > 0, suppose that a feasible starting point (xo,yo7 so) € N>(0.1) satisfies
(XO)TSO = nu®, where 1% < 1/€,

for some positive constant . Then for some K = O(\/nIn(1/¢)), the optimality gap
is bounded by € after at most K iterations:

pk<e Vk>K
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Path-following algorithm

» Short-step path-following method: O(y/n) complexity result
Theorem ( )

Given € > 0, suppose that a feasible starting point (xo,yo7 SO) € N>(0.1) satisfies
0y T .0 0 0 K
(x°) s® = nu®, where i < 1/€",

for some positive constant . Then for some K = O(\/nIn(1/¢)), the optimality gap
is bounded by € after at most K iterations:

pk<e Vk>K

» (-neighborhood of the central path:
No(0) = {(x,y,s) € FO| [|XS1 — pl|| < Ou}, with p = 1xTs.
» Slow progress towards optimality
16
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L% &

N, (8)
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Infeasible-start vs. feasible IPM

Feasible (path-following) IPM: keep iterates feasible.

Maintain Ax = b, ATy +5— Qx = ¢, (x,s) > 0 at every step and solve the Newton

system
A 0 o0][Ax 0
—Q AT I||Aay| = 0 . op=xs
S 0 X||As opul — XS1

Only complementarity is perturbed; feasibility is preserved.

Infeasible-start IPM: allow and drive down feasibility residuals.
Start from any (x > 0, s > 0, y) (not necessarily feasible) and solve

A 0 0 |Ax 'p rp = b— Ax,
_Q AT / Ay = rd ’ T
S 0 X||As opl — XS1 rg=c+Qx—A'y —s.

18



Infeasible start details

» Direction decomposition. Using linearity, separate computation of step into step
to restore feasibility + step to improve complementarity: decompose
A=Ay, + Ag+ A, where Ay, Ay restore feasibility and A, optimizes. In
feasible IPM, A, = Ay = 0.

» Residual contraction. Feasibility typically arrives before optimality, as linear
system is easier to solve than nonlinear: with step sizes (ap, ap),

r;r =(1—ap)rp, rj =(1— ap) rq,
» Positivity via fraction-to-the-boundary. Choose

ap = agmax{a: x+alAx >0}, ap=agmax{a:s+als >0}, apg <1,

then update x™ = x + apAx, y* =y +aply, sT =s+ apls.

19



Augmented system

Newton direction

A 0 0| |Ax b — Ax &p
-Q AT | Ayl = |c—ATy —s+Qx| = |&4
S 0 X]| |As k1 — XS1 &

use last (complementarity) block to solve for As as a function of Ax.

Augmented system

Define © = XS~ (ill-conditioned!). Then Ax and Ay solve the Newton system

~Q-07"1 AT [Ax] _ [&— X1,
RPN ol R

» Newton system is nonsymmetric.
» Augmented system is symmetric but indefinite.

20



Normal equations

e H
A 0 Ay o &p o &p

Normal equations

Eliminate Ax to arrive at the Normal equations

(AGAT)Ay = AOg + &,

21



Normal equations

Augmented system
[—@ LA ] [Ax] [fd—X lfu] ) [g]
y = =

Eliminate Ax to arrive at the Normal equations

Normal equations

(AGAT)Ay = AOg + &,

> AOAT is symmetric and positive semidefinite. (Finally!)

» Normal equations in QP (A(Q + ©)AT)Ay = g are generally nearly dense,
even when A and Q are sparse.

» LP: Normal equations are often used.

» QP: usually use the indefinite augmented system.

21



Outline

IPM for convex nonlinear programming

22



IPM for NLP

» Convex NLP

minimize  f(x) minimize  f(x)
subject to g(x) <0 subject to g(x)4+z=0, z>0



IPM for NLP

» Convex NLP

minimize  f(x) minimize  f(x)
subject to g(x) <0 subject to g(x)4+z=0, z>0

» Replace inequality z > 0 with logarithmic barrier

minimize f(x) — '“Z In(z;) subjectto g(x)+z=0
i=1
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IPM for NLP

» Convex NLP

minimize  f(x) minimize  f(x)
subject to g(x) <0 subject to g(x)4+z=0, z>0

» Replace inequality z > 0 with logarithmic barrier
m
minimize f(x) — '“Z In(z;) subjectto g(x)+z=0
i=1

» Write out Lagrangian

m

L(x,y,z, 1) = F(x) +y " (g(x) +2) — > _In(z)
i=1

23



IPM for NLP

» Write conditions for stationary point
Vil(x,2,y) = VF(x) + Jg(x) Ty =0

Vyl(x,z,y) = g(x) +z=0
V.l(x,z,y)=y—pZ'1=0

24



IPM for NLP

» Write conditions for stationary point

Vil(x,2,y) = VF(x) + Jg(x) Ty =0
Vyl(x,z,y) = g(x) +z=0
V.l(x,z,y)=y—pZ'1=0

» Write KKT system

VE(x) + Jg(x) 'y =0,
g(x)+z=0
YZ1 = pul

24



Newton for KKT of NLP

» Apply Newton method for KKT system
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Newton for KKT of NLP

» Apply Newton method for KKT system
» Jacobian matrix of KKT system

Qx,y) Jg(x)T 0
Jr(x,z,y) = | Jg(x) 0 /
0 4 Y

where Q(x,y) = V2f(x) + .7, yiV2gi(x) is the Hessian of L

25



Newton for KKT of NLP

» Apply Newton method for KKT system
» Jacobian matrix of KKT system

Jg(x) 0 /

Qx,y) Jg(x)" 0
JF(X727)/) = (
0 V4 Y

where Q(x,y) = V2f(x) + .7, yiV2gi(x) is the Hessian of L
» Newton step for KKT system

Q(x,y) Jg(X)T 0] |Ax —Vf(x)— Jg(X)Ty
Jg(x) 0 /| |Ay|= —g(x)—z
0 Z Y| | Az ul —YZ1

25



From QP to NLP

» Newton direction for NLP

Q(x,y) Jg(x)T 0] |Ax —Vf(x)— Jg(x)Ty
)0 Il |ay] =] e -z
0 Z Y| |Az ul —YZ1




From QP to NLP

» Newton direction for NLP

Q(x,y) Jg(x)T 0] |Ax —Vf(x)— Jg(x)Ty
)0 Il |ay] =] e -z
0 Z Y| |Az ul —YZ1

» Augmented system for NLP

R el R i At

|
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From QP to NLP

» Newton direction for NLP

Qx,y) Jg(x)T
Jg(x) 0

0
/
0 Z Y

» Augmented system for NLP

[Q(x-y) Jg(x)"
Jo(x) —zv-1

I

Ax
Ay

Ax
Ay

Az

-

—&(x) -z

~VF(x) = Je(x) "y
ul —YZ1

—VF(x) - Jg(X)Ty}
—g(x) —pY 1

» Need to compute Q(x.y) and J,(x) at each iteration

|
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From QP to NLP

» Newton direction for NLP

Q(x,y) Jg(x)T 0] |Ax —Vf(x)— Jg(x)Ty
)0 Il |ay] =] e -z
0 Z Y| |Az ul —YZ1

» Augmented system for NLP

R el R i At

» Need to compute Q(x.y) and J,(x) at each iteration

|

» Caveat: use trust region method to choose stepsize as Hessian may be

indefinite.
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IPM for conic optimization

Outline
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Self-concordant function

Function f : R — R is self-concordant if for some constant My > 0, the inequality
f”/(X) < Mf|f//(X)|3/2

holds for any x € dom f.
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Self-concordant function

Definition
Function f : R — R is self-concordant if for some constant M¢ > 0, the inequality

f”/(X) < Mf|f//(X)|3/2

holds for any x € dom f.
A function f : R” — R is self-concordant if its restriction to any line is
self-concordant. Equivalently,
3/2
VA ()u, u, 0] < Mel|ull¥s o, € R

» A self-concordant function is always well approximated by a quadratic model.
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Self-concordant function

Definition
Function f : R — R is self-concordant if for some constant M¢ > 0, the inequality

f”/(X) < Mf|f//(X)|3/2

holds for any x € dom f.
A function f : R” — R is self-concordant if its restriction to any line is
self-concordant. Equivalently,
3/2
VA ()u, u, 0] < Mel|ull¥s o, € R
» A self-concordant function is always well approximated by a quadratic model.

» Self-concordance is invariant under affine transformations: if g(z) is
self-concordant, so is f(x) = g(Ax — b)

28



Newton’s method converges quadratically for self-concordant

functions

Recall we proved that Newton's method converges quadratically (locally) when the
problem has Lipschitz Hessian (locally).

Using linesearch, a similar argument gives a global bound for self-concordant
optimization:

Theorem ( )

Newton's method with line search finds an € approximate solution in less than
constant x (f(xo) — f*) + log, log, 1 iterations.

The constant depends only on the linesearch parameters ¢ and .

29
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Barrier function candidates

Which of these functions is self-concordant? Strongly convex? Smooth?

> —In(x)
> exp(1/x)

30



Barrier function candidates

Which of these functions is self-concordant? Strongly convex? Smooth?

> —In(x)
> exp(1/x)
f(x) = —In(x) is self-concordant in Ry because
1 1 2
fI(X) = —;, f”(X) = ;7 f,//(X) = —F

f(x) = exp(1/x) is not.

30



Conic optimization

» Consider the optimization problem
minimize ¢'x
subject to Ax=b
x €K

where K is a convex closed cone.
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Conic optimization

» Consider the optimization problem
minimize ¢'x
subject to Ax=b
x €K

where K is a convex closed cone.
» The associated dual is
maximize b'y
subject to Ay +s=c
s € K* (Dual cone)
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Conic optimization

» Consider the optimization problem

minimize c¢'x

subject to Ax=b
x €K

where K is a convex closed cone.
» The associated dual is

» Weak duality

maximize b'y
subject to Ay +s=c
s € K* (Dual cone)

c'x—b'y=x"(c-=ATy)=x"s>0
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Conic optimization

» Consider the optimization problem
minimize ¢'x
subject to Ax=b
x €K

where K is a convex closed cone.
» The associated dual is
maximize b'y
subject to Ay +s=c
s € K* (Dual cone)

» Weak duality
c'x—b'y=x"(c-=ATy)=x"s>0

» Conic optimization can be solved in polynomial time with IPMs

31



Second-order conic optimization

> Ksoc = {(x,t) | x e R" L t € R, ||x|[ < t,t > 0} (Second-order cone)
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Second-order conic optimization

> Ksoc = {(x,t) | x e R" L t € R,||x|]2 < t,t >0} (Second-order cone)
» Logarithmic barrier function for the second-order cone

oy L I(E < IXB) ) < ¢
X, =
400 otherwise
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Second-order conic optimization
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» Logarithmic barrier function for the second-order cone
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Second-order conic optimization

> Ksoc = {(x,t) | x e R" 1 t € R, ||x|l2 < t,t >0} (Second-order cone)
» Logarithmic barrier function for the second-order cone

ey = | IxIB) i el <
X. f—
+00 otherwise

Theorem
The barrier function f(x, t) is self~concordant on Ksoc.
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Second-order conic optimization

> Ksoc = {(x,t) | x e R" 1 t € R, ||x|l2 < t,t >0} (Second-order cone)
» Logarithmic barrier function for the second-order cone

F(x. 1) —In(¢2 — [|Ix]13) if [|x]| < ¢
X. f—
400 otherwise

Theorem
The barrier function f(x, t) is self~concordant on Ksoc.

Exercise: Prove in case n = 2.
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Semidefinite programming

» Variable now is a symmetric matrix X € K = S"

SDP and its dual

minimize Ce X maximize b'y
subject to A;eX =b;,i=1,....m subject to >, yiAi+S=C
X =0 S0

A;, C€S" and b € R™ given, and X,S € S” and y € R™ unknown.
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Semidefinite programming

» Variable now is a symmetric matrix X € K = S"
» Define Xeo Y =tr(X'Y)

SDP and its dual

minimize Ce X maximize b'y
subject to A;eX =b;,i=1,....m subject to >, yiAi+S=C
X =0 S0

A;, C€S" and b € R™ given, and X,S € S” and y € R™ unknown.
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Semidefinite programming

» Variable now is a symmetric matrix X € K = S"
» Define Xeo Y =tr(X'Y)

SDP and its dual

minimize Ce X maximize b'y
subject to A;eX =b;,i=1,....m subject to >, yiAi+S=C
X =0 S0

A;, C€S" and b € R™ given, and X,S € S” and y € R™ unknown.
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Semidefinite programming

» Variable now is a symmetric matrix X € K = S"
» Define Xeo Y =tr(X'Y)

SDP and its dual

minimize Ce X maximize b'y
subject to A;eX =b;,i=1,....m subject to >, yiAi+S=C
X =0 S0

A;, C€S" and b € R™ given, and X,S € S” and y € R™ unknown.
Theorem (Weak duality for SDP)
If X is primal feasible and (y, S) is dual feasible, then

CeX—b'y=XeS>0
33



Logarithmic barrier for SDP

» Logarithmic barrier function for the semi-definite cone

— In(det(X if X
f(X):{ n(det(X)) if X - 0
+00 otherwise
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» Logarithmic barrier function for the semi-definite cone
— In(det(X if X >0

f(X){ n(det(X)) i X~
+00 otherwise

» Facts (for small t):
> det(/ + tU) =1+ ttr(U) + O(t?)
> In(1+ ttr(VU)) = ttr(U)

34



Logarithmic barrier for SDP

» Logarithmic barrier function for the semi-definite cone
— In(det(X if X >0

f(X){ n(det(X)) if X -
~+00 otherwise

» Facts (for small t):
> det(/ + tU) =1+ ttr(U) + O(t?)
> In(1+ ttr(V)) = ttr(U)
» Let X > 0and H € S" be given. Then

f(X + tH) = —In(det(X + tH)) = — In(det(X(/ + tX"1H)))
In(det(X)) — In(det(/ + tX~1H))
—In(det(X)) — In(1 + ttr(X"1H) + O(t?))
= f(X) — tX"L e H+ O(t?)

34



Derivatives of Logarithmic barrier for SDP

» First derivative of f(X)

F(X) — fim TXEE) = 7(X)

t—0 t

=-x!
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Derivatives of Logarithmic barrier for SDP

» First derivative of 7(X)

F(X) = tim X H) = F(X)

t—0 t

= _x1
So Df(X)[H] = —X "1 e H.
» Second derivative of f(X)
FI(X + tH) = —[X(I + tXTH)] 1 = [ = tXTH + O(t?)]| X1
= f'(X) + tXTHX1 + O(t?)

so f"(X)[H] = X "*HX™ and D?*f(X)[H,G] = X 1HX 1 e G.
> (X)[H,G] = —X"THX1GX~t — X71GXtHX !
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Characterization of self-concordance for SDP

The function f(X) = —Indet X is a convex barrier for S’ .
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Characterization of self-concordance for SDP

Theorem
The function f(X) = —Indet X is a convex barrier for S’ .

Proof sketch.

Let p(t) = F(X + tH). Then, prove that ¢”(t) > 0 for t > 0 such that

X + tH > 0. Therefore, when X > 0 approaches a singular matrix, its determinant
approaches zero, and the function 7(X) — +oc. O
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Characterization of self-concordance for SDP

Theorem

The function f(X) = —Indet X is a convex barrier for S’ .

Proof sketch.

Let p(t) = F(X + tH). Then, prove that ¢”(t) > 0 for t > 0 such that
X + tH > 0. Therefore, when X > 0 approaches a singular matrix, its determinant
approaches zero, and the function 7(X) — +oc. O

Theorem ([Nestervov and Nemirovskii, 1994])

The barrier function f(X) = —Indet X is self-concordant on S’ .
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Solving SDPs with IPMs

» Replace the primal SDP
minimize Ce X
subject to AX = b,
X =0,
with the primal barrier SDP
minimize C e X + uf(X)
subject to AX = b,
(with a barrier parameter > 0 ).
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Solving SDPs with IPMs

» Replace the primal SDP
minimize Ce X
subject to AX = b,
X =0,
with the primal barrier SDP
minimize C e X + uf(X)
subject to AX = b,

(with a barrier parameter > 0 ).
» Formulate the Lagrangian

L(X,,5) = Co X+ uf(X) — yT(AX — b)
with y € R™, and write the first order conditions (FOC) for a stationary point

of L:
C+uf'(X)—A'y=0 37



Solving SDPs with IPMs (cont’d)

» Use f(X) = —Indet X and f(X) = —X~! to obtain

C—puX1—Ay=0

38



Solving SDPs with IPMs (cont’d)

» Use f(X) = —Indet X and f(X) = —X~! to obtain
C—puX1—Ay=0

» Denote S = ,uX_l, i.e., XS = pl. Then, the FOC can be written as

AX =b
Ay+S=C
XS = ul

with X, 5 € 8" ..

38



Newton direction

Differentiating this system is hard! The Newton direction solves:

A 0 0 AX &b
0 AL || Ay | =] &
p(Xtox1t)y o I AS &u

We define the Kronecker product P ® Q for P, Q € R™", which yields a linear
operator from S” to S” given by

(Po QU = % (PUQT n QUPT) .
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Summary

» |IPM for SOCP and SDP with self-concordant barrier:

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]
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» problematic for SDP because solving a problem of size n involves linear algebra
operations in dimension n?

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]
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Summary

» IPM for SOCP and SDP with self-concordant barrier:
» polynomial complexity (predictable behaviour)
» Unified algorithm with fast convergence
» from LP via QP to NLP, SOCP and SDP

» efficient for LP, QP, SOCP

» problematic for SDP because solving a problem of size n involves linear algebra
operations in dimension n?

» and this requires n® flops!

source: [Gondzio, 2012: Interior Point Methods 25 Years Later]
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