CME 307 / MS&E 311 / OIT 676: Optimization LP geometry, modeling and solution techniques Professor Udell Management Science and Engineering Stanford September 23, 2025 #### **Course survey** #### you're interested in: - modeling real-world problems, from finance and economics to energy systems and trajectory planning - robustness and modeling under uncertainty - understanding core optimization concepts like duality - ... #### questions: - what readings are required? - what projects are allowed? - Friday section? - programming requirements? #### **Outline** #### LP standard form LP inequality form What kinds of points can be optimal? Solving LPs Modeling standard form linear program (LP) minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ optimal value p^* , solution x^* (if it exists) - ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point** - ▶ if problem is infeasible, we say $p^* = \infty$ - $ightharpoonup p^*$ can be finite or $\pm \infty$ standard form linear program (LP) minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ optimal value p^* , solution x^* (if it exists) - ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point** - ▶ if problem is infeasible, we say $p^* = \infty$ - $ightharpoonup p^*$ can be finite or $\pm \infty$ **Q:** if $p^* = -\infty$, does a solution exist? standard form linear program (LP) minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ optimal value p^* , solution x^* (if it exists) - ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point** - ▶ if problem is infeasible, we say $p^* = \infty$ - $ightharpoonup p^*$ can be finite or $\pm \infty$ **Q:** if $p^* = -\infty$, does a solution exist? **Q:** if $p^* = \infty$, does a solution exist? standard form linear program (LP) minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ optimal value p^* , solution x^* (if it exists) - ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point** - ▶ if problem is infeasible, we say $p^* = \infty$ - $ightharpoonup p^*$ can be finite or $\pm \infty$ **Q:** if $p^* = -\infty$, does a solution exist? **Q:** if $p^* = \infty$, does a solution exist? henceforth assume $A \in \mathbb{R}^{m \times n}$ has full row rank m Q: why? how to check? standard form linear program (LP) minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ optimal value p^* , solution x^* (if it exists) - ▶ any x with Ax = b and $x \ge 0$ is called a **feasible point** - ▶ if problem is infeasible, we say $p^* = \infty$ - $ightharpoonup p^*$ can be finite or $\pm \infty$ **Q:** if $p^* = -\infty$, does a solution exist? **Q:** if $p^* = \infty$, does a solution exist? henceforth assume $A \in \mathbb{R}^{m \times n}$ has full row rank m Q: why? how to check? **A:** otherwise infeasible or redundant rows; use gaussian elimination to check and remove #### LP example: diet problem We an planning a backpacking trip, and want to minimize the total weight of the food packed subject to nutritional requirements. We have a list of essential nutrients and how much an active person needs of each. We also know the weight of each food, and how much of each nutrient is in each food. - \triangleright x_j servings of food j, $j = 1, \ldots, n$ - $ightharpoonup c_j$ weight per serving - $ightharpoonup a_{ij}$ amount of nutrient i in food j - \triangleright b_i required amount of nutrient i, i = 1, ..., m minimize $$c^T x$$ subject to $Ax = b$ $x > 0$ the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull** ▶ define the **cone** generated by $A = [A_1, ... A_n]$: $$\{Ax \mid x \ge 0\} = \left\{ \sum_{i=1}^{n} A_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(A_1, \dots, A_n)$$ the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull** ▶ define the **cone** generated by $A = [A_1, ... A_n]$: $${Ax \mid x \ge 0} = \left\{ \sum_{i=1}^{n} A_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(A_1, \dots, A_n)$$ ▶ LP is feasible if $b \in \mathbf{cone}(A_1, ..., A_n)$ the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull** ▶ define the **cone** generated by $A = [A_1, ... A_n]$: $$\{Ax \mid x \ge 0\} = \left\{ \sum_{i=1}^{n} A_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(A_1, \dots, A_n)$$ ▶ LP is feasible if $b \in \mathbf{cone}(A_1, ..., A_n)$ interpretation: intersection of hyperplane and halfspaces ▶ define a **hyperplane** $\{x \mid Ax = b\}$ the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull** ▶ define the **cone** generated by $A = [A_1, ... A_n]$: $$\{Ax \mid x \ge 0\} = \left\{ \sum_{i=1}^{n} A_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(A_1, \dots, A_n)$$ ▶ LP is feasible if $b \in \mathbf{cone}(A_1, ..., A_n)$ interpretation: intersection of hyperplane and halfspaces ▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?) the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull** ▶ define the **cone** generated by $A = [A_1, ... A_n]$: $$\{Ax \mid x \ge 0\} = \left\{ \sum_{i=1}^{n} A_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(A_1, \dots, A_n)$$ ▶ LP is feasible if $b \in \mathbf{cone}(A_1, ..., A_n)$ #### interpretation: intersection of hyperplane and halfspaces - ▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?) - ▶ define a **halfspace** $\{x \mid a^T x \ge b\}$ the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull** ▶ define the **cone** generated by $A = [A_1, ... A_n]$: $$\{Ax \mid x \ge 0\} = \left\{ \sum_{i=1}^{n} A_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(A_1, \dots, A_n)$$ ▶ LP is feasible if $b \in \mathbf{cone}(A_1, ..., A_n)$ #### interpretation: intersection of hyperplane and halfspaces - ▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?) - ▶ define a **halfspace** $\{x \mid a^T x \ge b\}$ - ▶ the **positive orthant** $x \ge 0$ is an intersection of halfspaces the **feasible set** is the set of points $\{x \mid Ax = b, x \ge 0\}$ that satisfy all constraints. **interpretation: conic hull** ▶ define the **cone** generated by $A = [A_1, ... A_n]$: $$\{Ax \mid x \ge 0\} = \left\{ \sum_{i=1}^{n} A_i x_i \mid x \ge 0 \right\} = \mathbf{cone}(A_1, \dots, A_n)$$ ▶ LP is feasible if $b \in \mathbf{cone}(A_1, ..., A_n)$ #### interpretation: intersection of hyperplane and halfspaces - ▶ define a **hyperplane** $\{x \mid Ax = b\}$ (dimension?) - ▶ define a **halfspace** $\{x \mid a^T x \ge b\}$ - ▶ the **positive orthant** $x \ge 0$ is an intersection of halfspaces - ▶ LP is feasible if hyperplane $\{x \mid Ax = b\}$ intersects the positive orthant ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 - \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex set**: C is convex if for any $x, y \in C$, $$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$ - ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex set**: C is convex if for any $x, y \in C$, $$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$ $$\operatorname{\mathsf{conv}}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \; \theta_i \geq 0, \; \sum_{i=1}^k \theta_i = 1 \right\}$$ - ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex set**: C is convex if for any $x, y \in C$, $$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$ define the convex hull of a set S: $$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1 ight\}$$ ▶ define **polytope**: the convex hull of a finite set: $conv(\{x_1, ..., x_k\})$ some useful convex sets: - ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex set**: C is convex if for any $x, y \in C$, $$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$ $$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1 ight\}$$ - ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, \ldots, x_k\}$) some useful convex sets: - ▶ a hyperplane is convex - ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex set**: C is convex if for any $x, y \in C$, $$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$ $$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1 ight\}$$ - ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, \ldots, x_k\}$) some useful convex sets: - a hyperplane is convex - a halfspace is convex - ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex set**: C is convex if for any $x, y \in C$, $$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$ $$extbf{conv}(S) = \left\{ \sum_{i=1}^k heta_i x_i \mid x_i \in S, \; heta_i \geq 0, \; \sum_{i=1}^k heta_i = 1 ight\}$$ - ▶ define **polytope**: the convex hull of a finite set: $conv(\{x_1, ..., x_k\})$ some useful convex sets: - a hyperplane is convex - a halfspace is convex - the intersection of convex sets is convex - ▶ define **convex combination** of x, $y \in \mathbb{R}^n$: $\theta x + (1 \theta)y$ for $\theta \in [0, 1]$ - ▶ define **convex set**: C is convex if for any $x, y \in C$, $$\theta x + (1 - \theta)y \in C, \qquad \theta \in [0, 1]$$ $$\mathsf{conv}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \ \theta_i \geq 0, \ \sum_{i=1}^k \theta_i = 1 \right\}$$ - ▶ define **polytope**: the convex hull of a finite set: **conv**($\{x_1, \ldots, x_k\}$) some useful convex sets: - a hyperplane is convex - a halfspace is convex - the intersection of convex sets is convex - ▶ the feasible set $\{x : Ax = b, x \ge 0\}$ is convex #### **Outline** LP standard form LP inequality form What kinds of points can be optimal? Solving LPs Modeling ### LP inequality form another useful form for LP is inequality form minimize $c^T x$ subject to $Ax \le b$ #### LP inequality form another useful form for LP is inequality form minimize $$c^T x$$ subject to $Ax \le b$ #### interpretation: halfspaces - $ightharpoonup a_i^T x \le b_i$ defines a halfspace - $ightharpoonup Ax \le b$ defines a **polyhedron**: intersection of halfspaces - ▶ LP is feasible if polyhedron $\{x \mid Ax \leq b\}$ is nonempty #### LP example: production planning - \triangleright x_i units of product i - $ightharpoonup c_i$ cost per unit - $ightharpoonup a_{ij}$ amount of resource j used by product i - \triangleright b_i amount of resource j available - $ightharpoonup d_i$ demand for product i ``` minimize c^T x subject to Ax \le b 0 \le x \le d ``` ### LP example: production planning - \triangleright x_i units of product i - $ightharpoonup c_i$ cost per unit - $ightharpoonup a_{ij}$ amount of resource j used by product i - \triangleright b_i amount of resource j available - $ightharpoonup d_i$ demand for product i | minimize | $c^T x$ | |------------|-----------------| | subject to | $Ax \leq b$ | | | $0 \le x \le c$ | #### extensions: ▶ fixed cost for producing product *i* at all? #### LP example: production planning - \triangleright x_i units of product i - $ightharpoonup c_i$ cost per unit - $ightharpoonup a_{ij}$ amount of resource j used by product i - \triangleright b_j amount of resource j available - $ightharpoonup d_i$ demand for product i | minimize | $c^T x$ | |------------|-----------------| | subject to | $Ax \leq b$ | | | $0 \le x \le a$ | #### extensions: • fixed cost for producing product i at all? $c^Tx + f^Tz$, $z_i \in \{0, 1\}$, $x_i \leq Mz_i$ for M large standard form to inequality form $$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array} \rightarrow$$ standard form to inequality form minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ minimize $c^T x$ subject to $Ax \le b$ $Ax \ge b$ $-x < 0$ standard form to inequality form minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ minimize $c^T x$ subject to $Ax \le b$ $Ax \ge b$ $-x < 0$ inequality form to standard form minimize $$c^T x$$ subject to $Ax \le b$ standard form to inequality form minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ minimize $c^T x$ subject to $Ax \le b$ $Ax \ge b$ $-x < 0$ inequality form to standard form minimize $$c^T x$$ subject to $Ax \le b$ minimize $c^T (x_+ - x_-)$ subject to $A(x_+ - x_-) + s = b$ $s, x_+, x_- > 0$ so both forms have the same expressive power, and feasible sets are polyhedra #### **Active constraints and variables** active constraints. for constraint set $Ax \le b$, an active constraint i at x is one that holds with equality: $$a_i^T x = b_i$$ #### Active constraints and variables active constraints. for constraint set $Ax \le b$, an active constraint i at x is one that holds with equality: $$a_i^T x = b_i$$ \blacktriangleright the active set S(x) at x is the set of indices of active constraints $$S(x) = \{i \mid a_i^T x = b_i\}$$ #### Active constraints and variables active constraints. for constraint set $Ax \le b$, an active constraint i at x is one that holds with equality: $$a_i^T x = b_i$$ \blacktriangleright the active set S(x) at x is the set of indices of active constraints $$S(x) = \{i \mid a_i^T x = b_i\}$$ active variables. for nonnegative variable $x \ge 0$, variable i is active if $x_i > 0$ example: active slack variables are dual to active constraints $$\begin{array}{cccc} Ax \leq b & \Longleftrightarrow & Ax+s=b, \ s \geq 0 \\ a_i^T x = b_i & \Longleftrightarrow & s_i = 0 \\ \text{constraint } i \text{ is active} & \Longleftrightarrow & \text{slack variable } s_i \text{ is inactive} \end{array}$$ ### **Outline** LP standard form LP inequality form What kinds of points can be optimal? Solving LPs Modeling define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$, $$x \in C$$ and $x = \theta y + (1 - \theta)z \implies x = y = z$ define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$, $$x \in C$$ and $x = \theta y + (1 - \theta)z \implies x = y = z$ **fact:** if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S. define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$, $$x \in C$$ and $x = \theta y + (1 - \theta)z \implies x = y = z$ **fact:** if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S. **proof:** suppose by way of contradiction that x^* is not extreme in S: $$x^{\star} = \theta y + (1 - \theta)z \quad \text{for } y, z \in S, \ \theta \in (0, 1)$$ $$p^{\star} := c^{T}x^{\star} = \theta c^{T}y + (1 - \theta)c^{T}z > \theta p^{\star} + (1 - \theta)p^{\star} = p^{\star}$$ where the inequality follows from the (unique) optimality of x^* . Contradiction! define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$, $$x \in C$$ and $x = \theta y + (1 - \theta)z \implies x = y = z$ **fact:** if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S. **proof:** suppose by way of contradiction that x^* is not extreme in S: $$x^{\star} = \theta y + (1 - \theta)z \quad \text{for } y, z \in S, \ \theta \in (0, 1)$$ $$p^{\star} := c^{T}x^{\star} = \theta c^{T}y + (1 - \theta)c^{T}z > \theta p^{\star} + (1 - \theta)p^{\star} = p^{\star}$$ where the inequality follows from the (unique) optimality of x^* . Contradiction! Q: Example of an LP with a non-extreme solution? define **extreme point**: $x \in \mathbb{R}^n$ is extreme in $C \subset \mathbb{R}^n$ if it cannot be written as a convex combination of other points in C: for $\theta \in [0,1]$, $$x \in C$$ and $x = \theta y + (1 - \theta)z \implies x = y = z$ **fact:** if x^* is the unique optimal solution of minimize_{$x \in S$} $c^T x$, then x^* is extreme in the set S. **proof:** suppose by way of contradiction that x^* is not extreme in S: $$x^{\star} = \theta y + (1 - \theta)z \quad \text{for } y, z \in S, \ \theta \in (0, 1)$$ $$p^{\star} := c^{T}x^{\star} = \theta c^{T}y + (1 - \theta)c^{T}z > \theta p^{\star} + (1 - \theta)p^{\star} = p^{\star}$$ where the inequality follows from the (unique) optimality of x^* . Contradiction! Q: Example of an LP with a non-extreme solution? Q: Does there always exist an extreme solution? define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$, $$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$ define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$, $$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$ **interpretation:** $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$, $$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$ **interpretation:** $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x **fact:** x is a vertex of $S \implies x$ is an extreme point of S define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$, $$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$ **interpretation:** $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x **fact:** x is a vertex of $S \implies x$ is an extreme point of S proof: define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$, $$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$ **interpretation:** $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x **fact:** x is a vertex of $S \implies x$ is an extreme point of S **proof:** x is a vertex of S. suppose its defining vector is c and consider the optimization problem minimize $c^T x$ subject to $x \in S$ define **vertex**: $x \in \mathbb{R}^n$ is a vertex of set $S \subset \mathbb{R}^n$ if for some vector $c \in \mathbb{R}^n$, $$c^T x < c^T y \quad \forall y \in S \setminus \{x\}$$ **interpretation:** $\{z: c^Tz = c^Tx\}$ is a hyperplane that intersects S only at x. we say this hyperplane **supports** S at x **fact:** x is a vertex of $S \implies x$ is an extreme point of S **proof:** x is a vertex of S. suppose its defining vector is c and consider the optimization problem minimize $$c^T x$$ subject to $x \in S$ x is the unique optimum of this problem, so the proof of this statement follows from the previous proof. ### recall the standard form LP minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ (LP) recall the standard form LP minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ (LP) **define:** $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \ldots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and $$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$ lacksquare $A_S = \{A_{S_1}, \dots, A_{S_m}\} \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S recall the standard form LP minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ (LP) **define:** $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \ldots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and $$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$ - lacksquare $A_S = \{A_{S_1}, \dots, A_{S_m}\} \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S - ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m 1$ recall the standard form LP minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ (LP) **define:** $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \ldots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and $$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$ - lacksquare $A_S = \{A_{S_1}, \dots, A_{S_m}\} \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S - ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m 1$ recall the standard form LP minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ (LP) **define:** $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \dots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and $$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \geq 0.$$ - lacksquare $A_S = \{A_{S_1}, \dots, A_{S_m}\} \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S - ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m 1$ **Q:** how to find a BFS? recall the standard form LP minimize $$c^T x$$ subject to $Ax = b$ $x \ge 0$ (LP) **define:** $x \in \mathbb{R}^n$ is a **basic feasible solution** (BFS) of (LP) if there is a set $S \subset \{1, \dots, n\}$ of m columns so that $A_S \in \mathbb{R}^{m \times m}$ is invertible and $$x_S = A_S^{-1}b, \qquad x_{\bar{S}} = 0, \qquad x \ge 0.$$ - $lacksquare A_S = \{A_{S_1}, \dots, A_{S_m}\} \in \mathbb{R}^{m \times m}$ is submatrix of A with columns in S - ▶ two BFS with S, S' are neighbors if they share all but one columns: $|S \cap S'| = m-1$ Q: how to find a BFS? **A:** choose *m* linearly independent columns of *A* and set $x = A_s^{-1}b$; check $x \ge 0$. ## Extreme point ← vertex ← BFS **fact.** consider the feasible set $F = \{x \mid Ax = b, x \ge 0\}$ in \mathbb{R}^n . the following are equivalent: - \triangleright x is an extreme point of F - x is a vertex of F - \triangleright x is a BFS of F ## Extreme point \iff vertex \iff BFS **fact.** consider the feasible set $F = \{x \mid Ax = b, x \ge 0\}$ in \mathbb{R}^n . the following are equivalent: - \triangleright x is an extreme point of F - x is a vertex of F - ➤ x is a BFS of F implications: since any polyhedron $Ax \le b$ can be written as Ax = b, $x \ge 0$, - ▶ (BFS ⇒) a polyhedron has a finite number of extreme points - $lackbox{}$ (extreme point \Longrightarrow) BFS are independent of the representation of the feasible set # Extreme point \iff vertex \iff BFS **fact.** consider the feasible set $F = \{x \mid Ax = b, x \ge 0\}$ in \mathbb{R}^n . the following are equivalent: - \triangleright x is an extreme point of F - x is a vertex of F - ➤ x is a BFS of F implications: since any polyhedron $Ax \leq b$ can be written as Ax = b, $x \geq 0$, - ▶ (BFS ⇒) a polyhedron has a finite number of extreme points - lackbox (extreme point \Longrightarrow) BFS are independent of the representation of the feasible set we have already shown that vertex \implies extreme point. need to show - ▶ extreme point ⇒ BFS - ► BFS ⇒ vertex we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $\bar{x} \in F$ is feasible but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $\bar{x}_S = A_S^{-1}b$, and $\bar{x}_S = 0$. we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $\bar{x} \in F$ is feasible but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $\bar{x}_S = A_S^{-1}b$, and $\bar{x}_S = 0$. consider $\bar{S} = \{i : x_i^* > 0\}$, the active set of variables in \bar{x} . - ▶ if $A_{\bar{S}}$ were full rank $|\bar{S}|$, we could complete $A_{\bar{S}}$ to an invertible $A_{\bar{S}}$ with $\bar{S} \subseteq S$. - ▶ so $A_{\bar{S}}$ has a nontrivial nullspace: there is some $d \in \text{nullspace}(A_{\bar{S}}), d_{\bar{S}} \neq 0$. we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $\bar{x} \in F$ is feasible but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $\bar{x}_S = A_S^{-1}b$, and $\bar{x}_S = 0$. consider $\bar{S} = \{i : x_i^* > 0\}$, the active set of variables in \bar{x} . - ▶ if $A_{\bar{S}}$ were full rank $|\bar{S}|$, we could complete $A_{\bar{S}}$ to an invertible A_{S} with $\bar{S} \subseteq S$. - ▶ so $A_{\bar{S}}$ has a nontrivial nullspace: there is some $d \in \text{nullspace}(A_{\bar{S}}), d_{\bar{S}} \neq 0$. extend this vector to $d \in \mathbb{R}^n$ by appending zeros, so $Ad = A_{\bar{S}}d_{\bar{S}} = 0$. now for $\epsilon \leq \min_{i \in \bar{S}} \bar{x}_i / \max_{i \in \bar{S}} |d_i|$, define $x^+, x^- \in \mathbb{R}^n$ as $$x^+ = \bar{x} + \epsilon d, \qquad x^- = \bar{x} - \epsilon d.$$ these are feasible: - $ightharpoonup x^+, x^- \ge 0$ by our choice of ϵ , - $Ax^+ = Ax^- = b$ since Ad = 0. we will show the contrapositive: x is not a BFS $\implies x$ is not an extreme point suppose that $\bar{x} \in F$ is feasible but is not a BFS: there is no $S \subseteq [n]$ so that A_S is invertible, $\bar{x}_S = A_S^{-1}b$, and $\bar{x}_S = 0$. consider $\bar{S} = \{i : x_i^* > 0\}$, the active set of variables in \bar{x} . - ▶ if $A_{\bar{S}}$ were full rank $|\bar{S}|$, we could complete $A_{\bar{S}}$ to an invertible A_{S} with $\bar{S} \subseteq S$. - ▶ so $A_{\bar{S}}$ has a nontrivial nullspace: there is some $d \in \text{nullspace}(A_{\bar{S}}), d_{\bar{S}} \neq 0$. extend this vector to $d \in \mathbb{R}^n$ by appending zeros, so $Ad = A_{\bar{S}}d_{\bar{S}} = 0$. now for $\epsilon \leq \min_{i \in \bar{S}} \bar{x}_i / \max_{i \in \bar{S}} |d_i|$, define $x^+, x^- \in \mathbb{R}^n$ as $$x^+ = \bar{x} + \epsilon d, \qquad x^- = \bar{x} - \epsilon d.$$ these are feasible: - $x^+, x^- \ge 0$ by our choice of ϵ , - $Ax^+ = Ax^- = b$ since Ad = 0. so $\bar{x} = \frac{1}{2}x^+ + \frac{1}{2}x^-$ is not extreme in F. ### $BFS \implies vertex$ suppose x^* is a BFS of F with active set S and A_S invertible. define $c \in \mathbb{R}^n$ as $$c_i = \begin{cases} 0 & \text{if } i \in S \\ 1 & \text{otherwise} \end{cases}$$ so $$c^T x^* = 0$$. ### BFS ⇒ vertex suppose x^* is a BFS of F with active set S and A_S invertible. define $c \in \mathbb{R}^n$ as $$c_i = egin{cases} 0 & ext{if } i \in S \ 1 & ext{otherwise} \end{cases}$$ so $c^T x^* = 0$. - \triangleright x^* is the only point in F supported on S, as $\operatorname{nullspace}(A_S) = 0$, - ightharpoonup so any other feasible point $x \in F$ has a positive objective value $c^T x > 0$. hence x^* is a vertex of F with defining vector c. ### **Outline** LP standard form LP inequality form What kinds of points can be optimal? Solving LPs Modeling # **Solving LPs** ## algorithms: - enumerate all vertices and check - ▶ fourier-motzkin elimination - simplex method - ellipsoid method - ▶ interior point methods - ► first-order methods - **.** . . . # **Solving LPs** ### algorithms: - enumerate all vertices and check - fourier-motzkin elimination - simplex method - ellipsoid method - interior point methods - ► first-order methods - **.**... #### remarks: - enumeration and elimination are simple but not practical - simplex was the first practical algorithm; still used today - ellipsoid method is the first polynomial-time algorithm; not practical - ▶ interior point methods are polynomial-time and practical - first-order methods are practical and scale to large problems # **Example of Fourier-Motzkin elimination** consider the system of inequalities $$x_1 + 2x_2 \le 4$$ $-x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$ ### **Example of Fourier-Motzkin elimination** consider the system of inequalities $$x_1 + 2x_2 \le 4$$ $-x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$ we can collect inequalities on x_1 into those bounding it above and below: $$\{0, x_2 - 1\} \le x_1 \le 4 - 2x_2$$ # **Example of Fourier-Motzkin elimination** consider the system of inequalities $$x_1 + 2x_2 \le 4$$ $-x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$ we can collect inequalities on x_1 into those bounding it above and below: $$\{0, x_2 - 1\} \le x_1 \le 4 - 2x_2$$ by appending all pairwise inequalities to existing inequalities on x_2 , we recover the feasible set for x_2 : $$\begin{array}{rcl} 0 & \leq & 4 - 2x_2 \\ x_2 - 1 & \leq & 4 - 2x_2 \\ x_2 & \geq & 0 \end{array}$$ $$\implies x_2 \in [0, 5/3].$$ #### **Example of Fourier-Motzkin elimination** consider the system of inequalities $$x_1 + 2x_2 \le 4$$ $-x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$ we can collect inequalities on x_1 into those bounding it above and below: $$\{0, x_2 - 1\} \le x_1 \le 4 - 2x_2$$ by appending all pairwise inequalities to existing inequalities on x_2 , we recover the feasible set for x_2 : $$\begin{array}{rcl} 0 & \leq & 4 - 2x_2 \\ x_2 - 1 & \leq & 4 - 2x_2 \\ x_2 & \geq & 0 \end{array}$$ $$\implies x_2 \in [0, 5/3].$$ #### **Enumerate vertices of LP** can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m, - ▶ $A_S \in \mathbb{R}^{m \times m}$, submatrix of A with columns in S, is invertible - ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$ - ightharpoonup if $x_{S} \geq 0$, then x is a BFS - ightharpoonup evaluate objective $c^T x$ the best BFS is optimal! #### **Enumerate vertices of LP** can generate all extreme points of LP: for each $S \subseteq \{1, \ldots, n\}$ with |S| = m, - $ightharpoonup A_S \in \mathbb{R}^{m \times m}$, submatrix of A with columns in S, is invertible - ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$ - ightharpoonup if $x_S \ge 0$, then x is a BFS - ightharpoonup evaluate objective $c^T x$ the best BFS is optimal! problem: how many BFSs are there? #### **Enumerate vertices of LP** can generate all extreme points of LP: for each $S \subseteq \{1, ..., n\}$ with |S| = m, - $ightharpoonup A_S \in \mathbb{R}^{m \times m}$, submatrix of A with columns in S, is invertible - ▶ solve $A_S x_S = b$ for x_S and set $x_{\bar{S}} = 0$ - ▶ if $x_S \ge 0$, then x is a BFS - ightharpoonup evaluate objective $c^T x$ the best BFS is optimal! **problem:** how many BFSs are there? n choose m is $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ ("exponentially many") #### Simplex algorithm basic idea: local search on the vertices of the feasible set - \triangleright start at BFS x and evaluate objective c^Tx - ightharpoonup move to a neighboring BFS x' with better objective c^Tx' - repeat until no improvement possible ## Simplex algorithm basic idea: local search on the vertices of the feasible set - \triangleright start at BFS x and evaluate objective c^Tx - ightharpoonup move to a neighboring BFS x' with better objective c^Tx' - repeat until no improvement possible #### discuss in groups: - how to find an initial BFS? - how to find a neighboring BFS with better objective? - how to prove optimality? solve an auxiliary problem for which a BFS is known: solve an auxiliary problem for which a BFS is known: minimize $$\sum_{i=1}^{m} z_i$$ subject to $$Ax + Dz = b$$ $$x, z \ge 0$$ where $D \in \mathbb{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for $i = 1, \dots, m$. solve an auxiliary problem for which a BFS is known: minimize $$\sum_{i=1}^{m} z_i$$ subject to $$Ax + Dz = b$$ $$x, z \ge 0$$ where $D \in \mathbb{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for $i = 1, \dots, m$. ightharpoonup x = 0, z = |b| is a BFS of this problem solve an auxiliary problem for which a BFS is known: minimize $$\sum_{i=1}^{m} z_i$$ subject to $$Ax + Dz = b$$ $$x, z \ge 0$$ where $D \in \mathbb{R}^{m \times m}$ is a diagonal matrix with $D_{ii} = \mathbf{sign}(b_i)$ for i = 1, ..., m. - ightharpoonup x = 0, z = |b| is a BFS of this problem - (x,z)=(x,0) is a BFS of this problem $\iff x$ is a BFS of the original problem start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$ $$x^+ \leftarrow x + \theta d^j, \qquad \theta > 0$$ where $d_j^j=1$ and $d_i^j=0$ for $i ot\in S\cup\{j\}.$ need to solve for $d_S^j.$ start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$ $$x^+ \leftarrow x + \theta d^j, \quad \theta > 0$$ where $d_{j}^{j}=1$ and $d_{i}^{j}=0$ for $i ot\in\mathcal{S}\cup\{j\}.$ need to solve for $d_{\mathcal{S}}^{j}.$ need to stay feasible wrt equality constraints, so need $$0 = Ad^j = A_S d_S^j + a_j \implies d_S^j = -A_S^{-1} a_j$$ start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$ $$x^+ \leftarrow x + \theta d^j, \qquad \theta > 0$$ where $d_{j}^{j}=1$ and $d_{i}^{j}=0$ for $i ot\in\mathcal{S}\cup\{j\}$. need to solve for $d_{\mathcal{S}}^{j}$. need to stay feasible wrt equality constraints, so need $$0 = Ad^j = A_S d_S^j + a_j \implies d_S^j = -A_S^{-1} a_j$$ ▶ as $x_S > 0$ is non-degenerate, $\exists \theta > 0$ st $x^+ \ge 0$ start with BFS x with active set S, $x_S > 0$. (called a **non-degenerate** BFS.) construct the j**th basic direction** d^j by turning on variable $j \notin S$ $$x^+ \leftarrow x + \theta d^j, \quad \theta > 0$$ where $d_{j}^{j}=1$ and $d_{i}^{j}=0$ for $i ot\in S \cup \{j\}$. need to solve for d_{S}^{j} . need to stay feasible wrt equality constraints, so need $$0 = Ad^j = A_S d_S^j + a_j \implies d_S^j = -A_S^{-1} a_j$$ - ▶ as $x_S > 0$ is non-degenerate, $\exists \theta > 0$ st $x^+ \geq 0$ - how does objective change if we move to $x^+ = x + \theta d^j$? $$c^T x^+ - c^T x = \theta c^T d^j = \theta c_j - \theta c_S^T A_S^{-1} a_j$$ #### Reduced cost define **reduced cost** $\bar{c}_j = c_j - c_S^T A_S^{-1} a_j$, $j \notin S$ #### Reduced cost define **reduced cost** $$\bar{c}_j = c_j - c_S^T A_S^{-1} a_j$$, $j \notin S$ #### fact: - ightharpoonup if $\bar{c} \geq 0$, x is optimal - if x is optimal and nondegenerate $(x_S > 0)$, then $\bar{c} \ge 0$ why might x be degenerate? why might that pose a problem? three steps to the proof: ▶ every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) #### three steps to the proof: • every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta \geq 0$, $$A(x + \theta d) = b, \quad x + \theta d \ge 0$$ - ▶ nonnegativity requires $d_j \ge 0$ for $j \notin S$ - feasibility requires $0 = Ad = A(d_S + \sum_{i \neq S} \alpha_i e_i)$ for some $\alpha \geq 0$ - ▶ solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$ - ightharpoonup so $d = \sum_{j \notin S} \alpha_j (d_S^j + e_j) = \sum_{j \notin S} \alpha_j d^j$ #### three steps to the proof: • every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta \geq 0$, $$A(x + \theta d) = b, \quad x + \theta d \ge 0$$ - ▶ nonnegativity requires $d_j \ge 0$ for $j \notin S$ - feasibility requires $0 = Ad = A(d_S + \sum_{j \notin S} \alpha_j e_j)$ for some $\alpha \ge 0$ - ▶ solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$ - ightharpoonup so $d = \sum_{j \notin S} \alpha_j (d_S^j + e_j) = \sum_{j \notin S} \alpha_j d^j$ - ▶ the feasible set $F = \{x \mid Ax = b, x \ge 0\} \subseteq x + \mathbf{cone}(\{d_j \mid j \notin S\})$ #### three steps to the proof: • every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta \geq 0$, $$A(x + \theta d) = b, \quad x + \theta d \ge 0$$ - ▶ nonnegativity requires $d_j \ge 0$ for $j \notin S$ - feasibility requires $0 = Ad = A(d_S + \sum_{i \neq S} \alpha_i e_i)$ for some $\alpha \geq 0$ - ▶ solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$ - \blacktriangleright so $d = \sum_{i \notin S} \alpha_j (d_S^j + e_j) = \sum_{i \notin S} \alpha_i d^j$ - ▶ the feasible set $F = \{x \mid Ax = b, x \ge 0\} \subseteq x + \mathbf{cone}(\{d_j \mid j \notin S\})$ by convexity three steps to the proof: • every feasible direction at x is contained in **cone**($\{d_j \mid j \notin S\}$) feasible directions d must satisfy, for some $\theta > 0$, $$A(x + \theta d) = b$$, $x + \theta d > 0$ - ▶ nonnegativity requires $d_i \ge 0$ for $i \notin S$ - feasibility requires $0 = Ad = A(d_S + \sum_{i \neq S} \alpha_i e_i)$ for some $\alpha \geq 0$ - ▶ solve: $d_S = -A_S^{-1} \sum_{j \notin S} \alpha_j A_j = \sum_{j \notin S} \alpha_j (-A_S^{-1} A_j) = \sum_{j \notin S} \alpha_j d_S^j$ - \blacktriangleright so $d = \sum_{i \neq S} \alpha_i (d_S^j + e_i) = \sum_{i \neq S} \alpha_i d^j$ - ▶ the feasible set $F = \{x \mid Ax = \overline{b}, x \geq 0\} \subseteq x + \mathbf{cone}(\{d_j \mid j \notin S\})$ by convexity - so $$p^* = \min_{x' \in F} c^T x' \geq \min_{\alpha \geq 0} c^T (x + \sum_{j \notin S} \alpha_j d_j)$$ $$= c^T x + \min_{\alpha \geq 0} \sum_{j \notin S} \alpha_j \bar{c}_j = c^T x$$ #### **Outline** LP standard form LP inequality form What kinds of points can be optimal? Solving LPs Modeling - Gurobi and COPT are state-of-the-art commercial solvers. - ▶ GLPK and SCIP are free solvers that are not as fast - ► Gurobi and COPT are state-of-the-art commercial solvers - ▶ GLPK and SCIP are free solvers that are not as fast - gurobipy is a python interface to Gurobi - CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems - Gurobi and COPT are state-of-the-art commercial solvers - ▶ GLPK and SCIP are free solvers that are not as fast - gurobipy is a python interface to Gurobi - CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems - OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code https://optimus-solver.com/dashboard - ► Gurobi and COPT are state-of-the-art commercial solvers - ▶ GLPK and SCIP are free solvers that are not as fast - gurobipy is a python interface to Gurobi - CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems - OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code https://optimus-solver.com/dashboard - JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super speedy for MILP applications - Gurobi and COPT are state-of-the-art commercial solvers - ▶ GLPK and SCIP are free solvers that are not as fast - gurobipy is a python interface to Gurobi - CVX* (including CVXPY in python) are modeling languages that call solvers with good support for convex problems - OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code https://optimus-solver.com/dashboard - ▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super speedy for MILP applications demos: - power systems https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/ - multicast routing https://colab.research.google.com/drive/ 1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing #### Oro Verde case + tutorial https://github.com/stanford-cme-307/demos/tree/main/gurobipy # **Modeling challenges** model the following as standard form LPs: - 1. inequality constraints. $Ax \leq b$ - 2. free variable. $x \in \mathbb{R}$ - 3. **absolute value.** constraint $|x| \le 10$ - 4. **piecewise linear.** objective $max(x_1, x_2)$ - 5. assignment. e.g., every class is assigned exactly one classroom - 6. **logic.** e.g., class enrollment \leq capacity of assigned room - 7. **(big-M).** $Ax \le b$ if $x \ge 10$ - 8. **flow.** e.g., the least cost way to ship an item from s to t # Modeling challenges model the following as standard form LPs: - 1. inequality constraints. $Ax \leq b$ - 2. free variable. $x \in \mathbb{R}$ - 3. **absolute value.** constraint $|x| \le 10$ - 4. **piecewise linear.** objective $max(x_1, x_2)$ - 5. assignment. e.g., every class is assigned exactly one classroom - 6. **logic.** e.g., class enrollment \leq capacity of assigned room - 7. **(big-M).** $Ax \le b$ if $x \ge 10$ - 8. **flow.** e.g., the least cost way to ship an item from s to t (see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see https://github.com/stanford-cme-307/demos/blob/main/Mullticast_Routing_Demonstration.ipynb for a detailed treatment of a flow problem.) ## Use slack variables to represent inequality constraints to represent the following problem in standard form, minimize $$c^T x$$ subject to $Ax \le b$ $x \ge 0$ ## Use slack variables to represent inequality constraints to represent the following problem in standard form, minimize $$c^T x$$ subject to $Ax \le b$ $x \ge 0$ introduce slack variable $$s \in \mathbb{R}^m$$: $Ax + s = b$, $s \ge 0 \iff Ax \le b$ minimize $c^Tx + 0^Ts$ subject to $Ax + s = b$ $x, s > 0$ ## Split variable into parts to represent free variables to represent the following problem in standard form, minimize $c^T x$ subject to Ax = b ## Split variable into parts to represent free variables to represent the following problem in standard form, minimize $$c^T x$$ subject to $Ax = b$ introduce positive variables $$x_+, x_-$$ so $x = x_+ - x_-$: minimize $$c^T x_+ - c^T x_-$$ subject to $Ax_+ - Ax_- = b$ $x_+, x_- \ge 0$ ## Use epigraph variables to handle absolute value to represent the following problem in standard form, minimize $$||x||_1 = \sum_{i=1}^n |x_i|$$ subject to $Ax = b$ $x \ge 0$ ## Use epigraph variables to handle absolute value to represent the following problem in standard form, minimize $$||x||_1 = \sum_{i=1}^n |x_i|$$ subject to $Ax = b$ $x \ge 0$ introduce epigraph variable $t \in \mathbb{R}^n$ so $|x_i| \leq t_i$: minimize $$1^T t$$ subject to $Ax = b$ $-t \le x \le t$ $x, t > 0$ verify these constraints ensure $|x_i| \le t_i$. ## Use epigraph variables to handle absolute value to represent the following problem in standard form, minimize $$||x||_1 = \sum_{i=1}^n |x_i|$$ subject to $Ax = b$ $x \ge 0$ introduce epigraph variable $t \in \mathbb{R}^n$ so $|x_i| \leq t_i$: minimize $$1^T t$$ subject to $Ax = b$ $-t \le x \le t$ $x, t > 0$ verify these constraints ensure $|x_i| \le t_i$. Q: Why does this work? For what kinds of functions can we use this trick? ## Use binary variables to handle assignment every class is assigned exactly one classroom: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$ # Use binary variables to handle assignment every class is assigned exactly one classroom: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$ now solve the problem minimize $$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$ subject to $$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \quad \text{(every class assigned one room)}$$ $$\sum_{i=1}^{n} X_{ij} \leq 1, \ \forall j \text{(no more than one class per room)}$$ $$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$ where C_{ij} is the cost of assigning class i to room j. ## Use binary variables to handle logic model class enrollment $p_i \leq \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $X_{ij} = \begin{cases} 1 & \text{class } i \text{ is assigned to room } j \\ 0 & \text{otherwise} \end{cases}$ # Use binary variables to handle logic model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$ solve the problem minimize $$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$ subject to $$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \quad \text{(every class assigned one room)}$$ $$\sum_{i=1}^{n} X_{ij} \leq 1, \ \forall j \text{(no more than one class per room)}$$ $$\sum_{i=1}^{n} p_{i} X_{ij} \leq c_{j}, \ \forall j \quad \text{(capacity constraint)}$$ $$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$ where C_{ij} is the cost of assigning class i to room j. # Use binary variables to handle logic model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$ solve the problem minimize $$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$ subject to $$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \quad \text{(every class assigned one room)}$$ $$\sum_{i=1}^{n} X_{ij} \leq 1, \ \forall j \text{(no more than one class per room)}$$ $$\sum_{i=1}^{n} p_i X_{ij} \leq c_j, \ \forall j \quad \text{(capacity constraint)}$$ $$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$ where C_{ij} is the cost of assigning class i to room j. what if we want enrollment p to be a variable, too? #### ... or use a big-M relaxation! model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $$X_{ij} = \begin{cases} 1 & \text{class } i \text{ is assigned to room } j \\ 0 & \text{otherwise} \end{cases}$$ suppose M is a very large number. #### ...or use a big-M relaxation! model class enrollment $p_i \le \text{capacity } c_j$ of assigned room: define variable $X_{ij} \in \{0,1\}$ for each class $i=1,\ldots,n$ and room $j=1,\ldots,m$ $$X_{ij} = egin{cases} 1 & ext{class } i ext{ is assigned to room } j \ 0 & ext{otherwise} \end{cases}$$ suppose M is a very large number. solve the problem minimize $$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$ subject to $$\sum_{i=1}^{n} X_{ij} = 1, \ \forall j \quad \text{(every class assigned one room)}$$ $$\sum_{j=1}^{m} X_{ij} = 1, \ \forall i \text{(no more than one class per room)}$$ $$p_i \leq c_j + (1 - X_{ij})M, \ \forall i,j \quad \text{(capacity constraint)}$$ $$X_{ij} \in \{0,1\} \quad \text{(binary variables)}$$ where C_{ij} is the cost of assigning class i to room j.