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Outline

Quadratic approximation
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Minimize quadratic approximation

minimize  f(x)
Suppose f : R — R is twice differentiable. For any x € R, approximate f about x:
f(x) ~ (x5 + VFxENT (x — xK)
1
+§(x — xUNTG2f(xK)(x — xK))
1
~ (xR + VF(xK)Ts + 5sTBks = mi(x)

where s = x — x(¥) is the search direction and B, ~ V?f(x(¥)) is the Hessian
approximation.
If By = 0, my is convex. to minimize,

Bis + Vi(xk) =0
if By is invertible,

s =B Vf(xh)
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Which quadratic approximation?

> Gradient descent. use By = 1/ for some t > 0.
s =—tVf(x)
» Newton’s method. use By = V2f(x).
s = —(V?f(x))"IVF(x)
> Quasi-Newton methods. use By ~ V2f(x(¥).
s =B, 'Vf(x)

if f is convex (and the appropriate derivatives exist) and By >~ 0, we have global
convergence as long as my(x) > f(x) for all x.
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Why do we need B, - 07

1
x+1) = argmin my(x) = argmin f(xK)) + VF(x9) s + ESTBks
X x=x(K)+s
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x+1) = argmin my(x) = argmin f(xK)) + VF(x9) s + 1sTBks
X x=x(K)+s 2
Q: What happens if By is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if By is not invertible?
A: Not clear how far to go in flat directions.
in practice

» make it psd. modify By to be positive definite

» Newton-CG. use conjugate gradient to solve Bys = —Vf(x(k)). if you solve it,
take the step; otherwise, CG gives a direction of negative curvature; take it!
See https://arxiv.org/abs/1803.02924 for more details.
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Why do we need B, - 07

x+1) = argmin my(x) = argmin f(xK)) + VF(x9) s + 1sTBks
X x=x(K)+s 2
Q: What happens if By is indefinite?
A: Go in the direction of negative curvature; but not clear how far to go.
Q: What happens if By is not invertible?
A: Not clear how far to go in flat directions.
in practice

» make it psd. modify By to be positive definite

» Newton-CG. use conjugate gradient to solve Bys = —Vf(x(k)). if you solve it,
take the step; otherwise, CG gives a direction of negative curvature; take it!
See https://arxiv.org/abs/1803.02924 for more details.

» trust region method. minimize nonconvex my over a ball
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Trust region methods
suppose By is indefinite. solution to model problem is unbounded!

argmin my (x) = argmin f(xK)) 4 V£(x) s + %STB;(S

X x:x(k)-l,-s
trust region method chooses x(k*1) to solve trust region subproblem

minimize  mg(x)
subject to  [|x — x(F)|| < &,

» limits step length to dy
» subproblem is nonconvex quadratically constrained quadratic program (QCQP)

» can solve with generalized eigenvalue solver

source: https://www.math.uwaterloo.ca/ hwolkowi/henry/reports/previews.d/trsalgorithm10.pdf
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Outline

Newton's method
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Convergence rates

» linear convergence.

I -
0 D e = €€ (O
» superlinear convergence.
x5 — x|
lim ————— =
k—oo ||x(k=1) — x*||
» quadratic convergence.
(k) _ x*
im X =Xy

e x (k1) — |2

8/31



Error eg

1072 1

1074 1

10-5 -

lo—E 4

10710 +

10-12 A

Convergence rates

Convergence rates on a semilog plot

—e— Linear (p=0.7)

107 4w superlinear (p=1.5)
—a— Quadratic (p=2)
10-16 T T T T T T T T T
0 1 2 3 4 5 6 7 8
Iteration k

9/31



Newton’s method converges quadratically

Theorem (Local rate of convergence)

Suppose f is twice ctsly differentiable and V?f(x) is L-Lipschitz in a neighborhood
of a strict local minimizer x* € argmin f(x). Then Newton's method converges to
Xx* quadratically near x*.

recall an operator F is L-Lipschitz if

IF(x) = FW)II < Llix =yl
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Taylor’s theorem

since f is twice continuously differentiable,
1
V(y) - VF(x) = / V2 (x + tly — X))y — x)dt
0

source: https://www.cambridge.org/core/books/optimization-for-data-
analysis/C02C3708905D236AA354D1CE1739A6A2
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Newton’s method converges quadratically (1)

proof: x* is strict local min, so Vf(x*) = 0 and V2f(x*) = 0.
KD xR k)
xK) — x* — Bk_IVf(x(k)) > (Newton’s method)
= (B (B(k)(x(k) X - Vf(x(k))>

by Taylor's theorem, V(x(K)) = fol V2 (x* + t(xF) — x*))(x(F) — x*)dt, so

BRI (xtF) — x*) — wr(x(H)

/ ' (v2f(x(k> ) — V2F(x* + t(x0) — x* ))) (x) — x*)dt
0

1
IBR () —x*) = V()| < /Hsz(X(k))—VQf(X*+t(x(k)—X*))Illlx(k)—X*lldt
0

IA

1
/ Lel|x®) — x*|[2de
0

IN

S 2
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Newton’s method converges quadratically (1)
now choose r € R small enough that for ||x() — x*|| < r,

(V2 (<)) HT < 20/ (T2 F ()M

which is possible since V2f(x*) = 0.
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Newton’s method converges quadratically (1)

now choose r € R small enough that for ||x(¥) — x*|| < r,
IOV F(<P)) 71 < 2 (V2 F(x)) 7,
which is possible since V2f(x*) = 0. then complete the proof:

(k+1) *H

IN

D) — ZI(T2A(R) ) — x|
LI(V2F()) 71 I8 — |2

constant

IN

13/31



Outline

Quasi-Newton methods
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Quasi-Newton methods

what's the problem with Newton's method? V?f(x) is

» expensive to compute
» expensive to invert

» not always positive definite
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» expensive to compute
» expensive to invert
» not always positive definite
quasi-Newton method: use a matrix By =~ Vf2(x(¥)) (or Hy = B, ) that is

» easy to update
» easy to invert

» guaranteed to be positive definite

update By at each iteration to improve/maintain approximation
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Quasi-Newton methods

what's the problem with Newton's method? V?f(x) is

» expensive to compute
» expensive to invert

» not always positive definite

quasi-Newton method: use a matrix By =~ Vf2(x(¥)) (or Hy = B, ) that is

» easy to update
» easy to invert

» guaranteed to be positive definite

update By at each iteration to improve/maintain approximation

can still get superlinear convergence!
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BFGS

BFGS is the most popular quasi-Newton method. idea:
> take step with length ax > 0 chosen by line search
(k1) — (k) ak(—B,:lVf(x(k))) = x(K) 4 (k)

> define p = x — x(kt1). new model will be

miia(x) = FRD) £ VD) Tt 2 pT Biap

want gradient of my; to match f at x(¥) and x(k+1):

» match at x(k*1) by construction
» match at x(K if

V(xR = Vmyp (x5 — xFDY = O (xEFDY 4 By (x(K) — x(k+1)y
VF(x*H)) — v (xK)) = Biyg (xk+) — x(K))
y(k) = Bk+15(k) > (secant equation)

where y(K) = V£ (x(kt1D)) — VF(x(K), s(k) = x(k+1) _ 5 (k) 1631



Secant equation

y(k) = Bk+15(k)
where y(K) = Vf(x(kt1)) - Vf(x(F), s(k) = x(k+1) _ (k).
> need s(KTy(k) > 0 (otherwise By is not positive definite)

> (*) if f is strongly convex, then s(K)Ty(kK) > 0 for all k
(pf on next slide)
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https://www.ime.usp.br/~walterfm/orientacao/bfgs.pdf

Secant equation

J0 _ g1k
where y(K) = Vf(x(kT1)) — v f(x(K), stk) = x(k+1) _ (k).

> need s(K)Ty(k) > 0 (otherwise By is not positive definite)

> (*) if f is strongly convex, then s(K)Ty(kK) > 0 for all k
(pf on next slide)

> for nonconvex f, can enforce st T y(K) > 0 by using a line search that satisfies
the Wolfe conditions: for search direction p(k) = —B,:lVf(x(k)), constants
C1,C € (0, 1),

F(x) 4 aphy — £(x(K)

ac VI (xK)T pk) > (Armijo)

>
> oVF(xUN)Tplk) > (Curvature condition)

(but BFGS is not guaranteed to converge for nonconvex f even with exact linesearch
https://www.ime.usp.br/~walterfm /orientacao/bfgs.pdf)
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Proof of (*)

Lemma (*)

if £ is strongly convex, then y(K)Ts(K) >0 for all k
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Proof of (*)

Lemma (*)

if £ is strongly convex, then y(K)Ts(K) >0 for all k

proof: for f p-strongly convex, for any v, w € R”,

~-

—~
<

~
V

F(w) + VEW) (v = w) + S lv —wl?

g
E
v

F(v) + V)T (w = v) + Sllw — v

(VF(v) = V(W) (w =)+ pllv = w]?
ulls™? >0

AVARAY]

— (YN Tk
where we have set v = x(k+1), w = x(k) and used s(k) = x(k+1) _ x(k),
yK) = v (xk) — v (x(R).
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BFGS update

Bi41 € S has n(n+ 1)/2 degrees of freedom

secant equation gives n-dimensional linear system for Bxy; = many
solutions!

BFGS update chooses rank 2 update

YO T B s(Ks(TR,
YT ST B, sk)

Bk4+1 = Bk +

equivalently, can update the inverse Hessian approximation H, = Bk_l:
Hiir = (1 — p(k)s(k)y(k)T)Hk(/ _ p(k)y(k)s(k)T)T + p(k)s(k)s(k)T

where p(k) = W (uses Sherman-Morrison-Woodbury)

each iteration uses O(n?) flops
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Sherman Morrison Woodbury formula

Lemma
Sherman-Morrison-Woodbury formula for a matrix H = A+ UCV (where
dimensions match)

Hl=A"1_-A1lyct4+valu)ytval

can derive from formula for 2x2 (block) matrix inverse
special case: H= A+ uv' for u,v € R":

A lyyTA-1

Hl=p1_—- "7 °
14+ vTA- 1y

also called matrix inversion lemma or any subset of names
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BFGS convergence

demo: try on Rosenbrock function f(x,y) = (1 — x)? + 100(y — x?)?

https://github.com/stanford-cme-307 /demos/blob/main/qn.j|
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Error

1.25

1.00

0.50

0.25

BFGS in practice

Error vs Iteration

——— Gradient Descent

2 4 6 8 10

Iteration 22/31



Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B
Limited-memory BFGS (L-BFGS): don't store B explicitly!

» instead, store the m (say, m = 30) most recent values of
s = xW) — xU-1) = VF(xY) — vF(xU=1)

> evaluate 6x = H, VF(x(¥)) recursively, using

v T T
_ *Yj Yi%j 5j5J
Yi i Yi S Yi S

assuming By_, =1
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Limited memory quasi-Newton methods

main disadvantage of quasi-Newton method: need to store H or B
Limited-memory BFGS (L-BFGS): don't store B explicitly!

» instead, store the m (say, m = 30) most recent values of
s = xW) — xU-1) = VF(xY) — vF(xU=1)

> evaluate 6x = H, VF(x(¥)) recursively, using

v T T
_ *Yj Yi%j 5j5J
Yi i Yi S Yi S

assuming By_, =1

» advantage: for each update, just apply rank 1 + diagonal matrix to vector!
» cost per update is O(n); cost per iteration is O(mn)
» storage is O(mn)
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L-BFGS: interpretations

» only remember curvature of Hessian on active subspace
Sk = span{sk,...,Sk—m}
» hope: locally, Vf(x(k)) will approximately lie in active subspace
Vf(x(k)) =g° —i—gsl, g° € Sk, gsL small

» L-BFGS assumes Bx ~ /| on S+, so Bkgsl ~ gsl;
. SL . . ’
if g2 is small, it shouldn’t matter much.
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Outline

Preconditioning
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Three perspectives

» precondition the function
» change the quadratic approximation

» change the metric
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Three perspectives

» precondition the function
» change the quadratic approximation

» change the metric

three names:

» preconditioned
» quasi-Newton

» variable metric
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Recap: convergence analysis for gradient descent

minimize f(x)
recall: we say (twice-differentiable) f is p-strongly convex and L-smooth if
pl < V?f(x) < LI

recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly

k
) = p < e 2,

where ¢ = (:—ﬁ)z K= ﬁ

— wantk~1

> 1 is condition number
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Recap: convergence analysis for gradient descent

minimize f(x)
recall: we say (twice-differentiable) f is p-strongly convex and L-smooth if

pl < V?f(x) < LI
recall: if f is u-strongly convex and L-smooth, gradient descent converges linearly

k
) = p < e 2,

where ¢ = (%)2 k=L >1is condition number

T
— wantk~1

idea: can we minimize another function with K =~ 1 whose solution will tell us the
minimizer of f7?
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Preconditioning

for D = 0, the two problems
minimize f(x) and minimize f(Dz)

have solutions related by x* = Dz*
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> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D
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Preconditioning

for D = 0, the two problems
minimize f(x) and minimize f(Dz)
have solutions related by x* = Dz*

» gradient of f(Dz) is DT Vf(Dz)
> the second derivative (Hessian) of f(Dz) is DT V2f(Dz)D

a gradient step on f(Dz) with step-size t > 0 is
7t = z—tD"Vf(Dz)
Dzt = Dz - tDD"Vf(Dz)
xt = x—tDDTVf(x)
from prev analysis, gd on z converges fastest if
D'V?f(Dz)D =~ |
D ~ (V?f(Dz)) /2
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Approximate inverse Hessian

B = DDT is called the approximate inverse Hessian

can fix B or update it at every iteration:

» if B is constant: called preconditioned method
(e.g., preconditioned conjugate gradient)

» if B is updated: called (quasi)-Newton method
how to choose B? want

> B~ V2f(x)!

» easy to compute (and update) B

» fast to multiply by B
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Outline

Variable metric methods
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Variable metric
definition of the gradient:

Fx+5) = Fx) + (VF(x), )+ 5 (5, TF(x)s) + ofs?)

wrt Euclidean inner product (u,v) = u”v
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Variable metric
definition of the gradient:
Fx+5) = Fx) + (VF(x), )+ 5 (5, TF(x)s) + ofs?)
wrt Euclidean inner product (u,v) = u”v

now define new inner product (u, v)4 = u' Av for some matrix A € S” .
compute the gradient and Hessian wrt this inner product:

f(x+h) = f(x)+(VF(x),s)+ %(s, V2f(x)s) + o(s%)

= f(x)+ (ATIVF(X),s)a + %(s, ATIV2F(x)s)a + o(s?)

so the gradient and Hessian wrt the new inner product is
1
Vaf(x) = ATWVF(x),  Vaf(x) = 5 [ATVF(x) + V2F(x)AT]

source: Nesterov Introductory Lectures on Convex Optimization, p. 40 31/31



	Quadratic approximation
	Newton's method
	Quasi-Newton methods
	Preconditioning
	Variable metric methods

