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Announcements

▶ meet with course staff to discuss project this week or next
(see Ed)

▶ project 1 due this Friday 5/5
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Outline

Duality

Lagrange duality
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Duality

Definition (Dual space)

The dual X ∗ of a vector space X is the set of linear functionals
on X .

so if x ∈ X and you see someone write

wT x , ⟨w , x⟩, or w · x

you know that w ∈ X ∗ is a dual vector

notation: solution to optimization problem x⋆ vs dual space X ∗
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Careful of units!

example 1: suppose yi = wT xi where

xi =

 heart rate
blood pressure

age

 , with units

 bpm
mmHg
years


and yi is duration of stay in hospital (units: days)

then w has units of  days/bpm
days/mmHg
days/year


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Careful of units!

example 2: f (x) =
∑n

i=1

1 + exp

 yiw
T xi︸ ︷︷ ︸

input must be a scalar!




example 3: if x ∈ X , gradient is a linear function on
X =⇒ ∇f (x0) ∈ X ∗

f (x) ≈ f (x0) +∇f (x0)
T (x − x0),

so gradient descent stepsize t has units

xk+1 = xk − t∇f (xk)

e.g., x (meters m), ∇f (x) (m−1), and t (m2)

▶ no wonder it’s hard to choose the stepsize!

▶ basic recommendation: standardize your data
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Dual of function space

▶ f : [0, 1] → R is a function

▶ f (x) is a linear function of f , for any x :

(f + g)(x) = f (x) + g(x), (cf )(x) = cf (x)

▶ so is any integral: ∫ 1

0
f (x)dµ(x)

=⇒ the dual of the space of functions on [0, 1] is the
space of measures on [0, 1]
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Dual norm

Definition (Dual norm)

The dual norm of a norm ∥ · ∥ is

∥w∥∗ = sup
∥x∥≤1

⟨w , x⟩

equivalently, ∥w∥∗ = supx
⟨w ,x⟩
∥x∥

example: ℓ1 norm dual is ℓ∞ norm

∥w∥1 =
n∑

i=1

|wi |, ∥w∥∞ = max
i=1,...,n

|wi |

example: ℓ2 norm dual is ℓ2 norm =⇒ ℓ2 is self-dual

example: for f : [0, 1] → R, if ∥f ∥ = supx∈[0,1] |f (x)|,

∥µ∥∗ = sup
∥f ∥≤1

∫ 1

0
f (x)dµ(x) =

∫ 1

0
d |µ|(x)
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Self-dual norms

given primal space X
▶ dual vector is a linear functional w(x) on x ∈ X
▶ we should define the dual norm on X ∗ as

sup
x∈X ,∥x∥≤1

w(x)

▶ but instead we used the inner product ⟨w , x⟩. why?

Theorem (Riesz representation)

Suppose X = H is a Hilbert (inner product) space. For any
linear functional ϕ ∈ X ∗, there is a unique vector w ∈ H so that
w(x) = ⟨w , x⟩ for all x ∈ X = H. Moreover, ∥w∥∗ = ∥w∥.

∥ · ∥ is self-dual ⇐⇒ ∥ · ∥ is induced by an inner product

example: ℓ2 norm is self-dual, induced by the inner product

⟨w , x⟩ = wT x
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Conjugate of linear operator

given x ∈ Rn, w ∈ Rm, and A ∈ Rm×n, conjugate of A is the
linear operator A∗ defined so that

⟨A∗w , x⟩ = ⟨w ,Ax⟩

example: x ∈ Rn, A ∈ Rm×n defined by

Ax =

xi1
...
xim


then A∗ ∈ Rn×m satisfies

⟨A∗w , x⟩ = ⟨w ,Ax⟩ =
m∑
j=1

wjxij ,

so A∗ creates a sparse vector from w with

(A∗w)ij = wj
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Fenchel dual

Definition (Fenchel dual)

The Fenchel dual of a function f : X → R is

f ∗(w) = sup
x∈X

⟨w , x⟩ − f (x)

also called the conjugate function. draw picture!
https://remilepriol.github.io/dualityviz/

example: f (x) = ∥x∥1, x ∈ Rn

f ∗(w) = sup
x∈Rn

⟨w , x⟩ − ∥x∥1 =

{
0 ∥w∥∞ ≤ 1

∞ otherwise

=⇒ fenchel dual of ℓ1 norm is indicator of ℓ∞ ball
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Biconjugate

Definition (Biconjugate)

The biconjugate of a function f : X → R is

f ∗∗(x) = sup
w∈X ∗

⟨w , x⟩ − f ∗(w)

▶ for convex f : R → R, f ∗∗ = f

▶ for nonconvex f , f ∗∗ is convex hull of f

=⇒ biconjugate is a convexification operation

example: consider f : R → R defined by

f (x) =

{
0 x ∈ {−1, 1}
∞ otherwise

what is f ∗? f ∗∗?
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Outline

Duality

Lagrange duality
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Why duality?

▶ certify optimality
▶ turn ∀ into ∃
▶ use dual lower bound to derive stopping conditions

▶ new algorithms based on the dual
▶ solve dual, then recover primal solution
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Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A ∈ Rm×n and b ∈ Rm, exactly one of the following is
true:

▶ there exists x ∈ Rn so that Ax = b and x ≥ 0

▶ there exists y ∈ Rm so that AT y ≥ 0 and ⟨b, y⟩ < 0

=⇒ can efficiently certify infeasibility of a linear program

proof: suppose we have x ∈ Rn so that Ax = b and x ≥ 0.
then for any y ∈ Rm,

0 = ⟨y , b − Ax⟩ = ⟨y , b⟩ − ⟨AT y , x⟩
⟨y , b⟩ = ⟨AT y , x⟩

so if AT y ≥ 0, then use x ≥ 0 to conclude ⟨y , b⟩ ≥ 0.

(opposite direction is similar)
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Lagrange duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax = b : dual y
variable x ∈ Rn

(P)

if x is feasible, then Ax = b, so ⟨y ,Ax − b⟩ = 0.

define the Lagrangian

L(x , y) := f (x)− ⟨y , b − Ax⟩
p⋆ = inf

x :Ax=b
L(x , y) ≥ inf

x
L(x , y)

= inf
x
f (x) + ⟨y ,−b + Ax⟩

= ⟨y ,−b⟩+ inf
x

(
f (x) + ⟨AT y , x⟩

)
= ⟨y ,−b⟩ − sup

x

(
⟨−AT y , x⟩ − f (x)

)
= ⟨y ,−b⟩ − f ∗(−AT y) = g(y)

g(y) is called the dual function

16 / 31
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Lagrange duality

inequality holds for any y ∈ Rm, so we have proved weak
duality

p⋆ ≥ g(y) ∀y ∈ Rm

≥ sup
y

g(y)︸ ︷︷ ︸
D

=: d⋆ (1)

dual optimal value d⋆ ≤ p⋆
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Strong duality

Definition (Duality gap)

The duality gap for a primal-dual pair (x , y) is f (x)− g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x⋆, y⋆) satisfies strong duality if

p⋆ = d⋆ ⇐⇒ f (x⋆)− g(y⋆) = 0

strong duality holds

▶ for feasible LPs (pf later)
▶ for convex problems under constraint qualification aka

Slater’s condition. feasible region has an interior point x
so that all inequality constraints hold strictly

strong duality fails if either primal or dual problem is infeasible
or unbounded

18 / 31
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Lagrange duality with inequality constraints

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize f (x)
subject to Ax ≤ b : y ≥ 0
variable x ∈ Rn

(P)

to construct Lagrangian L(x , y) = f (x)− ⟨y , b − Ax⟩, ensure
value is better (lower) when x and y are feasible

L(x , y) := f (x)− ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
f (x)− ⟨y , b − Ax⟩

≥ inf
x
f (x)− ⟨y , b − Ax⟩

= ⟨y ,−b⟩ − f ∗(−A∗y) =: g(y)

this holds for all y ≥ 0, so we have weak duality

p⋆ ≥ sup
y

g(y)︸ ︷︷ ︸
D

=: d⋆

19 / 31
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SVM dual

support vector machine: for xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . ,m

minimize 1
2∥w∥2 + 1T s

subject to yiw
T xi + si ≥ 1 i = 1, . . . ,m : α ≥ 0

s ≥ 0 : µ ≥ 0
(SVM)

verify Slater’s condition. strong duality holds! Lagrangian: for
α ≥ 0, µ ≥ 0,

L(w , s, α, µ) =
1

2
∥w∥2 + 1T s −

m∑
i=1

αi (yiw
T xi + si − 1)− µT s

▶ minimize L(w , s, α, µ) over w :

w =
m∑
i=1

αiyixi

▶ minimize L(w , s, α, µ) over s =⇒ α+ µ = 1
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SVM dual

so simplify:

g(α) = inf
w ,s

L(w , s, α, 1− α)

=
1

2
∥w∥2 − wT

m∑
i=1

αiyixi + 1Tα

= −1

2
∥

m∑
i=1

αiyixi∥2 + 1Tα

define K ∈ Rm so Kij = yiyjx
T
i xj . then

∥
m∑
i=1

αiyixi∥2 =
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj = αTKα

dual problem:

maximize −1
2α

TKα+ 1Tα
subject to α ≥ 0

(SVM-dual)

new solution ideas! proj grad, coord descent (SMO), kernel trick

21 / 31



SVM dual

so simplify:

g(α) = inf
w ,s

L(w , s, α, 1− α)

=
1

2
∥w∥2 − wT

m∑
i=1

αiyixi + 1Tα

= −1

2
∥

m∑
i=1

αiyixi∥2 + 1Tα

define K ∈ Rm so Kij = yiyjx
T
i xj . then

∥
m∑
i=1

αiyixi∥2 =
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj = αTKα

dual problem:

maximize −1
2α

TKα+ 1Tα
subject to α ≥ 0

(SVM-dual)

new solution ideas! proj grad, coord descent (SMO), kernel trick

21 / 31



SVM dual

so simplify:

g(α) = inf
w ,s

L(w , s, α, 1− α)

=
1

2
∥w∥2 − wT

m∑
i=1

αiyixi + 1Tα

= −1

2
∥

m∑
i=1

αiyixi∥2 + 1Tα

define K ∈ Rm so Kij = yiyjx
T
i xj . then

∥
m∑
i=1

αiyixi∥2 =
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj = αTKα

dual problem:

maximize −1
2α

TKα+ 1Tα
subject to α ≥ 0

(SVM-dual)

new solution ideas! proj grad, coord descent (SMO), kernel trick

21 / 31



SVM dual

so simplify:

g(α) = inf
w ,s

L(w , s, α, 1− α)

=
1

2
∥w∥2 − wT

m∑
i=1

αiyixi + 1Tα

= −1

2
∥

m∑
i=1

αiyixi∥2 + 1Tα

define K ∈ Rm so Kij = yiyjx
T
i xj . then

∥
m∑
i=1

αiyixi∥2 =
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj = αTKα

dual problem:

maximize −1
2α

TKα+ 1Tα
subject to α ≥ 0

(SVM-dual)

new solution ideas! proj grad, coord descent (SMO), kernel trick
21 / 31



Generalize Lagrangian duality

▶ nonlinear duality: replace

0 ≥ Ax − b with 0 ≥ g(x)

(harder to derive explicit form for dual problem)

▶ conic duality: for cone K , replace

b − Ax ≥ 0 with b − Ax ∈ K

define slack vector s = b − Ax ∈ K
for weak duality, dual y must satisfy

⟨y , s⟩ ≥ 0 ∀s ∈ K
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Dual cones

this inequality defines the dual cone K ∗:

Definition (dual cone)

the dual cone K ∗ of a cone K is the set of vectors y such that

⟨y , s⟩ ≥ 0 ∀s ∈ K

examples of cones and their duals:

▶ K acute, K ∗ obtuse

▶ K = Rm
+, K

∗ = Rm
+

▶ K = {x ∈ Rn | ∥x∥ ≤ x0}, K ∗ = {y ∈ Rn | ∥y∥ ≤ y0}
▶ K = {X ∈ Sn | X ⪰ 0}, K ∗ = {Y ∈ Sn | Y ⪰ 0}

inner product ⟨X ,Y ⟩ = tr(XTY ) =
∑

ij XijYij for X ,Y ∈ Sn
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Conic duality

primal problem with solution x⋆ ∈ Rn, optimal value p⋆:

minimize ⟨c , x⟩
subject to b − Ax ∈ K : y ∈ K ∗

variable x ∈ Rn
(P)

for y ∈ K ∗, construct Lagrangian L(x , y) = ⟨c , x⟩ − ⟨y , b−Ax⟩,
ensure value is better (lower) when x and y are feasible

L(x , y) := ⟨c, x⟩ − ⟨y , b − Ax⟩
p⋆ ≥ inf

x feas
⟨c , x⟩ − ⟨y , b − Ax⟩

≥ inf
x
⟨c , x⟩ − ⟨y , b − Ax⟩

= ⟨y ,−b⟩+ inf
x
⟨c + A∗y , x⟩

which is −∞ unless c + A∗y = 0, so define the dual problem

maximize ⟨y ,−b⟩
subject to c + A∗y = 0
variable y ∈ K ∗

(D)

again, we have weak duality p⋆ ≥ d⋆ and, under a constraint
qualification, strong duality p⋆ = d⋆
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Dual of the dual

▶ if (P) is convex, then the dual of (1) is (P)

▶ otherwise, the dual of the dual is the convexification of
the primal

picture
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Strong duality for LPs

primal and dual LP in standard form: (derive!)

minimize cT x
subject to Ax = b

x ≥ 0

maximize bT y
subject to AT y ≤ c

claim: if primal LP has a bounded feasible solution x⋆, then
strong duality holds
i.e., dual LP has a bounded feasible solution y⋆ and p⋆ = d⋆
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Proof of strong duality for LPs

consider the following system with variables x ′ ∈ Rn, τ ∈ R

Ax ′ − bτ = 0, cT x ′ = p⋆τ − 1, (x ′, τ) ≥ 0

claim: this system has no solution. pf by contradiction:

▶ if τ > 0, then x ′/τ is feasible for LP and cT x ′/τ < p⋆

▶ if τ = 0, then x⋆ + x ′ is feasible for LP and
cT (x⋆ + x ′) < p⋆

so use Farkas’ lemma:

Ax + b = 0, x ≥ 0 or AT y ≥ 0, bT y < 0[
A −b
cT −p⋆

] [
x
τ

]
=

[
0
−1

]
or

[
AT c
−bT −p⋆

] [
y
σ

]
≥ 0, σ > 0

use second system to show y/σ is dual feasible and optimal
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Strong duality and complementary slackness

Definition (complementary slackness)

The primal-dual pair x and y are complementary if

⟨y , b − Ax⟩ = 0

They satisfy strict complementary slackness if
yi (bi − aTi x) = 0 for i = 1, . . . , n.

for conic problem, strong duality ⇐⇒ complementary slackness

⟨y , s⟩ = ⟨y , b − Ax⟩
= ⟨y , b⟩ − ⟨A∗y , x⟩
= ⟨y , b⟩ − ⟨c , x⟩
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KKT conditions

KKT conditions give necessary conditions for optimality of
convex problem.

Theorem (KKT conditions)

Suppose x⋆ and y⋆ are primal and dual optimal, respectively.
Then

▶ stationarity. x⋆ and y⋆ are a min/max saddle point of the
Lagrangian

∇xL(x⋆, y⋆) = 0, ∇yL(x⋆, y⋆) = 0

▶ feasibility. x⋆ is primal feasible; y⋆ is dual feasible

▶ complementary slackness. x⋆ and y⋆ are complementary:

⟨y⋆, b − Ax⋆⟩ = 0

KKT conditions turn optimization problem into a system of
equations
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KKT Example

Consider the following optimization problem:

minimize x2 + y2

subject to x + y ≤ 1 : λ ≥ 0

x − y = 0 : µ

Lagrangian:

L(x , y , λ, µ) = x2 + y2 + λ(x + y − 1) + µ(x − y)
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Lagrangian:

L(x , y , λ, µ) = x2 + y2 + λ(x + y − 1) + µ(x − y)

KKT conditions:

1. stationarity: ∇L(x , y , λ, µ) = 0
2. feasibility:

▶ primal: x + y ≤ 1 and x − y = 0
▶ dual: λ ≥ 0

3. complementary slackness: λ(x + y − 1) = 0

Taking the gradient of L wrt x , y , λ, and µ, we get:

∂L
∂x

= 2x + λ+ µ = 0

∂L
∂y

= 2y + λ− µ = 0

∂L
∂λ

= x + y − 1 = 0

∂L
∂µ

= x − y = 0

solve! → x∗ = 0.5, y∗ = 0.5, λ∗ = 0, µ∗ = 1
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KKT conditions:

1. stationarity: ∇L(x , y , λ, µ) = 0
2. feasibility:

▶ primal: x + y ≤ 1 and x − y = 0
▶ dual: λ ≥ 0

3. complementary slackness: λ(x + y − 1) = 0

Taking the gradient of L wrt x , y , λ, and µ, we get:

∂L
∂x

= 2x + λ+ µ = 0

∂L
∂y

= 2y + λ− µ = 0

∂L
∂λ

= x + y − 1 = 0

∂L
∂µ

= x − y = 0

solve! → x∗ = 0.5, y∗ = 0.5, λ∗ = 0, µ∗ = 1 31 / 31
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