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Constrained vs unconstrained optimization

constrained optimization

» examples: scheduling, routing, packing, logistics, scheduling, control

» what's hard: finding a feasible point
unconstrained optimization
» examples: data fitting, statistical/machine learning

» what's hard: reducing the objective

both are necessary for real-world problems!
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Unconstrained smooth optimization

for f : R” — R ctsly differentiable,

minimize f(x)
variable x € R"

examples:

» |east squares

» logistic regression

» neural network training (with smooth activation like tanh, ELU, GelLU, ...)
> ..
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Oracles

an optimization oracle is your interface for accessing the problem data:
e.g., an oracle for f : R” — R can evaluate for any x € R™:

» zero-order: fy(x)

> first-order: fy(x) and Vfy(x)

» second-order: fy(x), Vfy(x), and V2fy(x)

why oracles?

» can optimize real systems based on observed output (not just models)

» can use and extend old or complex but trusted code (e.g., NASA, PDE
simulations, ...)

» can prove lower bounds on the oracle complexity of a problem class

source: Nesterov 2004 “Introductory Lectures on Convex Optimization”
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Solution of an optimization problem

minimize f(x)
for f:D—R. x*isa

» global minimizer if f(x) > f(x*) for all x € D.

> local minimizer if there is a neighborhood A around x* so that f(x) > f(x*)
for all x € \V.

> isolated local minimizer if the neighborhood N contains no other local
minimizers.

» unique minimizer if it is the only global minimizer.
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Solution of an optimization problem

minimize f(x)
for f:D—R. x*isa

» global minimizer if f(x) > f(x*) for all x € D.

> local minimizer if there is a neighborhood A around x* so that f(x) > f(x*)
for all x € \V.

> isolated local minimizer if the neighborhood N contains no other local
minimizers.

» unique minimizer if it is the only global minimizer.

pictures!
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First order optimality condition

If x* € R" js a local minimizer of a differentiable function f : R" — R, then
Vi(x*)=0.
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First order optimality condition

Theorem
If x* € R" js a local minimizer of a differentiable function f : R" — R, then
Vi(x*)=0.

proof: suppose by contradiction that Vf(x*) # 0. consider points of the form
Xq = x* — aVFf(x*) for o > 0. by definition of the gradient,

i FO) = ()
a—0 o

= —VF(x*) VFf(x*) = —||VF(x*)|? < 0

so for any sufficiently small @ > 0, we have f(x,) < f(x*), which contradicts the
fact that x* is a local minimizer.
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First order optimality condition

Theorem
If x* € R" js a local minimizer of a differentiable function f : R" — R, then
Vi(x*)=0.

proof: suppose by contradiction that Vf(x*) # 0. consider points of the form
Xq = x* — aVFf(x*) for o > 0. by definition of the gradient,

i ) = ()

a—0 «

= —VF(x*) VFf(x*) = —||VF(x*)|? < 0

so for any sufficiently small @ > 0, we have f(x,) < f(x*), which contradicts the
fact that x* is a local minimizer.

Definition
x* € R" is a stationary point of a differentiable function f : R" — R if Vf(x*) = 0.

is a stationary point always a local minimizer?
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First order optimality condition

Theorem
If x* € R" js a local minimizer of a differentiable function f : R" — R, then
Vi(x*)=0.

proof: suppose by contradiction that Vf(x*) # 0. consider points of the form
Xq = x* — aVFf(x*) for o > 0. by definition of the gradient,

i ) = ()

a—0 «

= —VF(x*) VFf(x*) = —||VF(x*)|? < 0

so for any sufficiently small @ > 0, we have f(x,) < f(x*), which contradicts the
fact that x* is a local minimizer.

Definition
x* € R" is a stationary point of a differentiable function f : R" — R if Vf(x*) = 0.

is a stationary point always a local minimizer? no! saddle points, local maximizers.
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Second order optimality condition

If x* € R" is a local minimizer of a twice differentiable function f : R" — R, then
V2f(x*) = 0.
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Second order optimality condition

Theorem

If x* € R" is a local minimizer of a twice differentiable function f : R" — R, then
V2f(x*) = 0.

proof: similar to the previous proof. use the fact that the second order
approximation

f(xa) = F(xX*) + VF(x*) " (x0 — x*) + %(xa — x*) V2 (x*) (xq — x*)

is accurate locally to show a contradiction unless V2f(x*) = 0: if not, there is a
direction v such that v7 V2f(x*)v < 0. then f(x + av) < f(x*) for a arbitrarily
small, which contradicts the fact that x* is a local minimizer.
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Symmetric positive semidefinite matrices

Definition
a symmetric matrix Q € R"*" is positive semidefinite (psd) if x” Qx > 0 for all
x € R".
these matrices are so important that there are many ways to write them! for
Q 6 Rn)(n
REST <= Q-0+ Q=Q7, \un(Q) >0 <= v Qv>0 VYveR"
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix @ € R™*" is positive semidefinite (psd) if x” Qx > 0 for all
x € R".

these matrices are so important that there are many ways to write them! for
Q 6 Rn)(n

REST <= Q-0+ Q=Q7, \un(Q) >0 <= v Qv>0 VYveR"

Q € 87, is symmetric positive definite (spd) (Q > 0) if x” @x > 0 for all x # 0.
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Symmetric positive semidefinite matrices

Definition

a symmetric matrix @ € R™*" is positive semidefinite (psd) if x” Qx > 0 for all
x € R".

these matrices are so important that there are many ways to write them! for
Q e RHXI’I
REST <= Q-0+ Q=Q7, \un(Q) >0 <= v Qv>0 VYveR"

Q € 87, is symmetric positive definite (spd) (Q > 0) if x” @x > 0 for all x # 0.
why care about psd matrices Q7

> least-squares objective is quadratic with psd Hessian AT A

> level sets of x” Qx are (bounded) ellipsoids if @ = 0

» the quadratic form x7 Qx is a metric iff Q = 0
» eigenvalue decomp and svd coincide for psd matrices
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Convex sets

A set S C R" is convex if it contains every chord: for all € [0,1], w, v € §,

Ow+(1—-0)ves
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Convex sets

Definition
A set S C R" is convex if it contains every chord: for all € [0,1], w, v € §,

Ow+(1—-0)ves

Q: Which of these are convex?
ellipsoid, crescent moon, ...

12/29



Operations that preserve convexity

if SCR"and T C R" are convex, then so are:

> intersection: SN T
> sum: S+ T={s+t|seS, teT}
» projection: {x: (x,y) € S}
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Convex functions

a function f : R” — R is convex iff
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Convex functions

a function f : R” — R is convex iff

» Chords. it never lies above its chord: V0 € [0, 1], w,v € R"

F(Ow + (1 — O)v) < OF(w) + (1 — 0)F(v)

14/29



Convex functions

a function f : R” — R is convex iff

» Chords. it never lies above its chord: V0 € [0, 1], w,v € R"

F(Ow + (1 — O)v) < OF(w) + (1 — 0)F(v)
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Convex functions

a function f : R” — R is convex iff

» Chords. it never lies above its chord: V0 € [0, 1], w,v € R"

F(Ow + (1 — O)v) < OF(w) + (1 — 0)F(v)

» Epigraph. epi(f) = {(x,t) : t > f(x)} is convex
» First order condition. if f is differentiable,

f(v) > f(w) + VF(w) (v — w), Vw,v € R"

» Second order condition. If f is twice differentiable, its Hessian is always psd:

Amin(V2f(x)) >0,  VxeR"
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Convexity examples

Q: Which of these functions are convex?

VVvyVvyVvYvVvyVvYvYyyYy

quadratic function f(x) = x? for x € R

absolute value function f(x) = |x| for x € R

quadratic function f(x) = x"Ax, x € R", A= 0

quadratic function f(x) = x" Ax, A indefinite

rollercoaster function (cubic) f(x) = (x — 1)(x — 3)(x — 5)
hyperbolic function f(x) = 1/x for x > 0

jump function f(x) =1 if x > 0, f(x) = 0 otherwise

jump to infinity function f(x) = 1 if x € [-1,1], f(x) = oo otherwise
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Operations that preserve convexity

if f:R"” - Rand g:R" — R are convex, then so are:
» cf forc >0
> f(Ax+ b) for Ac R™™ b e R"

> f+g
> max{f,g}
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Operations that preserve convexity

if f:R"” - Rand g:R" — R are convex, then so are:
» cf forc >0
> f(Ax+ b) for Ac R™™ b e R"

> f+g
> max{f,g}

Q: Pick one and assume f and g are twice-differentiable. What is the easiest way

to prove convexity?
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Operations that preserve convexity

if f:R"” - Rand g:R" — R are convex, then so are:

» cf forc >0
> f(Ax+ b) for Ac R™™ b e R"
> f+g
> max{f,g}
Q: Pick one and assume f and g are twice-differentiable. What is the easiest way

to prove convexity?
most general rule:

fog(x)="f(g(x)) is convex if g is convex and f is convex and nondecreasing

(fog)'(x) = f"(g(x))(g'(x))* + f'(g(x))g" (x)
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Jensen’s inequality

Jensen’s inequality generalizes the chord condition to a distribution of points:

Theorem
If f: R™ — R is convex and X is a random variable, then

F(E[X]) < E[f(X)]
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Sublevel set

The sublevel set of a function f : R” — R at level t is

Se={xeR"|f(x) < t}
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Sublevel set

Definition
The sublevel set of a function f : R” — R at level t is

Se={xeR"|f(x) < t}

Theorem
A convex function f : R" — R has convex sublevel sets.
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Sublevel set

Definition
The sublevel set of a function f : R” — R at level t is

Se={xeR"|f(x) < t}

Theorem
A convex function f : R" — R has convex sublevel sets.

proof: Jensen's inequality. if x,y € S;, then for 0 € [0,1],
fx+(1-0)y)<O0f(x)+(1-0)f(y)<O0t+(1-0)t=t

soOx+ (L —68)y € S;.
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Quasiconvexity

converse is not true: a function can have all sublevel sets convex, and still be
non-convex.

Definition

A function f : R” — R is quasiconvex if its sublevel sets are convex.

examples of functions that are quasiconvex but not convex?
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Supporting hyperplane

Definition

A supporting hyperplane to a set S C R” at a point x € S is a hyperplane that
touches S at x and lies entirely on one side of S:

H={yeR"|a'y=b} supports S at x if
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Supporting hyperplane

Definition

A supporting hyperplane to a set S C R” at a point x € S is a hyperplane that
touches S at x and lies entirely on one side of S:

H={yeR"|a'y=b} supports S at x if

Theorem (Supporting hyperplane)

Any nonempty convex set has a supporting hyperplane at every boundary point.
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Supporting hyperplane condition for convexity

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary
point, then it is convex.
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Supporting hyperplane condition for convexity

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary
point, then it is convex.

Theorem
A function f : R" — R is convex <= for all x € relintdom f, the epigraph of f
has a supporting hyperplane at (x, f(x)): for some g € R",

fly) > f(x)+g"(y—x) Vy€eR”
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generalizes first-order condition for convexity to non-differentiable functions!
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Supporting hyperplane condition for convexity

Theorem (Partial converse)

If a closed set with nonempty interior has a supporting hyperplane at every boundary
point, then it is convex.

Theorem

A function f : R" — R is convex <= for all x € relintdom f, the epigraph of f
has a supporting hyperplane at (x, f(x)): for some g € R",

fly) > f(x)+g"(y—x) Vy€eR”

generalizes first-order condition for convexity to non-differentiable functions!

Definition
A vector g € R" is a subgradient of f : R" — R at x € R” if
fly) > f(x)+g"(y — x) forall y € R".
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Example: subgradients

f = max{fi, f}, with f1, f» convex and differentiable

Q: Where is the function f differentiable? Where is the subgradient unique?
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Subdifferential

set of all subgradients of f at x is called the subdifferential Of (x)

of(x)={g:f(y) > f(x)+g"(y —x) Wy}
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Subdifferential

set of all subgradients of f at x is called the subdifferential Of (x)

of(x)={g: fly) 2 f(x)+g"(y —x) Vy}
for any f,

> Of(x) is a closed convex set (can be empty)
> Of(x) =0 if f(x) = o0

proof: use the definition
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Subdifferential

set of all subgradients of f at x is called the subdifferential Of (x)

of(x)={g: fly) 2 f(x)+g"(y —x) Vy}
for any f,

> Of(x) is a closed convex set (can be empty)
> Of(x) =0 if f(x) = o0
proof: use the definition

if f is convex,

» Of(x) is nonempty, for x € relintdom f
> Of(x) = {Vf(x)}, if f is differentiable at x
» if Of(x) = {g}, then f is differentiable at x and g = Vf(x)
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Convex optimization

an optimization problem is convex if:
» Geometrically: the feasible set and the epigraph of the objective are convex

for example, a nonlinear minimization is convex if the objective and inequality
constraints are convex functions, and the equality constraints are affine

minimize  fy(x)
subject to fi(x) < b;, i=1,...,m
b

variable x € R"
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Convex optimization

an optimization problem is convex if:
» Geometrically: the feasible set and the epigraph of the objective are convex

for example, a nonlinear minimization is convex if the objective and inequality
constraints are convex functions, and the equality constraints are affine

minimize  fy(x)
subject to fi(x) < b;, i=1,...,m
b

variable x € R"

concave functions:

» a function f is concave if —f is convex

» concave maximization = a convex optimization problem
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Why care about convex optimization?

» local optimality = global optimality
» efficient solvers

» conceptual tools that generalize linear programming:
duality, stopping conditions, ...
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Local minima are global for convex functions

If x* is a local minimizer of a convex function f, then x* is a global minimizer.
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Local minima are global for convex functions

If x* is a local minimizer of a convex function f, then x* is a global minimizer.

proof?
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Local minima are global for convex functions

Theorem

If x* is a local minimizer of a convex function f, then x* is a global minimizer.

proof? suppose by contradiction that another point x’ is a global minimizer, with
f(x") < f(x*). draw the chord between x’ and x*. since the chord lies above f,
every convex combination x = Ox* + (1 — 8)x’ of x” and x* for § € (0,1) has a value
f(x) < f(x*). this is true even for x — x*, contradicting our assumption that x* is
a local minimizer.
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Corollary

Corollary

If f is convex and differentiable and Vf(x*) = 0, then x* is a global minimizer.
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Corollary

Corollary

If f is convex and differentiable and Vf(x*) = 0, then x* is a global minimizer.

Q: Is a global minimizer of a convex function always unique?
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Corollary

Corollary

If f is convex and differentiable and Vf(x*) = 0, then x* is a global minimizer.

Q: Is a global minimizer of a convex function always unique?
A: No. Picture.
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after today, you should be able to:

> assess whether a point is a local or global minimizer

» state and apply first- and second-order optimality conditions
» define convex sets and functions
| 4

prove convexity using different definitions and operations that preserve
convexity

v

state and apply Jensen's inequality

v

compute subgradients of simple functions

» certify that a point is a global minimizer of a convex function
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