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Course survey

you’re interested in:

▶ modeling real-world problems, from finance and economics to energy systems
and trajectory planning

▶ robustness and modeling under uncertainty

▶ understanding core optimization concepts like duality

▶ . . .

questions:

▶ what readings are required?

▶ what projects are allowed?

▶ Friday section?

▶ programming requirements?
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Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling

3 / 38



Linear programming: standard form

standard form linear program (LP)

minimize cT x
subject to Ax = b

x ≥ 0

optimal value p⋆, solution x⋆ (if it exists)
▶ any x with Ax = b and x ≥ 0 is called a feasible point
▶ if problem is infeasible, we say p⋆ =∞
▶ p⋆ can be finite or ±∞

Q: if p⋆ = −∞, does a solution exist?
Q: if p⋆ =∞, does a solution exist?
henceforth assume A ∈ Rm×n has full row rank m
Q: why? how to check?
A: otherwise infeasible or redundant rows; use gaussian elimination to check and
remove
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LP example: diet problem

We an planning a backpacking trip, and want to minimize the total weight of the
food packed subject to nutritional requirements. We have a list of essential nutrients
and how much an active person needs of each. We also know the weight of each
food, and how much of each nutrient is in each food.

▶ xj servings of food j , j = 1, . . . , n

▶ cj weight per serving

▶ aij amount of nutrient i in food j

▶ bi required amount of nutrient i , i = 1, . . . ,m

minimize cT x
subject to Ax = b

x ≥ 0
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Geometry of LP

the feasible set is the set of points {x | Ax = b, x ≥ 0} that satisfy all constraints.

interpretation: conic hull

▶ define the cone generated by A = [A1, . . .An]:

{Ax | x ≥ 0} =

{
n∑

i=1

Aixi | x ≥ 0

}
= cone(A1, . . . ,An)

▶ LP is feasible if b ∈ cone(A1, . . . ,An)

interpretation: intersection of hyperplane and halfspaces

▶ define a hyperplane {x | Ax = b} (dimension?)

▶ define a halfspace {x | aT x ≥ b}
▶ the positive orthant x ≥ 0 is an intersection of halfspaces

▶ LP is feasible if hyperplane {x | Ax = b} intersects the positive orthant
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Geometry of LP: convexity

▶ define convex combination of x , y ∈ Rn: θx + (1− θ)y for θ ∈ [0, 1]

▶ define convex set: C is convex if for any x , y ∈ C ,

θx + (1− θ)y ∈ C , θ ∈ [0, 1]

▶ define the convex hull of a set S :

conv(S) =

{
k∑

i=1

θixi | xi ∈ S , θi ≥ 0,
k∑

i=1

θi = 1

}

▶ define polytope: the convex hull of a finite set: conv({x1, . . . , xk})
some useful convex sets:

▶ a hyperplane is convex
▶ a halfspace is convex
▶ the intersection of convex sets is convex
▶ the feasible set {x : Ax = b, x ≥ 0} is convex
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LP inequality form

another useful form for LP is inequality form

minimize cT x
subject to Ax ≤ b

interpretation: halfspaces

▶ aTi x ≤ bi defines a halfspace

▶ Ax ≤ b defines a polyhedron: intersection of halfspaces

▶ LP is feasible if polyhedron {x | Ax ≤ b} is nonempty
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LP example: production planning

▶ xi units of product i

▶ ci cost per unit

▶ aij amount of resource j used by product i

▶ bj amount of resource j available

▶ di demand for product i

minimize cT x
subject to Ax ≤ b

0 ≤ x ≤ d

extensions:

▶ fixed cost for producing product i at all?
cT x + f T z , zi ∈ {0, 1}, xi ≤ Mzi for M large
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LP inequality form to standard form

standard form to inequality form

minimize cT x
subject to Ax = b

x ≥ 0
→

minimize cT x
subject to Ax ≤ b

Ax ≥ b
−x ≤ 0

inequality form to standard form

minimize cT x
subject to Ax ≤ b

→
minimize cT (x+ − x−)
subject to A(x+ − x−) + s = b

s, x+, x− ≥ 0

so both forms have the same expressive power, and feasible sets are polyhedra
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Active constraints and variables

active constraints. for constraint set Ax ≤ b, an active constraint i at x is one
that holds with equality:

aTi x = bi

▶ the active set S(x) at x is the set of indices of active constraints

S(x) = {i | aTi x = bi}

active variables. for nonnegative variable x ≥ 0, variable i is active if xi > 0
example: active slack variables are dual to active constraints

Ax ≤ b ⇐⇒ Ax + s = b, s ≥ 0

aTi x = bi ⇐⇒ si = 0

constraint i is active ⇐⇒ slack variable si is inactive
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Extreme points

define extreme point: x ∈ Rn is extreme in C ⊂ Rn if it cannot be written as a
convex combination of other points in C : for θ ∈ [0, 1],

x ∈ C and x = θy + (1− θ)z =⇒ x = y = z

fact: if x⋆ is the unique optimal solution of minimizex∈S cT x ,
then x⋆ is extreme in the set S .
proof: suppose by way of contradiction that x⋆ is not extreme in S :

x⋆ = θy + (1− θ)z for y , z ∈ S , θ ∈ (0, 1)

p⋆ := cT x⋆ = θcT y + (1− θ)cT z > θp⋆ + (1− θ)p⋆ = p⋆

where the inequality follows from the (unique) optimality of x⋆. Contradiction!

Q: Example of an LP with a non-extreme solution?
Q: Does there always exist an extreme solution?
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Vertices

define vertex: x ∈ Rn is a vertex of set S ⊂ Rn if for some vector c ∈ Rn,

cT x < cT y ∀y ∈ S \ {x}

interpretation: {z : cT z = cT x} is a hyperplane that intersects S only at x .
we say this hyperplane supports S at x

fact: x is a vertex of S =⇒ x is an extreme point of S
proof: x is a vertex of S . suppose its defining vector is c and consider the
optimization problem
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Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS = {AS1 , . . . ,ASm} ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38



Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS = {AS1 , . . . ,ASm} ∈ Rm×m is submatrix of A with columns in S

▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38



Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS = {AS1 , . . . ,ASm} ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38



Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS = {AS1 , . . . ,ASm} ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.

16 / 38



Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS = {AS1 , . . . ,ASm} ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?

A: choose m linearly independent columns of A and set x = A−1
S b; check x ≥ 0.

16 / 38



Basic feasible solution

recall the standard form LP

minimize cT x
subject to Ax = b

x ≥ 0
(LP)

define: x ∈ Rn is a basic feasible solution (BFS) of (LP) if there is a set
S ⊂ {1, . . . , n} of m columns so that AS ∈ Rm×m is invertible and

xS = A−1
S b, xS̄ = 0, x ≥ 0.

▶ AS = {AS1 , . . . ,ASm} ∈ Rm×m is submatrix of A with columns in S
▶ two BFS with S , S ′ are neighbors if they share all but one columns:
|S ∩ S ′| = m − 1

Q: how to find a BFS?
A: choose m linearly independent columns of A and set x = A−1

S b; check x ≥ 0.
16 / 38



Extreme point ⇐⇒ vertex ⇐⇒ BFS

fact. consider the feasible set F = {x | Ax = b, x ≥ 0} in Rn. the following are
equivalent:

▶ x is an extreme point of F

▶ x is a vertex of F

▶ x is a BFS of F

implications: since any polyhedron Ax ≤ b can be written as Ax = b, x ≥ 0,

▶ (BFS =⇒ ) a polyhedron has a finite number of extreme points

▶ (extreme point =⇒ ) BFS are independent of the representation of the feasible
set

we have already shown that vertex =⇒ extreme point. need to show

▶ extreme point =⇒ BFS

▶ BFS =⇒ vertex
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Extreme point =⇒ BFS

we will show the contrapositive: x is not a BFS =⇒ x is not an extreme point

suppose that x̄ ∈ F is feasible but is not a BFS:
there is no S ⊆ [n] so that AS is invertible, x̄S = A−1

S b, and x̄S = 0.
consider S̄ = {i : x⋆i > 0}, the active set of variables in x̄ .

▶ if AS̄ were full rank |S̄ |, we could complete AS̄ to an invertible AS with S̄ ⊆ S .
▶ so AS̄ has a nontrivial nullspace: there is some d ∈ nullspace(AS̄), dS̄ ̸= 0.

extend this vector to d ∈ Rn by appending zeros, so Ad = AS̄dS̄ = 0.
now for ϵ ≤ mini∈S̄ x̄i/maxi∈S̄ |di |, define x+, x− ∈ Rn as

x+ = x̄ + ϵd , x− = x̄ − ϵd .

these are feasible:

▶ x+, x− ≥ 0 by our choice of ϵ,
▶ Ax+ = Ax− = b since Ad = 0.

so x̄ = 1
2x

+ + 1
2x

− is not extreme in F .
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BFS =⇒ vertex

suppose x⋆ is a BFS of F with active set S and AS invertible. define c ∈ Rn as

ci =

{
0 if i ∈ S

1 otherwise

so cT x⋆ = 0.

▶ x⋆ is the only point in F supported on S , as nullspace(AS) = 0,

▶ so any other feasible point x ∈ F has a positive objective value cT x > 0.

hence x⋆ is a vertex of F with defining vector c .
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Outline

LP standard form

LP inequality form

What kinds of points can be optimal?

Solving LPs

Modeling
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Solving LPs

algorithms:

▶ enumerate all vertices and check
▶ fourier-motzkin elimination
▶ simplex method
▶ ellipsoid method
▶ interior point methods
▶ first-order methods
▶ . . .

remarks:

▶ enumeration and elimination are simple but not practical
▶ simplex was the first practical algorithm; still used today
▶ ellipsoid method is the first polynomial-time algorithm; not practical
▶ interior point methods are polynomial-time and practical
▶ first-order methods are practical and scale to large problems
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Example of Fourier-Motzkin elimination

consider the system of inequalities

x1 + 2x2 ≤ 4

−x1 + x2 ≤ 1

x1, x2 ≥ 0

we can collect inequalities on x1 into those bounding it above and below:

{0, x2 − 1} ≤ x1 ≤ 4− 2x2

by appending all pairwise inequalities to existing inequalities on x2, we recover the
feasible set for x2:

0 ≤ 4− 2x2

x2 − 1 ≤ 4− 2x2

x2 ≥ 0

=⇒ x2 ∈ [0, 5/3].

elimination method also shows projection of a polyhedron is a (closed) polyhedron
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Enumerate vertices of LP

can generate all extreme points of LP: for each S ⊆ {1, . . . , n} with |S | = m,

▶ AS ∈ Rm×m, submatrix of A with columns in S , is invertible

▶ solve ASxS = b for xS and set xS̄ = 0

▶ if xS ≥ 0, then x is a BFS

▶ evaluate objective cT x

the best BFS is optimal!

problem: how many BFSs are there?
n choose m is

(n
m

)
= n!

m!(n−m)! (“exponentially many”)
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Simplex algorithm

basic idea: local search on the vertices of the feasible set

▶ start at BFS x and evaluate objective cT x

▶ move to a neighboring BFS x ′ with better objective cT x ′

▶ repeat until no improvement possible

discuss in groups:

▶ how to find an initial BFS?

▶ how to find a neighboring BFS with better objective?

▶ how to prove optimality?
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Finding an initial BFS

solve an auxiliary problem for which a BFS is known:

minimize
∑m

i=1 zi
subject to Ax + Dz = b

x , z ≥ 0

where D ∈ Rm×m is a diagonal matrix with Dii = sign(bi ) for i = 1, . . . ,m.

▶ x = 0, z = |b| is a BFS of this problem

▶ (x , z) = (x , 0) is a BFS of this problem ⇐⇒ x is a BFS of the original problem
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Find a better neighboring BFS

start with BFS x with active set S , xS > 0. (called a non-degenerate BFS.)
construct the jth basic direction d j by turning on variable j ̸∈ S

x+ ← x + θd j , θ > 0

where d j
j = 1 and d j

i = 0 for i ̸∈ S ∪ {j}. need to solve for d j
S .

▶ need to stay feasible wrt equality constraints, so need

0 = Ad j = ASd
j
S + aj =⇒ d j

S = −A−1
S aj

▶ as xS > 0 is non-degenerate, ∃θ > 0 st x+ ≥ 0

▶ how does objective change if we move to x+ = x + θd j?

cT x+ − cT x = θcTd j = θcj − θcTS A−1
S aj
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cT x+ − cT x = θcTd j = θcj − θcTS A−1
S aj
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Find a better neighboring BFS
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Reduced cost

define reduced cost c̄j = cj − cTS A−1
S aj , j ̸∈ S

fact:

▶ if c̄ ≥ 0, x is optimal

▶ if x is optimal and nondegenerate (xS > 0), then c̄ ≥ 0

why might x be degenerate? why might that pose a problem?
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if c̄ ≥ 0, x is optimal

three steps to the proof:

▶ every feasible direction at x is contained in cone({dj | j ̸∈ S})

feasible directions d must satisfy, for some θ ≥ 0,

A(x + θd) = b, x + θd ≥ 0

▶ nonnegativity requires dj ≥ 0 for j ̸∈ S
▶ feasibility requires 0 = Ad = A(dS +

∑
j ̸∈S αjej) for some α ≥ 0

▶ solve: dS = −A−1
S

∑
j ̸∈S αjAj =

∑
j ̸∈S αj(−A−1

S Aj) =
∑

j ̸∈S αjd
j
S

▶ so d =
∑

j ̸∈S αj(d
j
S + ej) =

∑
j ̸∈S αjd

j

▶ the feasible set F = {x | Ax = b, x ≥ 0} ⊆ x + cone({dj | j ̸∈ S}) by convexity
▶ so

p⋆ = min
x ′∈F

cT x ′ ≥ min
α≥0

cT (x +
∑
j ̸∈S

αjdj)

= cT x +min
α≥0

∑
j ̸∈S

αj c̄j = cT x
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Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing


Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing


Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing


Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications

demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing


Let’s do some modeling!

practical solvers for MILP:

▶ Gurobi and COPT are state-of-the-art commercial solvers

▶ GLPK and SCIP are free solvers that are not as fast

▶ gurobipy is a python interface to Gurobi

▶ CVX* (including CVXPY in python) are modeling languages that call solvers
with good support for convex problems

▶ OptiMUS is a LLM-based modeling tool for MILP that produces gurobipy code
https://optimus-solver.com/dashboard

▶ JuliaOpt/JuMP is a modeling language in Julia that calls solvers and is super
speedy for MILP applications demos:
▶ power systems

https://jump.dev/JuMP.jl/stable/tutorials/applications/power systems/
▶ multicast routing https://colab.research.google.com/drive/

1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing

30 / 38

https://optimus-solver.com/dashboard
https://jump.dev/JuMP.jl/stable/tutorials/applications/power_systems/
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing
https://colab.research.google.com/drive/1iOn1T1Muh51KaA7mf7UlQOdhSFZhZyry?usp=sharing


Oro Verde case + tutorial

https://github.com/stanford-cme-307/demos/tree/main/gurobipy
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Modeling challenges

model the following as standard form LPs:

1. inequality constraints. Ax ≤ b

2. free variable. x ∈ R
3. absolute value. constraint |x | ≤ 10

4. piecewise linear. objective max(x1, x2)

5. assignment. e.g., every class is assigned exactly one classroom

6. logic. e.g., class enrollment ≤ capacity of assigned room

7. (big-M). Ax ≤ b if x ≥ 10

8. flow. e.g., the least cost way to ship an item from s to t

(see chapter 1 of Bertsimas and Tsitsiklis for more details on 1–6. see
https://github.com/stanford-cme-307/demos/blob/main/
Mullticast Routing Demonstration.ipynb for a detailed treatment of a flow problem.)
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Use slack variables to represent inequality constraints

to represent the following problem in standard form,

minimize cT x
subject to Ax ≤ b

x ≥ 0

introduce slack variable s ∈ Rm: Ax + s = b, s ≥ 0 ⇐⇒ Ax ≤ b

minimize cT x + 0T s
subject to Ax + s = b

x , s ≥ 0
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Split variable into parts to represent free variables

to represent the following problem in standard form,

minimize cT x
subject to Ax = b

introduce positive variables x+, x− so x = x+ − x−:

minimize cT x+ − cT x−
subject to Ax+ − Ax− = b

x+, x− ≥ 0
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Use epigraph variables to handle absolute value

to represent the following problem in standard form,

minimize ∥x∥1 =
∑n

i=1 |xi |
subject to Ax = b

x ≥ 0

introduce epigraph variable t ∈ Rn so |xi | ≤ ti :

minimize 1T t
subject to Ax = b

−t ≤ x ≤ t
x , t ≥ 0

verify these constraints ensure |xi | ≤ ti .
Q: Why does this work? For what kinds of functions can we use this trick?
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Use binary variables to handle assignment

every class is assigned exactly one classroom:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

now solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑m

j=1 Xij = 1, ∀i (every class assigned one room)∑n
i=1 Xij ≤ 1, ∀j(no more than one class per room)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .
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Use binary variables to handle logic

model class enrollment pi ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑m

j=1 Xij = 1, ∀i (every class assigned one room)∑n
i=1 Xij ≤ 1, ∀j(no more than one class per room)∑n
i=1 piXij ≤ cj , ∀j (capacity constraint)

Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .

what if we want enrollment p to be a variable, too?
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. . . or use a big-M relaxation!

model class enrollment pi ≤ capacity cj of assigned room:
define variable Xij ∈ {0, 1} for each class i = 1, . . . , n and room j = 1, . . . ,m

Xij =

{
1 class i is assigned to room j

0 otherwise

suppose M is a very large number.

solve the problem

minimize
∑n

i=1

∑n
j=1 CijXij

subject to
∑n

i=1 Xij = 1, ∀j (every class assigned one room)∑m
j=1 Xij = 1, ∀i(no more than one class per room)

pi ≤ cj + (1− Xij)M, ∀i , j (capacity constraint)
Xij ∈ {0, 1} (binary variables)

where Cij is the cost of assigning class i to room j .
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