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Announcements

» meet with course staff to discuss project this week or next
(see Ed)

» project 1 due this Friday 5/5
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Outline

Duality
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Duality

Definition (Dual space)
The dual X'* of a vector space X is the set of linear functionals
on X.
so if x € X and you see someone write
T

w'x, (w, x), or W X

you know that w € X* is a dual vector
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Duality

Definition (Dual space)

The dual X'* of a vector space X is the set of linear functionals
on X.

so if x € X and you see someone write

w'x, (w, x), or W X

you know that w € X* is a dual vector

notation: solution to optimization problem x* vs dual space X*
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Careful of units!

example 1: suppose y; = w' x; where
heart rate bpm
x; = | blood pressure| , with units mmHg
age years

and y; is duration of stay in hospital (units: days)
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Careful of units!

example 1: suppose y; = w' x; where
heart rate bpm
x; = | blood pressure| , with units mmHg
age years

and y; is duration of stay in hospital (units: days)

then w has units of
days/bpm
days/mmHg
days/year
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Careful of units!

example 2: f(x)=>" ;| 1+ exp yiwTx;
—

input must be a scalar!
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Careful of units!

example 2: f(x)=>" ;| 1+ exp yiwTx;
—
input must be a scalar!

example 3: if x € X, gradient is a linear function on
X = Vf(x) e X*

f(x) = f(x0) + VF(x0) " (x = x0),
so gradient descent stepsize t has units
XKL = Xk tVF(x¥)

e.g., x (meters m), Vf(x) (m~1), and t (m?)
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Careful of units!

example 2: f(x)=>" ;| 1+ exp yiwTx;
—
input must be a scalar!

example 3: if x € X, gradient is a linear function on
X = Vf(x) e X*

f(x) = f(x0) + VF(x0) (x — x0),
so gradient descent stepsize t has units
XKL = xk — +VF(x¥)
e.g., x (meters m), Vf(x) (m~1), and t (m?)

» no wonder it's hard to choose the stepsize!
» basic recommendation: standardize your data
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Dual of function space

» f:[0,1] — R is a function

» f(x) is a linear function of f, for any x:
(F+8)(x) =f(x)+8&(x),  (cf)(x) = cf(x)
» so is any integral: .
| #eodut)

= the dual of the space of functions on [0, 1] is the
space of measures on [0, 1]
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Dual norm
Definition (Dual norm)

The dual norm of a norm || - || is

lwlls = sup (w,x)
Ixli<1

(w,x)
[l

equivalently, ||w||. = sup,
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Dual norm
Definition (Dual norm)

The dual norm of a norm || - || is

lwlls = sup (w,x)
Ixli<1

(w,x)
[l

equivalently, ||w||. = sup,

example: /1 norm dual is £, norm

i=1,...,

n
lwlly =" wil, [wlleo = max |w;l
i—1 L
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Dual norm
Definition (Dual norm)

The dual norm of a norm || - || is

lwlls = sup (w,x)
Ixli<1

(w,x)
[l

equivalently, ||w||. = sup,

example: /1 norm dual is £, norm

n
lwls =" [wil,  [wllo = max [w
] i=1,...,n

goooy

example: /5> norm dual is 2 norm — /5 is self-dual
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Dual norm
Definition (Dual norm)

The dual norm of a norm || - || is

lwlls = sup (w,x)
Ixli<1

(w,x)
[l

equivalently, ||w||. = sup,

example: /1 norm dual is £, norm

n
lwlly =" wil, [wlleo = max |w;l
i—1 L

i=1,...,
example: /5> norm dual is 2 norm — /5 is self-dual

example: for f : [0,1] — R, if [|f[| = sup,cpo 1) [f(X)I,

1 1
lule = sup /0 F(x)du(x) = /0 dl1|()

Ifll<i
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Self-dual norms

given primal space X

» dual vector is a linear functional w(x) on x € X
» we should define the dual norm on X'* as

sup  w(x)
XEX,[|x||<1

» but instead we used the inner product (w, x). why?
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Self-dual norms
given primal space X

» dual vector is a linear functional w(x) on x € X
» we should define the dual norm on X'* as

sup  w(x)
x€X,||x||<1

» but instead we used the inner product (w, x). why?

Theorem (Riesz representation)

Suppose X = H is a Hilbert (inner product) space. For any
linear functional ¢ € X'*, there is a unique vector w € H so that
w(x) = (w, x) for all x € X = H. Moreover,

Wil = [wll

|| - || is self-dual <= || - || is induced by an inner product
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Self-dual norms
given primal space X

» dual vector is a linear functional w(x) on x € X
» we should define the dual norm on X'* as

sup  w(x)
x€X,||x||<1

» but instead we used the inner product (w, x). why?

Theorem (Riesz representation)

Suppose X = H is a Hilbert (inner product) space. For any
linear functional ¢ € X'*, there is a unique vector w € H so that
w(x) = (w, x) for all x € X = H. Moreover,

Wil = [wll

|| - || is self-dual <= || - || is induced by an inner product

example: /> norm is self-dual, induced by the inner product

(w,x) =w'x
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Conjugate of linear operator

given x € R”, w € R™, and A € R™*", conjugate of A is the
linear operator A* defined so that

(A*w, x) = (w, Ax)
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Conjugate of linear operator
given x € R”, w € R™, and A € R™*", conjugate of A is the
linear operator A* defined so that

(A*w, x) = (w, Ax)

example: x € R", A € R™*" defined by
Xi;
Ax =

Xi

m

then A* € R"™*™ satisfies
(A*w, x) = (w, Ax) Z W;Xi;,

so A* creates a sparse vector from w W|th
* — .
(A*w)j; = w;
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Fenchel dual

Definition (Fenchel dual)
The Fenchel dual of a function f : X — R is

*(w) = sup(w, x) — f(x)
xeX

also called the conjugate function. draw picture!
https://remilepriol.github.io/dualityviz/
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https://remilepriol.github.io/dualityviz/

Fenchel dual

Definition (Fenchel dual)
The Fenchel dual of a function f : X — R is

*(w) = sup(w, x) — f(x)
xeX

also called the conjugate function. draw picture!
https://remilepriol.github.io/dualityviz/

example: f(x) = ||x]|1, x € R”

f*(w) = sup (w,x) — [|x|l1 =
xeR”

— fenchel dual of /1 norm is indicator of /., ball

oo otherwise

{o Iwlloo < 1

11/31


https://remilepriol.github.io/dualityviz/

Biconjugate

Definition (Biconjugate)
The biconjugate of a function f : X — R is

7 (x) = WSEUE*<W7X> — f(w)

» for convex f :R —= R, f** = f

» for nonconvex f, f** is convex hull of f

= biconjugate is a convexification operation
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Biconjugate

Definition (Biconjugate)
The biconjugate of a function f : X — R is

7 (x) = WSEUE*<W7X> — f(w)

» for convex f :R —= R, f** = f

» for nonconvex f, f** is convex hull of f

= biconjugate is a convexification operation

example: consider f : R — R defined by

F) = {0 x€{-1,1}

oo otherwise

what is £*7 f**?
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Outline

Lagrange duality
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Why duality?

» certify optimality

» turn V into 3

» use dual lower bound to derive stopping conditions
» new algorithms based on the dual

» solve dual, then recover primal solution
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Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A € R™*" and b € R™, exactly one of the following is
true:

» there exists x € R" so that Ax = b and x >0
» there exists y € R™ so that ATy > 0 and (b,y) < 0

= can efficiently certify infeasibility of a linear program
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Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A € R™*" and b € R™, exactly one of the following is
true:

» there exists x € R" so that Ax = b and x >0
» there exists y € R™ so that ATy > 0 and (b,y) < 0

= can efficiently certify infeasibility of a linear program

proof: suppose we have x € R” so that Ax = b and x > 0.
then for any y € R,

0 = (y,b—Ax)={(y,b) —(ATy,x)
<yvb> = <ATY7X>

so if ATy >0, then use x > 0 to conclude (y,b) > 0.
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Warmup: Farkas lemma

Theorem (Farkas lemma)

Given A € R™*" and b € R™, exactly one of the following is
true:

» there exists x € R" so that Ax = b and x >0
» there exists y € R™ so that ATy > 0 and (b,y) < 0

= can efficiently certify infeasibility of a linear program

proof: suppose we have x € R” so that Ax = b and x > 0.
then for any y € R,

0 = <yab_AX> = <yab>_<ATy7X>
(y,b) = (ATy,x)
so if ATy >0, then use x > 0 to conclude (y,b) > 0.

(opposite direction is similar)
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Lagrange duality

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subject to Ax=b: dual y (P)
variable x € R"

if x is feasible, then Ax = b, so (y, Ax — b) = 0.
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Lagrange duality

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subject to Ax=b: dual y (P)
variable x € R"

if x is feasible, then Ax = b, so (y, Ax — b) = 0.
define the Lagrangian

L(x,y) = f(x)—{(y,b— Ax)
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Lagrange duality

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subject to Ax=b: dual y (P)
variable x € R"

if x is feasible, then Ax = b, so (y, Ax — b) = 0.
define the Lagrangian
L(x,y) = f(x)—(y,b—Ax)
p* = _/i\nf_bﬁ(x,y) > inf L(x, y)
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Lagrange duality

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subject to Ax=b: dual y
variable x € R"

if x is feasible, then Ax = b, so (y, Ax — b) = 0.
define the Lagrangian

‘C(X:y) = f(x)—<y,b—AX>
p* - x:/iﬁ\r}(f:bﬁ(xjy) = ”’]‘f E(X7y)
= ir>1(f f(x)+ (y,—b+ Ax)
= {y,—b) +inf (f(x) + <ATy,X>)
= (y,—b) — sup ((—AT%X> - f(X))

= {y,=b)—f(-ATy) =g(y)
g(y) is called the dual function
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Lagrange duality

inequality holds for any y € R™, so we have proved weak
duality

p* > g(y) VyeR”
> SI;pg(y) = d* (1)
N——
D

dual optimal value d* < p*
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Strong duality

Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is f(x) — g(y)

by weak duality, duality gap is always nonnegative
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Strong duality
Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is f(x) — g(y)
by weak duality, duality gap is always nonnegative

Definition (Strong duality)
A primal-dual pair (x*, y*) satisfies strong duality if

pr=d* <= f(x*)—g(y*)=0

18/31



Strong duality

Definition (Duality gap)
The duality gap for a primal-dual pair (x,y) is f(x) — g(y)

by weak duality, duality gap is always nonnegative
Definition (Strong duality)
A primal-dual pair (x*, y*) satisfies strong duality if

pr=d* <= f(x*)—g(y*)=0

strong duality holds

> for feasible LPs (pf later)

» for convex problems under constraint qualification aka
Slater’s condition. feasible region has an interior point x
so that all inequality constraints hold strictly

strong duality fails if either primal or dual problem is infeasible

or unbounded .



Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subjectto Ax<b: y=>0 (P)
variable x € R”
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Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subjectto Ax<b: y=>0 (P)
variable x € R”

to construct Lagrangian L(x,y) = f(x) — (y, b — Ax), ensure
value is better (lower) when x and y are feasible
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Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subjectto Ax<b: y=>0 (P)
variable x € R”

to construct Lagrangian L(x,y) = f(x) — (y, b — Ax), ensure
value is better (lower) when x and y are feasible

L(x,y) = f(x)—(y,b— Ax)
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Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:
minimize  f(x)
subjectto Ax<b: y>0 (P)
variable x € R"

to construct Lagrangian L(x,y) = f(x) — (y, b — Ax), ensure
value is better (lower) when x and y are feasible

L(x,y) = f(x)—(y,b— Ax)
p* > Xipegs f(x)— (y,b— Ax)

> ir;f f(x)— (y,b— Ax)
(y,=b) — f*(=A%y) = g(y)
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Lagrange duality with inequality constraints

primal problem with solution x* € R", optimal value p*:

minimize  f(x)
subjectto Ax<b: y>0 (P)
variable x € R”

to construct Lagrangian L(x,y) = f(x) — (y, b — Ax), ensure
value is better (lower) when x and y are feasible

L(x,y) = f(x)—(y,b— Ax)
p* > Xipegs f(x)— (y,b— Ax)

> inff(x) — (y,b— Ax)
{y,=b) = F*(=A"y) =: g(y)
this holds for all y > 0, so we have weak duality

p* >supg(y) =: d*
y

N——
D 19/31



SVM dual
support vector machine: for x; € R", y; € {-1,1},i=1,...,m

minimize  %||lw|> +17s
subject to yiw'x;+s5>1 i=1,....m: a>0 (SVM)
s>0: w>0
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SVM dual
support vector machine: for x; € R", y; € {-1,1},i=1,...,m

minimize  %||lw|> +17s
subject to yiw'x;+s5>1 i=1,....m: a>0 (SVM)
s>0: w>0

verify Slater’'s condition. strong duality holds!
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SVM dual
support vector machine: for x; € R", y; € {-1,1},i=1,...,m
minimize  %||lw|> +17s
subject to yiw'x;+s5>1 i=1,....m: a>0 (SVM)
s>0: >0

verify Slater's condition. strong duality holds! Lagrangian: for
a>0,u=>0,

1 m
L(w,s,a,p) = 5||WH2 +17s - Za,-(y,-WTx,- +s5—-1)—pu's
i=1

» minimize £L(w, s, «, 1) over w:
m

w = g Qi yiXi
i=1

» minimize L(w,s,a,pu) overs = a+pu=1
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SVM dual
so simplify:

gla) = infL(w,s,a,1—a)

w,s

1 m
= E||W||2 —w' Za;y,-x,- +17a
i=1

1 m
= 5l > aiyixi?+17a
i=1
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SVM dual
so simplify:

gla) = infL(w,s,a,1—a)

w,s

1 m
= §||W||2 —w' Zai)/ixi +17a
i=1

1 m
= 5l > aiyixi?+17a
i=1
define K € R" so Kjj = y;y;x.| x;. then

m m m
1Y " ciyixill? =)0 aiayiyix x = o Ka
i-1

i=1 j=1
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SVM dual
so simplify:

gla) = infL(w,s,a,1—a)

w,s

1 m
= §||W||2—WTZO(;)/,'X,'+1TO(
i=1
1 m
- —EHZQ,-y,-X,-H2+1Ta
i=1

define K € R" so Kjj = y;y;x.| x;. then

m m m
1Y " ciyixill? =)0 aiayiyix x = o Ka
i-1

i=1 j=1
dual problem:
maximize —%aTKa +17a

subjectto a >0 (SVM-dual)
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SVM dual
so simplify:

gla) = infL(w,s,a,1—a)

w,s

1 m
= §||W||2 —w' Zai)/ixi +17a
i=1
1 m
= 5l > aiyixi?+17a
i=1
define K € R" so Kjj = y;y;x.| x;. then
m m m
1Y " ciyixill? =)0 aiayiyix x = o Ka
i=1 i=1 j=1
dual problem:
- 1.7 T
maximize —sa’' Ka+1'« i
subjectto a >0 (SVM-dual)

new solution ideas! proj grad, coord descent (SMO), kernel trick
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Generalize Lagrangian duality
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Generalize Lagrangian duality

» nonlinear duality: replace

0>Ax—b with 0> g(x)

(harder to derive explicit form for dual problem)
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Generalize Lagrangian duality

» nonlinear duality: replace
0>Ax—b with 0> g(x)

(harder to derive explicit form for dual problem)

» conic duality: for cone K, replace
b—Ax>0 with b—Axe K

define slack vector s = b — Ax € K
for weak duality, dual y must satisfy

(y,s) >0 VseK
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Dual cones

this inequality defines the dual cone K*:

Definition (dual cone)

the dual cone K* of a cone K is the set of vectors y such that

(y,s) >0 VseK
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Dual cones

this inequality defines the dual cone K*:
Definition (dual cone)

the dual cone K* of a cone K is the set of vectors y such that

(y,s) >0 VseK

examples of cones and their duals:

» K acute, K* obtuse

» K=RT, K* =RT

> K={xeR"| x| <x}, K*={y € R" [ [yl < yo}
> K={XeS"| X>0}, K ={YeS"|Y =0}

inner product (X, Y) =tr(XTY) = > XijYij for X, Y € S”
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Conic duality

primal problem with solution x* € R", optimal value p*:

minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable  x € R”
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Conic duality

rimal problem with solution x* € R", optimal value p*:
p P

minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable  x € R”

for y € K*, construct Lagrangian L(x,y) = (c¢,x) — (y, b — Ax),
ensure value is better (lower) when x and y are feasible
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Conic duality

rimal problem with solution x* € R", optimal value p*:
p P

minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable  x € R”

for y € K*, construct Lagrangian L(x,y) = (c¢,x) — (y, b — Ax),
ensure value is better (lower) when x and y are feasible

E(Xay) = <C>X> - <y>b_AX>
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Conic duality

primal problem with solution x* € R", optimal value p*:

minimize
subjectto b—Axe K: ye K*

variable

(¢, x)

x € R"

for y € K*, construct Lagrangian £(x,y) = (¢, x) —
ensure value is better (lower) when x and y are feasible

L(x,y
p

)

*

>

>

(c,x) — (y,b— Ax)
inf (c,x) — (y, b — Ax)

x feas

inf(c,x) — (y, b — Ax)
<y7 _b> + Ir)](f<c + A*y7X>

(P)

(y, b— Ax),
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Conic duality

primal problem with solution x* € R", optimal value p*:
minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable  x € R"

for y € K*, construct Lagrangian L(x,y) = (¢, x) — (y, b — Ax),

ensure value is better (lower) when x and y are feasible

Liay) = (ex)—{y,b— Ax)
p* > Xifr‘1325<c,x>—<y,b—Ax>

> inf(c,x) — (y,b— Ax)
(v, —b) +inf(c + A%y, x)

which is —oo unless ¢ + A*y = 0, so
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Conic duality

primal problem with solution x* € R", optimal value p*:
minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable  x € R”

for y € K*, construct Lagrangian L(x,y) = (c¢,x) — (y, b — Ax),

ensure value is better (lower) when x and y are feasible

L(x,y) = (c,x) = (y,b—Ax)
Ptz inf {c,x) = {y,b— Ax)

> inf(c,x) — (y,b— Ax)
<y7_b> + |r)1(f(c+A*y,x>

which is —oo unless ¢ + A*y = 0, so define the dual problem

maximize (y, —b)
subjectto c+ A*y =0
variable y e K*

(D)
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Conic duality

primal problem with solution x* € R", optimal value p*:
minimize  (c, x)
subjectto b—Axe K: ye K* (P)
variable  x € R”

for y € K*, construct Lagrangian L(x,y) = (c¢,x) — (y, b — Ax),

ensure value is better (lower) when x and y are feasible

L(x,y) = (c,x) = (y,b—Ax)
Ptz inf {c,x) = {y,b— Ax)

> inf(c,x) — (y,b— Ax)
<y7_b> + |r)1(f(c+A*y,x>

which is —oo unless ¢ + A*y = 0, so define the dual problem

maximize (y, —b)
subjectto c+ A*y =0
variable y e K*

(D)
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Dual of the dual

» if (P) is convex, then the dual of (1) is (P)

» otherwise, the dual of the dual is the convexification of
the primal

picture
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Strong duality for LPs

primal and dual LP in standard form: (derive!)

minimize ¢’ x

subjectto Ax=b
x>0

maximize bTy
subject to ATy <c

claim: if primal LP has a bounded feasible solution x*, then
strong duality holds
i.e., dual LP has a bounded feasible solution y* and p* = d*
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R

AX —br =0, X =p7-1, (¥X,7)>0
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R
AX —br =0, X =p7-1, (¥X,7)>0

claim: this system has no solution. pf by contradiction:

» if 7 > 0, then x'/7 is feasible for LP and ¢ x'/7 < p*

» if 7 =0, then x* + X’ is feasible for LP and
cT(x*+x') < p*
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R
AX —br =0, X =p7-1, (¥X,7)>0

claim: this system has no solution. pf by contradiction:

» if 7 > 0, then x'/7 is feasible for LP and ¢ x'/7 < p*

» if 7 =0, then x* + X’ is feasible for LP and
cT(x*+x') < p*

so use Farkas’ lemma:

Ax+b=0, x>0 or ATy >0, b'y<o0
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R
AX —br =0, X =p7-1, (¥X,7)>0

claim: this system has no solution. pf by contradiction:

» if 7 > 0, then x'/7 is feasible for LP and ¢ x'/7 < p*

» if 7 =0, then x* + X’ is feasible for LP and
cT(x*+x') < p*

so use Farkas’ lemma:

Ax+b=0, x>0 or ATy >0, b'y<o0
A —b| |x 0 AT c y
= >
LT —p*} H [—1] Or [—bT —P*} M =0, 7>0
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Proof of strong duality for LPs

consider the following system with variables x’ € R", 7 € R
AX —br =0, X =p7-1, (¥X,7)>0

claim: this system has no solution. pf by contradiction:

» if 7 > 0, then x'/7 is feasible for LP and ¢ x'/7 < p*

» if 7 =0, then x* + X’ is feasible for LP and
cT(x*+x') < p*

so use Farkas’ lemma:

Ax+b=0, x>0 or ATy >0, b'y<o0
A —b| |x 0 AT c y
= >
LT —p*} H [—1] Or [—bT —P*} M =0, 7>0

use second system to show y /o is dual feasible and optimal

27/31



Strong duality and complementary slackness

Definition (complementary slackness)

The primal-dual pair x and y are complementary if
<.y7 b— AX> =0

They satisfy strict complementary slackness if
yi(bi —alx)=0fori=1,...,n.

for conic problem, strong duality <= complementary slackness

<y75> = <y7b_AX>
= <y7b>_<A*y7X>
= (y,b) — (¢, x)
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KKT conditions

KKT conditions give necessary conditions for optimality of
convex problem.

Theorem (KKT conditions)

Suppose x* and y* are primal and dual optimal, respectively.

Then
> stationarity. x* and y* are a min/max saddle point of the

Lagrangian
VxL(x*,y*) =0, VyL(x*,y*)=0

» feasibility. x* is primal feasible; y* is dual feasible

» complementary slackness. x* and y* are complementary:
(y*,b—Ax*) =0

KKT conditions turn optimization problem into a system of
equations
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KKT Example

Consider the following optimization problem:

minimize x? + y?
subjectto x4+y<1: AX>0
x—y=0: p

Lagrangian:
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KKT Example

Consider the following optimization problem:
minimize x? + y?
subjectto x4+y<1: AX>0
x—y=0: p

Lagrangian:

LOGy M) =x2+y* +Ax+y—1)+pu(x—y)
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Lagrangian:

LOGy M) =x2+y> + Ax+y —1)+pu(x —y)
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Lagrangian:
LGy, \p) =X+ Y2+ Ax+y — 1)+ p(x — y)
KKT conditions:

1. stationarity: VL(x,y, A\, u) =0
2. feasibility:
> primal: x+y<landx—y=0
» dual: A >0
3. complementary slackness: A(x +y —1) =0
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Lagrangian:
LGy, \p) =X+ Y2+ Ax+y — 1)+ p(x — y)
KKT conditions:

1. stationarity: VL(x,y, A\, u) =0
2. feasibility:
> primal: x+y<landx—y=0
» dual: A >0
3. complementary slackness: A(x +y —1) =0

Taking the gradient of L wrt x, y, A, and u, we get:
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Lagrangian:
LGy, \p) =X+ Y2+ Ax+y — 1)+ p(x — y)
KKT conditions:

1. stationarity: VL(x,y, A\, u) =0
2. feasibility:
> primal: x+y<landx—y=0
» dual: A >0
3. complementary slackness: A(x +y —1) =0

Taking the gradient of L wrt x, y, A, and u, we get:

6—£:2x+/\+u:0
Ox
%:2)/—#)\—#:0
dy

L
oL
a—X*_}/—O

solvel - x* =05, y* =05 \*=0, p* =1 31/31
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