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Outline

Subgradients
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Basic inequality

recall basic inequality for convex differentiable f:

Fly) > f(x)+ VF(x)(y — x)

» first-order approximation of f at x is global underestimator
» (Vf(x),—1) supports epi f at (x, f(x))

what if f is not differentiable?
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Non-differentiable functions

are these functions differentiable?
> |t| fort € R
» ||x|[1 for x € R”
» || X]« for X € R™"
> max,-a,-Tx—Fb,- for x e R"
> Anax(X) for X € R™"
| 2

indicators of convex sets C

if not, where? can we find underestimators for them?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

fly)>f(x)+g"(y—x) forally

picture
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x
Q: Can a function f have no subgradient at a point x?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if
fly)>f(x)+g"(y—x) forally

picture

Q: Can a function f have > 1 subgradient at a point x?
A: Yes, if f is nonsmooth at x

Q: Can a function f have no subgradient at a point x?
A: Yes, if x does not lie on convex hull of f
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Subgradients and convexity

> g is a subgradient of f at x iff (g, —1) supports epi f at (x, f(x))
» g is a subgradient iff f(x) + g7 (y — x) is a global (affine) underestimator of f
» if f is convex and differentiable, Vf(x) is a subgradient of f at x

subgradients come up in several contexts:

» algorithms for nondifferentiable convex optimization

» convex analysis, e.g., optimality conditions, duality for nondifferentiable
problems

(if f(y) < f(x) + g7 (y — x) for all y, then g is a supergradient)
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Subdifferential

set of all subgradients of f at x is called the subdifferential of f at x, denoted
Of (x)
o (x)=1{g: fy) = f(x) +g (v —x) Vy}

for any f,

» Of(x) is a closed convex set (can be empty)
> Of(x) =0 if f(x) =00

proof: use the definition

7/59



Subdifferential
set of all subgradients of f at x is called the subdifferential of f at x, denoted
Of (x)
of(x)={g:fly) = f(x)+g"(y—x) Vy}

for any f,

» Of(x) is a closed convex set (can be empty)

> Of(x) =0 if f(x) =00
proof: use the definition

if £ is convex,

» Jf(x) is nonempty, for x € relintdom f
» Of(x) = {Vf(x)}, if f is differentiable at x
> if Of(x) = {g}, then f is differentiable at x and g = Vf(x)
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Compute subgradient via definition

g € Of(x) iff
fly)>f(x)+g"(y—x) Vy € dom(f)

example. let f(x) = |x| for x € R. suppose s € sign(x), where

{1} x>0
sign(x) = ¢[-1,1] x=0
—{1} x<0.

then

f(y) = max(y,—y) > sy =s(x +y —x) = [x| +s(y — x)
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Compute subgradient via definition

g € Of(x) iff
fly)>f(x)+g"(y—x) Vy € dom(f)

example. let f(x) = |x| for x € R. suppose s € sign(x), where

{1} x>0
sign(x) = ¢[-1,1] x=0
—{1} x<0.

then

f(y) = max(y,—y) > sy =s(x +y —x) = [x| +s(y — x)

so sign(x) C 9f(x) (in fact, holds with equality)

picture
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Compute subgradient via definition
g € df(x) <= f(y) > f(x)+g"(y —x) Vy € dom(f)

example. let f(x) = max; a] x + b;.
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Compute subgradient via definition
g € df(x) <= f(y) > f(x)+g"(y —x) Vy € dom(f)
example. let f(x) = max; a x + b;. then for any i,
fly) = maxaly+ by
a,-Ty + b;
= a3/ (x+y—x)+b;
= a/x+b+al(y—x)
= f(x)+a/(y —x),

where the last line holds for i € argmax; aij + bj. so

> a; € Of(x) for each i € argmax; aJTx + b;
» Of(x) is convex, so

Co{a; : i € argmax aij + bj} C 0f(x)
J
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Compute subgradient via definition
g € df(x) <= f(y) > f(x)+g"(y —x) Vy € dom(f)
example. let f(X) = Apax(X).
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Compute subgradient via definition
gedf(x) « f(y)>f(x)+g"(y—x) Vyedom(f)
example. let f(X) = Apax(X). then
fF(Y) = sup v Yv
Ivii<i
= sup v (X+Y-=X)v, |v|<1
Ivii<1
= sup (vTXv+ vi(y —X)v) s v <1
Ivii<1

= viXv+tr(w'(Y = X)), veargmaxv'Xv
Ivii<1

= )\max(X) + tr(VVT(Y - X))a v € argmax v Xv
vii<i

> w € 9f(X) for each v € argmax|,| <1 v Xv
» Of(x) is convex, so

Co{w' : v € argmaxv'Xv} C 9f(x)
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Outline

Subgradient properties
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Properties of subgradients

subgradient inequality:
geIf(x) = f(y)>f(x)+g"(y—x) Vy € dom(f)

for convex f, we'll show

» subgradients are monotone: for any x,y € domf, g, € 0f(y), and g« € 0f(x),

(& — &) (y—x) =0

> Of(x) is continuous: if f is (lower semi-)continuous, x(¥) — x, g(¥) — g, and
gk) € af (x(k)) for each k, then g € 9f(x)

> Of(x) = argmax g’ x — f(x)
these will help us compute subgradients
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Subgradients are monotone

fact. for any x,y € domf, g, € 9f(y), and g« € Of(x),
(& —&)"(y—x) >0
proof. same as for differentiable case:

fly) > f(x)+ &l (y—x)  f(x)>f(y)+g (x—y)

add these to get
(8 —&) (y—x) =0

13/59



Subgradients are preserved under limits
subgradient inequality:
g € 0f(x) <= f(y) 2 f(x)+g"(y—x) Vy e dom(f)

fact. if f is (lower semi-)continuous, x(¥) — x, g(k) — g, and g(¥) € af (x(¥)) for
each k, then g € Of(x)

proof.
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Subgradients are preserved under limits

subgradient inequality:
g € 0f(x) <= f(y) 2 f(x)+g"(y—x) Vy e dom(f)

fact. if f is (lower semi-)continuous, x(¥) — x, g(k) — g, and g(¥) € af (x(¥)) for
each k, then g € Of(x)

proof. For each k and for every y,

fly) > f(X(k))+(g(k))T(y_X(k))
lim f(y) > kli—>m F(x5N) + (g*N) T (y — x(K)y

k—o00
fly) > f(x)+g"(y—x)

V

moral. To find a subgradient g € df(x), find points x(¥) — x where f is
differentiable, and let g = limy_,o, V£ (x(¥).
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Subgradients are preserved under limits:

consider f(x) = |x|. we know

{-1} x<0
of(x)=«¢ 7 x=0
{1} x>0

SO

» lim, o0+ V(x) =1
> lim, o V(x) = —1

hence

example
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Subgradients are preserved under limits: example

consider f(x) = |x|. we know
{-1} x<0
of(x)=«¢ 7 x=0
{1} x>0
so
» lim, o0+ V(x) =1
> lim, .o V(x) = -1
hence
» —1 € 0f(0) and —1 € 9f(0)
» 0f(0) is convex, so [—1,1] C 9f(0)
» and 0f(0) is monotone, so [—1,1] = 9f(0)
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Convex functions can’t be very non-differentiable

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is differentiable almost
everywhere on the interior of its domain.
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Convex functions can’t be very non-differentiable

Theorem

Rockafellar, Convex Analysis, Thm 25.5 a convex function f is differentiable almost
everywhere on the interior of its domain.

corollary: pick x € dom f uniformly at random. then f is differentiable at x w/prob
1.
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Convex functions can’t be very non-differentiable

Theorem
Rockafellar, Convex Analysis, Thm 25.5 a convex function f is differentiable almost
everywhere on the interior of its domain.

corollary: pick x € dom f uniformly at random. then f is differentiable at x w/prob
1.

corollary: For a convex function f and any x, there is a sequence of points
x(K) =5 x where f is differentiable.
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Subgradients and fenchel conjugates

fact. g € 0f(x) <= f*(g)+f(x)=g"x
(recall the conjugate function f*(g) = sup, g " x — f(x).)
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Subgradients and fenchel conjugates
proof. if f*(g) + f(x) = g"x,
f*(g) = supg’y —f(y)
y

> gly—fly) Vy

fly) > g'y—f(g) Yy
= gly—g'x+f(x) Vy
= g’ (y—x)+f(x) Vy

so g € Of(x). conversely, if g € Of(x),
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Subgradients and fenchel conjugates
proof. if f*(g) + f(x) = g"x,
f*(g) = supg’y —f(y)
y
> gly—fly) Vy
fly) > g'y—f(g) Yy
= gly—g'x+f(x) Vy
= g’ (y—x)+f(x) Vy

so g € Of(x). conversely, if g € Of(x),

fly) = g'(y—x)+f(x)
g'x—f(x) > gly—f(y)
supg’x—f(x) > supg'y—f(y)
y y
gTX_f(X) > f*(g) 18/59



Subgradients and fenchel conjugates

Conclusion.

geIf(x) < f (g)+f(x)=g'x
— xcargmaxg'x— f(x)

consider the same implications for the function f*:
x € 0ff(g) <= f(x)+f(g)=x"g

— gecargmaxg’x—f*(g)
g

so all these conditions are equivalent, and g € 9f(x) <= x € 0f*(g)!
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g

example. let f(x) = ||x||1. compute

f*(g) = supg’x—|x|1
X
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g
example. let f(x) = ||x||1. compute

f*(g) =

supg’ x — [|x[|1
X

_ fo fgle<t
oo otherwise
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Compute subgradient via fenchel conjugate

Of (x) = argmax g " x — f*(g)
g

example. let f(x) = ||x||1. compute

f*(g) = supg’x—|x|1
X

{0 llgle <t
oo otherwise
given Xx,
Of(x) = argmaxg'x— f*(g)
g

= argmaxg'x
llgllec <1

= sign(x)

T T T IR T e 20/59



Compute subgradient via fenchel conjugate
Of (x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
f(G) = suptr(G, X) — || X].
X
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Compute subgradient via fenchel conjugate
Of (x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
f(G) = suptr(G, X) — || X].
X

)0 6l <1
N oo otherwise

where ||G|| = 01(G) is the operator norm of G.
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Compute subgradient via fenchel conjugate
Of (x) = argmax g " x — f*(g)
g

example. let 7(X) = || X||.. compute
f(G) = suptr(G, X) — || X].
X

_ )0 Jel=1
B oo otherwise
where ||G|| = 01(G) is the operator norm of G.

given X = U diag(o)V' T,
0f(x) = argmaxtr(G,X)—f*(G)
G

= argmaxtr(G, X)
IGll<1
= Udiag(sign(c))V"

where sign is computed elementwise.
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Subgradient method
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Subgradient method

the subgradient method is a simple algorithm to minimize nondifferentiable convex
function f

kD) ) _ gy g6)

> x(kK) is the kth iterate
» gk is any subgradient of f at x(¥)
» «ay > 0 is the kth step size
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Subgradient method

the subgradient method is a simple algorithm to minimize nondifferentiable convex
function f

kD) ) _ gy g6)

> x(kK) is the kth iterate
» gk is any subgradient of f at x(¥)
» «ay > 0 is the kth step size

warning: subgradient method is not a descent method.
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Subgradient method

the subgradient method is a simple algorithm to minimize nondifferentiable convex
function f

kD) ) _ gy g6)

> x(kK) is the kth iterate
» gk is any subgradient of f at x(¥)
» «ay > 0 is the kth step size

warning: subgradient method is not a descent method.
instead, keep track of best point so far
k : ;
foo =, min ()
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How to avoid slow convergence

don't use subgradient method for very high accuracy!
instead,

» for high accuracy: rewrite problem as LP or SDP; use IPM
» for medium accuracy:
> regularize your objective (so it's strongly convex)

Fx) = F(x) +alx = x|
> smooth your objective (so it's smooth)

F(x) =E,.|y—x<sf(¥)

» infimal convolution (so it's smooth and strongly convex):
~ . p
FO) =inf f(y) + Sy —xI?

» more on these later. ..

» for low accuracy: use a constant step size; terminate when you stop improving

much or get bored
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Proximal operators
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Proximal operator

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 5 |1z — x|13)
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Proximal operator

define the proximal operator of the function f : RY — R

1
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Proximal operator

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 5 |1z — x|13)

» prox; : RY — RY
» generalized projection: if 1¢ is the indicator of set C,

prox; (w) = MNc(w)
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Proximal operator

define the proximal operator of the function f : RY — R

1
prox; (x) = argmin(f(2) + 5 |1z — x|13)

» prox; : RY — RY
» generalized projection: if 1¢ is the indicator of set C,

prox; (w) = MNc(w)

> implicit gradient step: if z = prox,(x)
of(z)+z—x = 0
z = x—0f(2)
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Maps from functions to functions

for a function f : R - R,

» prox maps f to a new function prox, : RY — R
> prox(x) evaluates this function at the point x

» V maps f to a new function Vf : RY — R?
> Vf(x) evaluates this function at the point x
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)
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1
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)

> f(x) =0 (identity)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)

> f(x) =0 (identity)
= x2 (shrinkage)

28 /59



Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)

> f(x) = 0 (identity)
> f(x) = x? (shrinkage)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R
. 1 2
prox,(x) = argmin(f(2) + 5|z — x|3)
> f(x) =0 (identity)
X

2 (shrinkage)
» f(x) = |x| (soft-thresholding)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)

> f(x) =0 (identity)

> f(x) = x? (shrinkage)

» f(x) = |x| (soft-thresholding)
> f(x)=1(x>0)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)

> f(x) =0 (identity)

> f(x) = x? (shrinkage)

» f(x) = |x| (soft-thresholding)
» f(x)=1(x > 0) (projection)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)

> f(x) = (|dentity)

> f(x) = x? (shrinkage)

> f(x)= ]x] (soft-thresholding)
» f(x)=1(x > 0) (projection)
> f(x) = filx)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

1
prox; (x) = argmin(f(2) + 31z = x|3)

> f(x) = (|dentity)

> f(x) = x? (shrinkage)

> f(x)= ]x] (soft-thresholding)
» f(x)=1(x > 0) (projection)

> f(x) =% fi(x;) (separable)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVvyVvyVvyYVvyy

1
prox; (x) = argmin(f(2) + 31z = x|3)

f(x) = (|dentity)

f(x) = x? (shrinkage)

f(x)= ]x] (soft-thresholding)
f(x) = 1(x > 0) (projection)
f(x) = Z fi(x;) (separable)
F(x) = Ixll
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVvyVvyVvyYVvyy

1
prox; (x) = argmin(f(2) + 31z = x|3)

f(x) = 0 (identity)

f(x) = x? (shrinkage)

f(x) = |x| (soft-thresholding)

f(x) = 1(x > 0) (projection)

f(x) = >_i=1 fi(xi) (separable)

f(x) = ||x|l1 (soft-thresholding on each index)
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVyVvyVVYVY

1
prox; (x) = argmin(f(2) + 31z = x|3)

f(x) = 0 (identity)

f(x) = x? (shrinkage)

f(x) = |x| (soft-thresholding)

f(x) = 1(x > 0) (projection)

f(x) = 30, fi(x;) (separable)

f(x) = ||x|l1 (soft-thresholding on each index)
F(X) = [IX]]«
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Let’s evaluate some proximal operators!

define the proximal operator of the function f : R — R

VVyVvyVVYVY

1
prox; (x) = argmin(f(2) + 31z = x|3)

f(x) = 0 (identity)

f(x) = x? (shrinkage)

f(x) = |x| (soft-thresholding)

f(x) = 1(x > 0) (projection)

f(x) = 30, fi(x;) (separable)

f(x) = ||x|l1 (soft-thresholding on each index)
f(X) = || X||« (soft-thresholding on singular values)
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Proxable functions

we say a function f is proxable if it's easy to evaluate prox,(x)

all examples from previous slide are proxable
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Outline

Proximal gradient method
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Proximal gradient method

suppose f is smooth, g is non-smooth. solve

minimize  f(x) + g(x)

using proximal operators together with gradient steps?
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Proximal gradient method

suppose f is smooth, g is non-smooth. solve

minimize  f(x) + g(x)

using proximal operators together with gradient steps? idea:

xT = prox,, (x — tVf(x))

» the proximal operator steps towards the minimum of g

» gradient method steps towards minimum of f
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Proximal gradient: examples

with smooth loss f(x) = %HAX — b||3, regularize with

> projected gradient: g(x) = 1g(x)

> nonnegative least squares: g(x) = 1, (x)
> lasso: g(x) = Al|x]||1

> ..
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Relations
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Functions

in much of what follows, we'll need to assume functions are

» closed: epi(f) is a closed set
» convex: f is convex

» proper: dom f is non-empty

which we abbreviate as CCP
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Relations

(x,0f(x)) and (x, proxs(x)) define relations on R”"

» a relation R on R"” is a subset of R” x R"

» domR = {x:(x,y) € R}

> let R(x) ={y:(x,y) € R}

> if R(x) is always empty or a singleton, we say R is a function

» any function f : R” — R" defines a relation {(x, f(x)) : x € dom f}
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vVVvyVvyVvyy

Relations: examples

empty relation: ()

full relation: R” x R”

identity: {(x,x) :x € R"}

zero: {(x,0): x € R"}

subdifferential: 9f = {(x,g: x € domf, g € 0f(x)}
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Operations on relations

if R and S are relations, define

» composition: RS = {(x,z) : (x,y) € R,(y,z) € S}
» addition: R+ S ={(x,y+z):(x,y) € R,(x,z) € S}
» inversess R~ = {(y,x): (x,y) € R}

use inequality on sets to mean the inequality holds for any element in the set, e.g.,

fly) > f(x)+0f T (y — x)
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Example: fenchel conjugates and the subdifferential

if £ is CPP, (F*)* = £** = f, s0
(u,v) € (9F)

this shows 9f* = 9f 1

[ A A

(v,u) € Of

u € 0f(v)
0€df(v)—u

v € argmin(f(x) — u” x)

v € argmax(u’ x — f(x))

f(v)+ f(u)=u"v

u € argmax(y v — f*(y))
y

0ev—0f(u))
(u,v) € OfF
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Fixed points
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Zeros of a relation

> x is a zero of R if 0 € R(x)
> the zero set of R is R71(0) = {x : (x,0) € R}
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Zeros of a relation

> x is a zero of R if 0 € R(x)
> the zero set of R is R71(0) = {x : (x,0) € R}

x is a zero of Of iff x solves minimize f(x)
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Lipschitz operators

relation F has Lipschitz constant L if for all (x,u) € F and (y,v) € F,
Ju— v <Lix=yl

fact: if F is Lipschitz, then F is a function.
proof:
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Lipschitz operators

relation F has Lipschitz constant L if for all (x,u) € F and (y,v) € F,
Ju— v <Lix=yl

fact: if F is Lipschitz, then F is a function.
proof: if (x,u) € F and (x,v) € F,

Ju—v]l < Lix—x] =0

» the relation F is nonexpansive if L <1

» the relation F is contractive if L < 1
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and 3-smooth. the relation
I —tVf ={(x,x — tVf(x)): x € domf}

is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and 3-smooth. the relation

I —tVf ={(x,x — tVf(x)): x € domf}

is Lipschitz with parameter L = max{|1 — ta/|,|1 — t53|}. corollary: if t = ﬁ
_ k-1
L=

hint: use the fundamental theorem of calculus

1
(I — tVF)(x) — (I — tVF)(y) = / (1 — tV2F(0x + (1 — 0)y))(x — y)d6

0

u/ dtu</r £)t

and Jensen’s inequality

source: Ryu and Yin ( )
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Gradient update is contractive for SSC functions

suppose f is a-strongly convex and -smooth. the relation
| —tVf ={(x,x — tVf(x)): x € domf}
is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
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Gradient update is contractive for SSC functions
suppose f is a-strongly convex and -smooth. the relation
| —tVf ={(x,x — tVf(x)): x € domf}
is Lipschitz with parameter L = max{|1 — ta/|, |1 — tf|}.
proof:
I = tV)(x) = (I = tVF)(y)

/01(/ — tV2f(Ox + (1 — 0)y))(x — y)cmH

1
< / (7 — £2F(6x + (1 — B)y))(x — ) db
0

1
< [ max(1 - tal. 11— e3)d0 x|
0
= max(|1 - tal,|1 - t8]) [|x -y
last ineq uses al < V2f < I = (1—-tB)I =<1 - tV2f < (1—ta)l
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Proximal map is nonexpansive

the proximal map of any convex function f is nonexpansive:

Iproxe(y) — proxq(x)] < [ly — x|
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Proximal map is nonexpansive

the proximal map of any convex function f is nonexpansive:
Iprox;(y) — prox,(x) < ly — x|
proof: let u = proxs(x) and v = prox(y), so
x — u € 0f(u), y —v e of(v)
then by the subgradient inequality,
f(v) > f(u)+ (x —u,v —u) and fluy>f(v)+{(y —v,u—v)

add these to show

0 > (y—x+u—v,u—v)
(x—yu—v) > |lu—v|?
Ix =yl = [lu—vl

» second line shows prox, is firmly nonexpansive

» third line uses Cauchy-Schwarz to show it is nonexpansive
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Proximal map is contractive for SC functions

the proximal map of an a-SC function f is ﬁ-contractive:

Iprox(y) — prox,(x)| < ly = x|

1+ 2«
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Proximal map is contractive for SC functions

the proximal map of an a-SC function f is ﬁ-contractive:

Iprox(y) — prox,(x)| < ly = x|

14 2«
proof: let u = proxs(x) and v = prox(y), so

x —u € 0f(u), y —v e of(v)

by strong convexity

fv) > flu)+ (x—uv—u)+alv—ul?
flu) > fF(V)+y—v,u—v)+alu—v|?
add these to show
0 > (y—x+u—v,u—v)+2a|u—v|?
(x—y,u—v) > (1+2a)|u—v|?
e N TR
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Fixed points

x is a fixed point of F if x = F(x)
examples:

» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point
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Fixed points

x is a fixed point of F if x = F(x)

examples:

» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
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Fixed points

x is a fixed point of F if x = F(x)

examples:
» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs, [lx — y|| = [[F(x) — F(y)ll <|lx - yl| contradiction
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Fixed points

x is a fixed point of F if x = F(x)

examples:
» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs, [lx — y|| = [[F(x) — F(y)ll <|lx - yl| contradiction

» a nonexpansive operator F need not have a fixed point
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Fixed points

x is a fixed point of F if x = F(x)

examples:
» F(x) = x: every point is a fixed point
» F(x) =0: only 0 is a fixed point

» a contractive operator on R” can have at most one FP
proof: if x and y are FPs, [lx — y|| = [[F(x) — F(y)ll <|lx - yl| contradiction

» a nonexpansive operator F need not have a fixed point
proof: translation
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Fixed point iteration

to find a fixed point of F, try the fixed point iteration

xUF1) = F(x ()
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Fixed point iteration

to find a fixed point of F, try the fixed point iteration

xUF1) = F(x ()

Q: when does this converge?

47 /59



Fixed point iteration: contractive

Banach fixed point theorem: if F is a contraction, the iteration
xUF1) = F(x(K)y
converges to the unique fixed point of F

properties: if L is the Lipschitz constant of F,

» distance to fixed point decreases monotonically:
XD — x| = [ F(xW) = FO)I| < LIx® — x|

(iteration is Fejer-monotone)

» linear convergence with rate L
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Proof

proof:
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Proof

proof: if F has Lipschitz constant L < 1,

» sequence x(%) is Cauchy:

HX(kJrf)_X(k)H < Hx(k+€)_X(k+€fl)H_i_'”_i_HX(kJrl)_X(k)H
< (L4 ) D) — xRy
1
< T x (k1) (k)
< Ik -
Lk
< (1) _ ,(0)
< I =X

> so it converges to a point x*. must be the (unique) FP!

» converges to x* linearly with rate L

x5 =t = [FOUY) = FOI < LX) — x| < LX) =5
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Outline

Averaged operators
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Fixed point iteration: nonexpansive

if F is nonexpansive, the iteration
slk+1) — /:(X(k))

need not converge to a fixed point even if one exists.

proof:
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Fixed point iteration: nonexpansive

if F is nonexpansive, the iteration
slk+1) — F(x("))

need not converge to a fixed point even if one exists.

proof:

» let F rotate its argument by 6 degrees around the origin.
» then F is nonexpansive and has a fixed point at x* = 0.
> but if x| = r, then ||[F(x(A)|| = r for all k.
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Averaged operators

an operator F is averaged if
F=0G+(1-46)l

for @ € (0,1), G nonexpansive
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Averaged operators

an operator F is averaged if
F=60G+(1-06)l
for @ € (0,1), G nonexpansive

fact: if F is averaged, then x if FP of F <= x is FP of G
proof:
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Averaged operators

an operator F is averaged if
F=60G+(1-06)l
for @ € (0,1), G nonexpansive

fact: if F is averaged, then x if FP of F <= x is FP of G
proof:
x = Fx=0Gx+(1-0)Ix=0Gx+(1—0)x
0x = 0Gx

x = Gx

— if G is nonexpansive, F = 3/ + %G is averaged with same FPs
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Fixed point iteration: averaged

if F=60G+ (1—0)l is averaged (0 € (0,1), G nonexpansive),
the iteration
xFH1) = F(x(K)y

converges to a fixed point if one exists.
(also called the damped, averaged, or Mann-Krasnosel'skii iteration.)

properties: Ryu and Boyd ( )

> distance to fixed point decreases monotonically (Fejer-monotone)

» sublinear convergence of fixed point residual

1
(k+1)8(1—0)

161 —xW)2 < (@ =12
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Gradient descent operator is averaged

follows Ryu and Yin (2022)
fact: if f : R” — R is 8-smooth, then | — %Vf iS non-expansive
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Gradient descent operator is averaged

follows Ryu and Yin ( )
fact: if f : R” — R is 8-smooth, then | — %Vf iS non-expansive

proof: since f is S-smooth,

o= gvmx) . ;w)(y)”g = -yl - g<x Y V() — V()

+5“2|w(x) V)2

< lx=yl?

54 /59



Gradient descent operator is averaged

follows Ryu and Yin ( )
fact: if f : R” — R is 8-smooth, then | — %Vf iS non-expansive

proof: since f is S-smooth,

o= gvmx) . Zvrf)(y)w = -yl - g<x Y V() — V()

+5“2|w(x) V)2

< lx=yl?

corollary: if f : R” — R is S-smooth, then | — tVf is averaged for t € (0, %)

since | — tVFf = (1— L) + L (1 - 2Vf)
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When does proximal gradient converge?

proximal gradient converges at rate O(1/k) when | — tVf is averaged and prox,, is
nonexpansive

» if f is S-smooth and step size t € (0, %)

» and g is convex

proximal gradient converges linearly when, in addition, | — tVf or prox,, is
contractive

» if f is S-smooth and a—strongly convex and max(|1 — tal,|1 — tf]) < 1

» or if g is strongly convex
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When does proximal gradient converge?

proximal gradient converges at rate O(1/k) when | — tVf is averaged and prox,, is
nonexpansive

» if f is S-smooth and step size t € (0, %)

» and g is convex

proximal gradient converges linearly when, in addition, | — tVf or prox,, is
contractive
» if f is S-smooth and a—strongly convex and max(|1 — tal,|1 — tf]) < 1

» or if g is strongly convex

Q: How fast does proximal gradient converge for the lasso? for elastic net? for
bounded least squares? for bounded least squares with an £, regularizer? for
l>-regularized logistic regression?
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Outline

Proximal method
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Proximal point method

fixed point iteration using prox is called proximal point method

x1) = prox, (x(4))

properties:

>

>
| 4
| 4

v

prox,s is % averaged for any t > 0, so
converges for any t > 0
to a zero of Of (= FPs of prox,s)

if f is strongly convex, prox,s is a contraction,
so converges linearly

not usually a practical method (often, as hard as solving original problem)
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Method of multipliers
consider
minimize  f(x)
subject to Ax=b
let
g(u) = —(inf f(x) + AT (Ax — b)) = F*(=ATA) + ATb
be the (negative) dual function, and consider the proximal point method for t > 0

AlkHL) — proxtg()\(k))

> Jg(\) = —AI(F*(=ATN) + b
> x € O(F*(—ATN)) iff —AT X € 9f(x)
> soif N = prox,(\) = (/ + tdg)~*(A), then
A€ XN +tog(N)
A = XN —t(Ax—b) for some x with — AT € 9f(x)
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Method of multipliers

notice x minimizes the Augmented Lagrangian L:(x, y)
0 € Of(x)+AT(\+ t(Ax — b))
x € argminf(x)+ AT (Ax — b) + t/2||Ax — b|> = Li(x, \)

so proximal point method for g is

xH) e argmin Ly(x, A(K)

AkFD) - — A p(Ax(KFD) _ p)
also called the method of multipliers
properties:

» always converges
> if f is smooth, then g is strongly convex, prox,, is a contraction, and the
method of multipliers converges linearly

» useful if f is smooth and A is very sparse
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