CME 307 / MS&E 311: Optimization

Duality

Professor Udell

Management Science and Engineering
Stanford

May 7, 2023

Announcements

- meet with course staff to discuss project this week or next (see Ed)
- ▶ project 1 due this Friday 5/5

Outline

Duality

Lagrange duality

Duality

Definition (Dual space)

The **dual** \mathcal{X}^* of a vector space \mathcal{X} is the set of linear functionals on \mathcal{X} .

so if $x \in \mathcal{X}$ and you see someone write

$$w^T x$$
, $\langle w, x \rangle$, or $w \cdot x$

you know that $w \in \mathcal{X}^*$ is a dual vector

Duality

Definition (Dual space)

The **dual** \mathcal{X}^* of a vector space \mathcal{X} is the set of linear functionals on \mathcal{X} .

so if $x \in \mathcal{X}$ and you see someone write

$$w^T x$$
, $\langle w, x \rangle$, or $w \cdot x$

you know that $w \in \mathcal{X}^*$ is a dual vector

notation: solution to optimization problem x^* vs dual space \mathcal{X}^*

example 1: suppose $y_i = w^T x_i$ where

$$x_i = \begin{bmatrix} \text{heart rate} \\ \text{blood pressure} \\ \text{age} \end{bmatrix}, \text{ with units } \begin{bmatrix} \text{bpm} \\ \text{mmHg} \\ \text{years} \end{bmatrix}$$

and y_i is duration of stay in hospital (units: days)

example 1: suppose $y_i = w^T x_i$ where

$$x_i = \begin{bmatrix} \text{heart rate} \\ \text{blood pressure} \\ \text{age} \end{bmatrix}, \text{ with units } \begin{bmatrix} \text{bpm} \\ \text{mmHg} \\ \text{years} \end{bmatrix}$$

and y_i is duration of stay in hospital (units: days)

then w has units of

example 2:
$$f(x) = \sum_{i=1}^{n} \left(1 + \exp \left(\underbrace{y_i w^T x_i}_{\text{input must be a scalar!}} \right) \right)$$

example 2:
$$f(x) = \sum_{i=1}^{n} \left(1 + \exp \left(\underbrace{y_i w^T x_i}_{\text{input must be a scalar!}} \right) \right)$$

example 3: if $x \in \mathcal{X}$, gradient is a linear function on $\mathcal{X} \implies \nabla f(x_0) \in \mathcal{X}^*$

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0),$$

so gradient descent stepsize t has units

$$x^{k+1} = x^k - t\nabla f(x^k)$$

e.g., x (meters m), $\nabla f(x)$ (m^{-1}), and t (m^2)

example 2:
$$f(x) = \sum_{i=1}^{n} \left(1 + \exp \left(\underbrace{y_i w^T x_i}_{\text{input must be a scalar!}} \right) \right)$$

example 3: if $x \in \mathcal{X}$, gradient is a linear function on $\mathcal{X} \implies \nabla f(x_0) \in \mathcal{X}^*$

$$f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0),$$

so gradient descent stepsize t has units

$$x^{k+1} = x^k - t\nabla f(x^k)$$

e.g., x (meters m), $\nabla f(x)$ (m^{-1}), and t (m^2)

- no wonder it's hard to choose the stepsize!
- basic recommendation: standardize your data

Dual of function space

- $ightharpoonup f: [0,1]
 ightarrow \mathbf{R}$ is a function
- ightharpoonup f(x) is a linear function of f, for any x:

$$(f+g)(x) = f(x) + g(x),$$
 $(cf)(x) = cf(x)$

so is any integral:

$$\int_0^1 f(x) d\mu(x)$$

 \implies the dual of the space of functions on [0,1] is the space of measures on [0,1]

Definition (Dual norm)

The **dual norm** of a norm $\|\cdot\|$ is

$$\|w\|_* = \sup_{\|x\| \le 1} \langle w, x \rangle$$

equivalently,
$$\|w\|_* = \sup_x \frac{\langle w, x \rangle}{\|x\|}$$

Definition (Dual norm)

The **dual norm** of a norm $\|\cdot\|$ is

$$||w||_* = \sup_{||x|| \le 1} \langle w, x \rangle$$

equivalently, $\|w\|_* = \sup_x \frac{\langle w, x \rangle}{\|x\|}$

example: ℓ_1 norm dual is ℓ_{∞} norm

$$||w||_1 = \sum_{i=1}^n |w_i|, \qquad ||w||_{\infty} = \max_{i=1,\dots,n} |w_i|$$

Definition (Dual norm)

The **dual norm** of a norm $\|\cdot\|$ is

$$\|w\|_* = \sup_{\|x\| \le 1} \langle w, x \rangle$$

equivalently, $\|w\|_* = \sup_x \frac{\langle w, x \rangle}{\|x\|}$

example: ℓ_1 norm dual is ℓ_∞ norm

$$||w||_1 = \sum_{i=1}^n |w_i|, \qquad ||w||_{\infty} = \max_{i=1,\dots,n} |w_i|$$

example: ℓ_2 norm dual is ℓ_2 norm $\implies \ell_2$ is **self-dual**

Definition (Dual norm)

The **dual norm** of a norm $\|\cdot\|$ is

$$\|w\|_* = \sup_{\|x\| \le 1} \langle w, x \rangle$$

equivalently, $\|w\|_* = \sup_x \frac{\langle w, x \rangle}{\|x\|}$

example: ℓ_1 norm dual is ℓ_{∞} norm

$$||w||_1 = \sum_{i=1}^n |w_i|, \qquad ||w||_{\infty} = \max_{i=1,\dots,n} |w_i|$$

example: ℓ_2 norm dual is ℓ_2 norm $\implies \ell_2$ is **self-dual**

example: for $f : [0,1] \to \mathbb{R}$, if $||f|| = \sup_{x \in [0,1]} |f(x)|$,

$$\|\mu\|_* = \sup_{\|f\| \le 1} \int_0^1 f(x) d\mu(x) = \int_0^1 d|\mu|(x)$$

Self-dual norms

given primal space ${\mathcal X}$

- ▶ dual vector is a linear functional w(x) on $x \in \mathcal{X}$
- ightharpoonup we should define the dual norm on \mathcal{X}^* as

$$\sup_{x \in \mathcal{X}, \|x\| \le 1} w(x)$$

b but instead we used the inner product $\langle w, x \rangle$. why?

Self-dual norms

given primal space ${\mathcal X}$

- ▶ dual vector is a linear functional w(x) on $x \in \mathcal{X}$
- ightharpoonup we should define the dual norm on \mathcal{X}^* as

$$\sup_{x \in \mathcal{X}, \|x\| \le 1} w(x)$$

b but instead we used the inner product $\langle w, x \rangle$. why?

Theorem (Riesz representation)

Suppose $\mathcal{X}=H$ is a Hilbert (inner product) space. For any linear functional $\phi \in \mathcal{X}^*$, there is a unique vector $w \in H$ so that $w(x)=\langle w,x \rangle$ for all $x \in \mathcal{X}=H$. Moreover, $\|w\|_*=\|w\|$.

 $\|\cdot\|$ is self-dual \iff $\|\cdot\|$ is induced by an inner product

Self-dual norms

given primal space ${\mathcal X}$

- ▶ dual vector is a linear functional w(x) on $x \in \mathcal{X}$
- ightharpoonup we should define the dual norm on \mathcal{X}^* as

$$\sup_{x \in \mathcal{X}, \|x\| \le 1} w(x)$$

b but instead we used the inner product $\langle w, x \rangle$. why?

Theorem (Riesz representation)

Suppose $\mathcal{X}=H$ is a Hilbert (inner product) space. For any linear functional $\phi \in \mathcal{X}^*$, there is a unique vector $w \in H$ so that $w(x) = \langle w, x \rangle$ for all $x \in \mathcal{X} = H$. Moreover, $\|w\|_* = \|w\|$.

 $\|\cdot\|$ is self-dual $\iff \|\cdot\|$ is induced by an inner product **example:** ℓ_2 norm is self-dual, induced by the inner product

$$\langle w, x \rangle = w^T x$$

Conjugate of linear operator

given $x \in \mathbf{R}^n$, $w \in \mathbf{R}^m$, and $A \in \mathbf{R}^{m \times n}$, conjugate of A is the linear operator A^* defined so that

$$\langle A^*w, x\rangle = \langle w, Ax\rangle$$

Conjugate of linear operator

given $x \in \mathbf{R}^n$, $w \in \mathbf{R}^m$, and $A \in \mathbf{R}^{m \times n}$, conjugate of A is the linear operator A^* defined so that

$$\langle A^*w, x\rangle = \langle w, Ax\rangle$$

example: $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ defined by

$$Ax = \begin{bmatrix} x_{i_1} \\ \vdots \\ x_{i_m} \end{bmatrix}$$

then $A^* \in \mathbf{R}^{n \times m}$ satisfies

$$\langle A^*w, x\rangle = \langle w, Ax\rangle = \sum_{i=1}^m w_j x_{i_j},$$

so A^* creates a sparse vector from w with

$$(A^*w)_{i_j}=w_j$$

Fenchel dual

Definition (Fenchel dual)

The **Fenchel dual** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^*(w) = \sup_{x \in \mathcal{X}} \langle w, x \rangle - f(x)$$

also called the **conjugate function**. draw picture! https://remilepriol.github.io/dualityviz/

Fenchel dual

Definition (Fenchel dual)

The **Fenchel dual** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^*(w) = \sup_{x \in \mathcal{X}} \langle w, x \rangle - f(x)$$

also called the **conjugate function**. draw picture! https://remilepriol.github.io/dualityviz/

example: $f(x) = ||x||_1$, $x \in \mathbb{R}^n$

$$f^*(w) = \sup_{x \in \mathbf{R}^n} \langle w, x \rangle - \|x\|_1 = \begin{cases} 0 & \|w\|_{\infty} \le 1 \\ \infty & \text{otherwise} \end{cases}$$

 \implies fenchel dual of ℓ_1 norm is indicator of ℓ_{∞} ball

Biconjugate

Definition (Biconjugate)

The **biconjugate** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^{**}(x) = \sup_{w \in \mathcal{X}^*} \langle w, x \rangle - f^*(w)$$

- ▶ for convex $f : \mathbf{R} \to \mathbf{R}$, $f^{**} = f$
- for nonconvex f, f^{**} is convex hull of f
- ⇒ biconjugate is a convexification operation

Biconjugate

Definition (Biconjugate)

The **biconjugate** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^{**}(x) = \sup_{w \in \mathcal{X}^*} \langle w, x \rangle - f^*(w)$$

- ▶ for convex $f : \mathbf{R} \to \mathbf{R}$, $f^{**} = f$
- for nonconvex f, f^{**} is convex hull of f
- ⇒ biconjugate is a convexification operation

example: consider $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} 0 & x \in \{-1, 1\} \\ \infty & \text{otherwise} \end{cases}$$

what is f^* ? f^{**} ?

Outline

Duality

Lagrange duality

Why duality?

- certify optimality
 - turn ∀ into ∃
 - use dual lower bound to derive stopping conditions
- new algorithms based on the dual
 - solve dual, then recover primal solution

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbf{R}^n$ so that Ax = b and $x \ge 0$
- ▶ there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

 \implies can efficiently certify infeasibility of a linear program

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbf{R}^n$ so that Ax = b and $x \ge 0$
- there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

 \implies can efficiently certify infeasibility of a linear program **proof:** suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$,

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^T y \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$.

Warmup: Farkas lemma

Theorem (Farkas lemma)

Given $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, exactly one of the following is true:

- ▶ there exists $x \in \mathbf{R}^n$ so that Ax = b and $x \ge 0$
- ▶ there exists $y \in \mathbf{R}^m$ so that $A^T y \ge 0$ and $\langle b, y \rangle < 0$

 \implies can efficiently certify infeasibility of a linear program **proof:** suppose we have $x \in \mathbb{R}^n$ so that Ax = b and $x \ge 0$. then for any $y \in \mathbb{R}^m$,

$$0 = \langle y, b - Ax \rangle = \langle y, b \rangle - \langle A^T y, x \rangle$$
$$\langle y, b \rangle = \langle A^T y, x \rangle$$

so if $A^T y \ge 0$, then use $x \ge 0$ to conclude $\langle y, b \rangle \ge 0$. (opposite direction is similar)

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize f(x)

subject to Ax = b: dual y

variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$.

 (\mathcal{P})

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax = b$: dual y (\mathcal{P})
variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$. define the **Lagrangian**

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax = b$: dual y (\mathcal{P})
variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$. define the **Lagrangian**

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

$$p^* = \inf_{x:Ax=b} \mathcal{L}(x,y) \ge \inf_{x} \mathcal{L}(x,y)$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax = b$: dual y (\mathcal{P})
variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$. define the **Lagrangian**

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

$$p^* = \inf_{\substack{x:Ax = b \\ x}} \mathcal{L}(x,y) \ge \inf_{x} \mathcal{L}(x,y)$$

$$= \inf_{x} f(x) + \langle y, -b + Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \left(f(x) + \langle A^T y, x \rangle \right)$$

$$= \langle y, -b \rangle - \sup_{x} \left(\langle -A^T y, x \rangle - f(x) \right)$$

$$= \langle y, -b \rangle - f^*(-A^T y) = g(y)$$

g(y) is called the **dual function**

inequality holds for any $y \in \mathbb{R}^m$, so we have proved **weak** duality

$$p^{\star} \geq g(y) \quad \forall y \in \mathbf{R}^{m}$$

$$\geq \sup_{y} g(y) =: d^{\star}$$
(1)

dual optimal value $d^\star \leq p^\star$

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^{\star} = d^{\star} \iff f(x^{\star}) - g(y^{\star}) = 0$$

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^{\star} = d^{\star} \iff f(x^{\star}) - g(y^{\star}) = 0$$

strong duality holds

- for feasible LPs (pf later)
- for convex problems under constraint qualification aka Slater's condition. feasible region has an interior point x so that all inequality constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize f(x)

subject to $Ax \leq b$: $y \geq 0$ (\mathcal{P})

variable $x \in \mathbf{R}^n$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas}}} f(x) - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x}} f(x) - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle - f^*(-A^*y) =: g(y)$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{x \text{ feas}} f(x) - \langle y, b - Ax \rangle$$

$$\geq \inf_{x} f(x) - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle - f^*(-A^*y) =: g(y)$$

this holds for all $y \ge 0$, so we have weak duality

$$p^* \ge \sup_{\mathcal{D}} g(y) =: d^*$$

support vector machine: for $x_i \in \mathbf{R}^n$, $y_i \in \{-1,1\}$, $i=1,\ldots,m$ minimize $\frac{1}{2}\|w\|^2 + 1^T s$ subject to $y_i w^T x_i + s_i \ge 1$ $i=1,\ldots,m$: $\alpha \ge 0$ (SVM) s > 0: $\mu > 0$

support vector machine: for $x_i \in \mathbb{R}^n$, $y_i \in \{-1, 1\}$, i = 1, ..., m

```
 \begin{array}{ll} \text{minimize} & \frac{1}{2}\|w\|^2 + \mathbf{1}^T s \\ \text{subject to} & y_i w^T x_i + s_i \geq 1 \quad i = 1, \ldots, m: \quad \alpha \geq 0 \\ & s \geq 0: & \mu \geq 0 \end{array}  (SVM)
```

verify Slater's condition. strong duality holds!

support vector machine: for $x_i \in \mathbf{R}^n$, $y_i \in \{-1, 1\}$, i = 1, ..., m

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|w\|^2 + \mathbf{1}^T s \\ \text{subject to} & y_i w^T x_i + s_i \geq 1 \quad i = 1, \ldots, m: \quad \alpha \geq 0 \\ & s \geq 0: & \mu \geq 0 \end{array}$$

verify Slater's condition. strong duality holds! Lagrangian: for $\alpha \geq 0, \ \mu \geq 0,$

$$\mathcal{L}(w, s, \alpha, \mu) = \frac{1}{2} ||w||^2 + 1^T s - \sum_{i=1}^m \alpha_i (y_i w^T x_i + s_i - 1) - \mu^T s$$

ightharpoonup minimize $\mathcal{L}(w, s, \alpha, \mu)$ over w:

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

ightharpoonup minimize $\mathcal{L}(w, s, \alpha, \mu)$ over $s \implies \alpha + \mu = 1$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w, s, \alpha, 1 - \alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w, s, \alpha, 1 - \alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

define $K \in \mathbf{R}^m$ so $K_{ij} = y_i y_j x_i^T x_j$. then

$$\|\sum_{i=1}^{m} \alpha_i y_i x_i\|^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j = \alpha^T K \alpha$$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w, s, \alpha, 1 - \alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

define $K \in \mathbf{R}^m$ so $K_{ij} = y_i y_i x_i^T x_i$. then

$$\|\sum_{i=1}^{m} \alpha_i y_i x_i\|^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j = \alpha^T K \alpha$$

dual problem:

$$\begin{array}{ll} \text{maximize} & -\frac{1}{2}\alpha^T K \alpha + \mathbf{1}^T \alpha \\ \text{subject to} & \alpha \geq 0 \end{array} \tag{SVM-dual}$$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w, s, \alpha, 1 - \alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

define $K \in \mathbf{R}^m$ so $K_{ij} = y_i y_i x_i^T x_i$. then

$$\|\sum_{i=1}^{m} \alpha_i y_i x_i\|^2 = \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_i \alpha_j y_i y_j x_i^\mathsf{T} x_j = \alpha^\mathsf{T} \mathsf{K} \alpha$$

dual problem:

maximize
$$-\frac{1}{2}\alpha^T K\alpha + 1^T \alpha$$
 subject to $\alpha \ge 0$ (SVM-dual)

new solution ideas! proj grad, coord descent (SMO), kernel trick

Generalize Lagrangian duality

Generalize Lagrangian duality

▶ nonlinear duality: replace

$$0 \ge Ax - b$$
 with $0 \ge g(x)$

(harder to derive explicit form for dual problem)

Generalize Lagrangian duality

▶ nonlinear duality: replace

$$0 \ge Ax - b$$
 with $0 \ge g(x)$

(harder to derive explicit form for dual problem)

conic duality: for cone *K*, replace

$$b - Ax \ge 0$$
 with $b - Ax \in K$

define **slack vector** $s = b - Ax \in K$ for weak duality, dual y must satisfy

$$\langle y, s \rangle \ge 0 \quad \forall s \in K$$

Dual cones

this inequality defines the **dual cone** K^* :

Definition (dual cone)

the dual cone K^* of a cone K is the set of vectors y such that

$$\langle y, s \rangle \ge 0 \quad \forall s \in K$$

Dual cones

this inequality defines the **dual cone** K^* :

Definition (dual cone)

the dual cone K^* of a cone K is the set of vectors y such that

$$\langle y,s\rangle \geq 0 \quad \forall s \in K$$

examples of cones and their duals:

- K acute, K* obtuse
- $ightharpoonup K = \mathbf{R}_{+}^{m}, K^{*} = \mathbf{R}_{+}^{m}$
- $K = \{x \in \mathbb{R}^n \mid ||x|| \le x_0\}, \ K^* = \{y \in \mathbb{R}^n \mid ||y|| \le y_0\}$
- ▶ $K = \{X \in \mathbf{S}^n \mid X \succeq 0\}, K^* = \{Y \in \mathbf{S}^n \mid Y \succeq 0\}$

inner product
$$\langle X, Y \rangle = \operatorname{tr}(X^T Y) = \sum_{ij} X_{ij} Y_{ij}$$
 for $X, Y \in \mathbf{S}^n$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas} \\ x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x \text{ feas} \\ x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{\substack{x \text{ for } x \text{ for } x$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{x \text{ feas}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{x} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \langle c + A^*y, x \rangle$$

which is $-\infty$ unless $c + A^*y = 0$, so

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$
variable $x \in \mathbf{R}^n$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{x \text{ feas}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{x} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \langle c + A^*y, x \rangle$$

which is $-\infty$ unless $c + A^*y = 0$, so define the **dual problem**

$$\begin{array}{ll} \text{maximize} & \langle y, -b \rangle \\ \text{subject to} & c + A^* y = 0 \\ \text{variable} & y \in K^* \end{array}$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$
variable $x \in \mathbf{R}^n$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{x \text{ feas}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{x} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \langle c + A^*y, x \rangle$$

which is $-\infty$ unless $c + A^*y = 0$, so define the **dual problem**

$$\begin{array}{ll} \text{maximize} & \langle y, -b \rangle \\ \text{subject to} & c + A^* y = 0 \\ \text{variable} & y \in K^* \end{array}$$

Dual of the dual

- ightharpoonup if (\mathcal{P}) is convex, then the dual of (1) is (\mathcal{P})
- otherwise, the dual of the dual is the convexification of the primal

picture

Strong duality for LPs

primal and dual LP in standard form: (derive!)

minimize
$$c^T x$$

subject to $Ax = b$
 $x > 0$

maximize $b^T y$
subject to $A^T y \le c$

claim: if primal LP has a bounded feasible solution x^* , then strong duality holds

i.e., dual LP has a bounded feasible solution y^* and $p^*=d^*$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- ▶ if $\tau > 0$, then x'/τ is feasible for LP and $c^Tx'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, x \ge 0$$
 or $A^Ty \ge 0, b^Ty < 0$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) \ge 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^T x'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, \ x \ge 0 \qquad \text{or} \qquad A^T y \ge 0, \quad b^T y < 0 \\ \begin{bmatrix} A & -b \\ c^T & -\rho^* \end{bmatrix} \begin{bmatrix} x \\ \tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} A^T & c \\ -b^T & -\rho^* \end{bmatrix} \begin{bmatrix} y \\ \sigma \end{bmatrix} \ge 0, \ \sigma > 0$$

consider the following system with variables $x' \in \mathbb{R}^n$, $\tau \in \mathbb{R}$

$$Ax' - b\tau = 0$$
, $c^Tx' = p^*\tau - 1$, $(x', \tau) > 0$

claim: this system has no solution. pf by contradiction:

- if $\tau > 0$, then x'/τ is feasible for LP and $c^Tx'/\tau < p^*$
- if $\tau = 0$, then $x^* + x'$ is feasible for LP and $c^T(x^* + x') < p^*$

so use Farkas' lemma:

$$Ax + b = 0, \ x \ge 0 \qquad \text{or} \qquad A^T y \ge 0, \quad b^T y < 0$$

$$\begin{bmatrix} A & -b \\ c^T & -p^* \end{bmatrix} \begin{bmatrix} x \\ \tau \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} A^T & c \\ -b^T & -p^* \end{bmatrix} \begin{bmatrix} y \\ \sigma \end{bmatrix} \ge 0, \ \sigma > 0$$

use second system to show y/σ is dual feasible and optimal

Strong duality and complementary slackness

Definition (complementary slackness)

The primal-dual pair x and y are complementary if

$$\langle y, b - Ax \rangle = 0$$

They satisfy **strict complementary slackness** if $y_i(b_i - a_i^T x) = 0$ for i = 1, ..., n.

for conic problem, strong duality \iff complementary slackness

KKT conditions

KKT conditions give **necessary** conditions for optimality of convex problem.

Theorem (KKT conditions)

Suppose x^* and y^* are primal and dual optimal, respectively. Then

stationarity. x^* and y^* are a min/max saddle point of the Lagrangian

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \mathbf{y}^{\star}) = 0, \qquad \nabla_{\mathbf{y}} \mathcal{L}(\mathbf{x}^{\star}, \mathbf{y}^{\star}) = 0$$

- **Feasibility.** x^* is primal feasible; y^* is dual feasible
- **complementary slackness.** x^* and y^* are complementary:

$$\langle y^{\star}, b - Ax^{\star} \rangle = 0$$

KKT conditions turn optimization problem into a system of equations

KKT Example

Consider the following optimization problem:

$$\begin{array}{ll} \text{minimize} & x^2+y^2 \\ \text{subject to} & x+y \leq 1: \quad \lambda \geq 0 \\ & x-y=0: \quad \mu \end{array}$$

Lagrangian:

KKT Example

Consider the following optimization problem:

$$\begin{array}{ll} \text{minimize} & x^2+y^2 \\ \text{subject to} & x+y \leq 1: \quad \lambda \geq 0 \\ & x-y=0: \quad \mu \end{array}$$

Lagrangian:

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y - 1) + \mu(x - y)$$

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y - 1) + \mu(x - y)$$

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y - 1) + \mu(x - y)$$

KKT conditions:

- 1. stationarity: $\nabla L(x, y, \lambda, \mu) = 0$
- 2. feasibility:
 - ightharpoonup primal: $x + y \le 1$ and x y = 0
 - dual: $\lambda \geq 0$
- 3. complementary slackness: $\lambda(x+y-1)=0$

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y - 1) + \mu(x - y)$$

KKT conditions:

- 1. stationarity: $\nabla L(x, y, \lambda, \mu) = 0$
- 2. feasibility:
 - ightharpoonup primal: x + y < 1 and x y = 0
 - dual: $\lambda \geq 0$
- 3. complementary slackness: $\lambda(x+y-1)=0$

Taking the gradient of L wrt x, y, λ , and μ , we get:

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda + \mu = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda - \mu = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = x + y - 1 = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mu} = x - y = 0$$

solve!

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y - 1) + \mu(x - y)$$

KKT conditions:

- 1. stationarity: $\nabla L(x, y, \lambda, \mu) = 0$
- 2. feasibility: > primal: x + y < 1 and x y = 0
 - dual: $\lambda \geq 0$
- 3. complementary slackness: $\lambda(x+y-1)=0$

Taking the gradient of L wrt x, y, λ , and μ , we get:

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda + \mu = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda - \mu = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = x + y - 1 = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mu} = x - y = 0$$

solve! $\rightarrow x^* = 0.5$, $y^* = 0.5$, $\lambda^* = 0$, $\mu^* = 1$